地下水压采下河北平原冬小麦面积及耗水变化

泉涛, 李红军, 沈彦俊, 王卓然, 闵雷雷, 齐永青, 张建永

泉涛, 李红军, 沈彦俊, 王卓然, 闵雷雷, 齐永青, 张建永. 地下水压采下河北平原冬小麦面积及耗水变化[J]. 中国生态农业学报(中英文), 2023, 31(9): 1460−1470. DOI: 10.12357/cjea.20230125
引用本文: 泉涛, 李红军, 沈彦俊, 王卓然, 闵雷雷, 齐永青, 张建永. 地下水压采下河北平原冬小麦面积及耗水变化[J]. 中国生态农业学报(中英文), 2023, 31(9): 1460−1470. DOI: 10.12357/cjea.20230125
QUAN T, LI H J, SHEN Y J, WANG Z R, MIN L L, QI Y Q, ZHANG J Y. Changes in the area and water consumption of winter wheat under limiting groundwater exploitation in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1460−1470. DOI: 10.12357/cjea.20230125
Citation: QUAN T, LI H J, SHEN Y J, WANG Z R, MIN L L, QI Y Q, ZHANG J Y. Changes in the area and water consumption of winter wheat under limiting groundwater exploitation in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1460−1470. DOI: 10.12357/cjea.20230125
泉涛, 李红军, 沈彦俊, 王卓然, 闵雷雷, 齐永青, 张建永. 地下水压采下河北平原冬小麦面积及耗水变化[J]. 中国生态农业学报(中英文), 2023, 31(9): 1460−1470. CSTR: 32371.14.cjea.20230125
引用本文: 泉涛, 李红军, 沈彦俊, 王卓然, 闵雷雷, 齐永青, 张建永. 地下水压采下河北平原冬小麦面积及耗水变化[J]. 中国生态农业学报(中英文), 2023, 31(9): 1460−1470. CSTR: 32371.14.cjea.20230125
QUAN T, LI H J, SHEN Y J, WANG Z R, MIN L L, QI Y Q, ZHANG J Y. Changes in the area and water consumption of winter wheat under limiting groundwater exploitation in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1460−1470. CSTR: 32371.14.cjea.20230125
Citation: QUAN T, LI H J, SHEN Y J, WANG Z R, MIN L L, QI Y Q, ZHANG J Y. Changes in the area and water consumption of winter wheat under limiting groundwater exploitation in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1460−1470. CSTR: 32371.14.cjea.20230125

地下水压采下河北平原冬小麦面积及耗水变化

基金项目: 国家自然科学基金项目(41971262)、河北省创新能力提升计划项目(225A4201D)和河北省自然科学基金项目(D2022503010)资助
详细信息
    作者简介:

    泉涛, 主要从事农业遥感研究。E-mail: quantao@sjziam.ac.cn

    通讯作者:

    李红军, 主要从事精准农业技术研究与应用, E-mail: lhj@sjziam.ac.cn

  • 中图分类号: TP79

Changes in the area and water consumption of winter wheat under limiting groundwater exploitation in the Hebei Plain

Funds: The study was supported by the National Natural Science Foundation of China (41971262), the Innovation Capability Improvement Program of Hebei Province (225A4201D), and the Natural Science Foundation of Hebei Province (D2022503010).
More Information
  • 摘要: 河北省是我国的重要粮食生产基地, 资源性缺水与长期高强度的农业生产, 导致河北平原水资源危机进一步加剧。面对水资源安全与粮食安全的矛盾, 河北省政府自2014年起实施地下水压采政策, 在农业生产上开展季节性休耕、实施旱作雨养、推广节水农业等措施。为探明地下水压采政策下河北平原冬小麦种植面积与耗水特征的变化, 本研究利用MODIS NDVI数据提取了河北平原2009—2019年冬小麦种植空间分布, 结合TSEB(基于双源能量平衡模型)蒸散产品以及农业生产统计数据, 对压采政策实施前后进行了比较研究, 并调研了相关变化的驱动因素。结果表明: 河北平原的冬小麦种植面积在2009—2019年持续增长了18.37万hm2, 压采政策实施后表现为东部增加西部减少的特征, 总体上增加10.4万hm2。通过实地调研发现, 农业生产经营者追求种植效益以及城市化导致冬小麦面积减少, 政府保障粮食安全的鼓励种粮政策以及冬小麦种植全程机械化程度的提高则促使其种植面积增加。与地下水压采政策实施前相比, 压采后冬小麦的蒸散量与总耗水量分别增加32.58 mm和10.9亿m3。季节性休耕期间, 休耕地不抽取地下水灌溉, 相比于麦田, 休耕地能够减少73 mm的蒸散耗水。2009—2019年冬小麦平均水分利用效率为1.67 kg∙m−3。地下水压采政策实施后, 2/3地区的冬小麦水分利用效率在逐年提升。农田的破碎化、流转土地经营权不稳定以及农户节水动力和压力不足导致冬小麦节水灌溉普及率不高。面对水粮矛盾, 河北平原仍需加强农业节水, 真正降低蒸散耗水, 才能使其得到缓解。
    Abstract: The shortage of water resources and long-term high-intensity agricultural production have further intensified the water crisis in the Hebei Plain, an important grain production region. The local government has implemented a limiting groundwater exploitation policy since 2014 to alleviate the contradiction between water and food security. Measures such as seasonal fallow, rain-fed agriculture, and water-saving agriculture have been implemented in terms of agricultural production. To explore the impact of this policy on agricultural water use, the changes in planting area and water consumption characteristics for winter wheat in the Hebei Plain during the years before and after the implementation of the policy were analyzed. Based on the spectral variation characteristics of winter wheat, distribution maps of winter wheat from 2009 to 2019 were retrieved using MODIS NDVI data. Combined with the TSEB (two-source energy balance model) evapotranspiration dataset and agricultural production statistics, the water consumption characteristics of winter wheat before and after the policy were compared, and the driving factors for these changes were investigated. Our study found that the planting area of winter wheat in the Hebei Plain increased by 183 700 hm2 from 2009 to 2019. Five years after the implementation of the policy, the total planting area of winter wheat increased by 104 000 hm2, mainly concentrated in the east; while it decreased in the west. In terms of water consumption of winter wheat, the level of evapotranspiration and total water consumption of winter wheat increased by 32.58 mm and 1.09 billion m3 compared with those before the policy. Compared with the winter wheat field, seasonal fallow land reduced evapotranspiration by 73 mm in addition to not pumping groundwater for irrigation. During the study period, the annual average water use efficiency of winter wheat was 1.67 kg∙m3. After the implementation of the policy, the water use efficiency of winter wheat in 2/3 regions of the Hebei Plain had been increasing annually. The main reason for the decrease in winter wheat area was the change in planting structure caused by farmers’ pursuit of higher agricultural economic benefits and urbanization. The support policy from the government to ensure food security and improve the mechanization degree of winter wheat planting promoted an increase in its planting area. The fragmentation of farmland, the unstable transfer of farmland management rights, and the lack of initiative and pressure to save water led to the low popularity of water-saving irrigation for winter wheat. Facing the contradiction between water shortage and food production, it is still necessary to strengthen water-saving agriculture and significantly reduce the water consumption of evapotranspiration to alleviate the contradiction.
  • 图  1   河北平原位置

    Figure  1.   Location of the Hebei Plain

    图  2   不同作物在冬小麦生育期内的NDVI序列曲线特征

    Figure  2.   Change curves of NDVI for the main crops during the growth period of winter wheat

    图  3   2009—2019年遥感监测河北平原冬小麦面积与各县农业统计数据比较

    Figure  3.   Comparison of winter wheat planting area from remote sensing and the agricultural statistical data of each county of the Hebei Plain from 2009 to 2019

    图  4   2009—2019年河北平原各地区冬小麦面积年际变化

    图中slope1为2009—2019年冬小麦面积变化斜率(万hm2∙a−1), slope2为2014—2019年冬小麦面积变化斜率(万hm2∙a−1)。Slope1 is the change rate of winter wheat area from 2009 to 2019 (×104 hm2∙a−1), slope2 is the change rate of winter wheat area from 2014 to 2019 (×104 hm2∙a−1).

    Figure  4.   Variations of winter wheat planting areas in different regions of the Hebei Plain from 2009 to 2019

    图  5   2009—2019年河北平原冬小麦累积种植年限(a)与地下水压采政策实施后冬小麦种植面积变化(b)

    Figure  5.   Cumulative planting years from 2009 to 2019 (a) and planting area change after the implementation of the limiting groundwater exploitation policy (b) of winter wheat in the Hebei Plain

    图  6   河北平原TSEB蒸散产品的冬小麦蒸散值(TSEB ET)与涡度相关测定的冬小麦蒸散值在日尺度(a)和月尺度(b)上的比较

    Figure  6.   Comparison of winter wheat evapotranspiration from TSEB dataset (TSEB ET) and that measured by eddy covariance system on daily (a) and monthly (b) scales in the Hebei Plain

    图  7   地下水压采政策实施前(2009—2014年)、后(2015—2019年)河北平原冬小麦种植区多年平均蒸散比较

    Figure  7.   Comparison of mean annual evapotranspiration of winter wheat before (2009−2014) and after (2015−2019) the implementation of the limiting groundwater exploitation policy in the Hebei Plain

    图  8   2009—2019年河北平原冬小麦生育期平均蒸散和总耗水量年际变化

    Figure  8.   Changes of evapotranspiration and total water consumption of winter wheat in Hebei Plain from 2009 to 2019

    图  9   2009年、2014年和2019年河北平原各地区冬小麦耗水占总耗水量比例

    SJZ: Shijiazhuang; HD: Handan; XT: Xingtai; BD: Baoding; CZ: Cangzhou; LF: Langfang; HS: Hengshui.

    Figure  9.   Ratio of water consumption of winter wheat for each region to that of the Hebei Plain in 2009, 2014 and 2019

    图  10   小麦区和休耕区NDVI对比

    Figure  10.   Comparison of NDVI from winter wheat and fallow farmland

    图  11   2009—2019年河北平原冬小麦水分利用效率(a)及压采后水分利用效率变化斜率(b)

    Figure  11.   Mean water use efficiency (WUE) of winter wheat from 2009 to 2019 (a) and the change slope of WUE of winter wheat for each county after the implementation of the limiting groundwater exploitation policy (b) in the Hebei Plain

  • [1] 康绍忠. 水安全与粮食安全[J]. 中国生态农业学报, 2014, 22(8): 880−885

    KANG S Z. Towards water and food security in China[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880−885

    [2] 杨天一, 王军, 张红梅, 等. 基于单作物系数法的华北平原典型农业生态系统蒸散规律研究[J]. 中国生态农业学报(中英文), 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336

    YANG T Y, WANG J, ZHANG H M, et al. Evapotranspiration of typical agroecosystems in the North China Plain based on single crop coefficient method[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336

    [3]

    ZHANG X Y, PEI D, CHEN S Y, et al. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain[J]. Agronomy Journal, 2006, 98(6): 1620−1626 doi: 10.2134/agronj2005.0358

    [4]

    SUN H Y, SHEN Y J, YU Q, et al. Effect of precipitation change on water balance and WUE of the winter wheat–summer maize rotation in the North China Plain[J]. Agricultural Water Management, 2010, 97(8): 1139−1145 doi: 10.1016/j.agwat.2009.06.004

    [5] 赵其国, 沈仁芳, 滕应, 等. 我国地下水漏斗区耕地轮作休耕制度试点成效及对策建议[J]. 土壤, 2018, 50(1): 1−6

    ZHAO Q G, SHEN R F, TENG Y, et al. Pilot progress and countermeasures on farmland rotation and fallow system in the groundwater funnel area of China[J]. Soils, 2018, 50(1): 1−6

    [6]

    ZHANG C, DUAN Q Y, YEH P J F, et al. The effectiveness of the south-to-north water diversion middle route project on water delivery and groundwater recovery in North China Plain[J]. Water Resources Research, 2020, 56(10): e2019WR026759

    [7] 贾坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013, 35(12): 2507−2516

    JIA K, LI Q Z. Review of features selection in crop classification using remote sensing data[J]. Resources Science, 2013, 35(12): 2507−2516

    [8]

    WANG X L, HOU M, SHI S H, et al. Winter wheat extraction using time-series Sentinel-2 data based on enhanced TWDTW in Henan Province, China[J]. Sustainability, 2023, 15(2): 1490 doi: 10.3390/su15021490

    [9] 潘学鹏, 李改欣, 刘峰贵, 等. 华北平原冬小麦面积遥感提取及时空变化研究[J]. 中国生态农业学报, 2015, 23(4): 497−505

    PAN X P, LI G X, LIU F G, et al. Using remote sensing to determine spatio-temporal variations in winter wheat growing area in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 497−505

    [10] 安塞, 沈彦俊, 赵彦茜, 等. 基于NDVI时间序列数据的冬小麦种植面积提取[J]. 江苏农业科学, 2019, 47(15): 236−240

    AN S, SHEN Y J, ZHAO Y X, et al. Extraction of winter wheat planting area based on NDVI time series data[J]. Jiangsu Agricultural Sciences, 2019, 47(15): 236−240

    [11] 郎婷婷. 京津冀地区冬小麦种植面积提取及生产潜力分析[D]. 唐山: 华北理工大学, 2019

    LANG T T. Extraction of winter wheat planting area and analysis of production potential in Beijing-Tianjin-Hebei Region[D]. Tangshan: North China University of Science and Technology, 2019

    [12] 雷海梅. 基于多源遥感数据的黑龙港流域主要农作物分类研究[D]. 邯郸: 河北工程大学, 2021

    LEI H M. Classification of main crops in Heilonggang Basin based on multi-source remote sensing data[D]. Handan: Hebei University of Engineering, 2021

    [13] 范玲玲. 中国小麦空间格局演变及区域水资源利用效应研究[D]. 北京: 中国农业科学院, 2021

    FAN L L. Study on the evolution of wheat spatial pattern and the effect of regional water resources utilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021

    [14]

    THONFELD F, STEINBACH S, MURO J, et al. Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis[J]. Remote Sensing, 2020, 12(7): 1057 doi: 10.3390/rs12071057

    [15]

    TALUKDAR S, SINGHA P, MAHATO S, et al. Land-use land-cover classification by machine learning classifiers for satellite observations—A review[J]. Remote Sensing, 2020, 12(7): 1135 doi: 10.3390/rs12071135

    [16]

    ZHAN Y L, MUHAMMAD S, HAO P Y, et al. The effect of EVI time series density on crop classification accuracy[J]. Optik, 2018, 157: 1065−1072 doi: 10.1016/j.ijleo.2017.11.157

    [17]

    MA Z, LIU Z, ZHAO Y Y, et al. An unsupervised crop classification method based on principal components isometric binning[J]. International Journal of Geo-Information, 2020, 9(11): 648 doi: 10.3390/ijgi9110648

    [18] 王浩, 杨贵羽, 贾仰文, 等. 以黄河流域土壤水资源为例说明以“ET管理”为核心的现代水资源管理的必要性和可行性[J]. 中国科学(E辑: 技术科学), 2009, 39(10): 1691−1701

    WANG H, YANG G Y, JIA Y W, et al. Taking soil water resources in the Yellow River Basin as an example, the necessity and feasibility of modern water resources management with “ET management” as the core are illustrated[J]. Scientia Sinica (Technologica), 2009, 39(10): 1691−1701

    [19] 张洪波, 兰甜, 王斌, 等. 基于ET控制的平原区县域水资源管理研究[J]. 水利学报, 2016, 47(2): 127−138 doi: 10.13243/j.cnki.slxb.20150221

    ZHANG H B, LAN T, WANG B, et al. Regional water resources allocation oriented to ET control in plain area[J]. Journal of Hydraulic Engineering, 2016, 47(2): 127−138 doi: 10.13243/j.cnki.slxb.20150221

    [20] 李昊天, 李璐, 闫宗正, 等. 太行山前平原40年冬小麦作物系数变化及影响因素研究[J]. 中国生态农业学报(中英文), 2022, 30(5): 747−760

    LI H T, LI L, YAN Z Z, et al. Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 747−760

    [21]

    ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6): 1097−1104 doi: 10.1016/j.agwat.2011.02.003

    [22] 张继. 中国西南喀斯特地区遥感蒸散发变化研究[D]. 贵阳: 贵州师范大学, 2020

    ZHANG J. Study on remote sensing evapotranspiration change in Karst Area of Southwest China[D]. Guiyang: Guizhou Normal University, 2020

    [23]

    ZHANG C J, LONG D, ZHANG Y C, et al. A decadal (2008−2017) daily evapotranspiration data set of 1km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion[J]. Remote Sensing of Environment, 2021, 262: 112519 doi: 10.1016/j.rse.2021.112519

    [24]

    ZHANG C J, LONG D, YAN L, et al. Spatiotemporally continuous evapotranspiration data set across the North China Plain during 2008−2019 using TSEB and data fusion[J]. PANGAEA, https://doi.org/10.1594/PANGAEA.926333

    [25]

    YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907−3925 doi: 10.5194/essd-13-3907-2021

    [26] 张玉翠, 姜寒冰, 张传伟, 等. 2007—2013年华北平原典型灌溉农田生态系统日通量数据集−以栾城站为例[J]. 中国科学数据, 2020, 5(2): 40−50

    ZHANG Y C, JIANG H B, ZHANG C W, et al. Daily fluxes dataset of the typical irrigated agro-ecosystem in the North China Plain: a case study of Luancheng Station (2007−2013)[J]. China Scientific Data, 2020, 5(2): 40−50

    [27] 张雅芳, 郭英, 沈彦俊, 等. 华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 8−16

    ZHANG Y F, GUO Y, SHEN Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 8−16

    [28]

    ZHANG H Y, LIU M R, FENG Z H, et al. Estimations of water use efficiency in winter wheat based on multi-angle remote sensing[J]. Frontiers in Plant Science, 2021, 12: 614417 doi: 10.3389/fpls.2021.614417

    [29] 谷祥辉. 基于多时相遥感数据的冬小麦休耕节水效应研究[D]. 青岛: 山东科技大学, 2020

    GU X H. Study on water-saving effect of winter wheat fallow based on multi-temporal remote sensing data[D]. Qingdao: Shandong University of Science and Technology, 2020

    [30] 贾丽娟, 焦为杰, 王先明, 等. 基于遥感监测河北省地下水超采区冬小麦休耕效果研究[J]. 现代农业科技, 2022(3): 196−200 doi: 10.3969/j.issn.1007-5739.2022.03.066

    JIA L J, JIAO W J, WANG X M, et al. Effect of winter wheat fallow in groundwater overexploitation area of Hebei Province based on remote sensing monitoring[J]. Modern Agricultural Science and Technology, 2022(3): 196−200 doi: 10.3969/j.issn.1007-5739.2022.03.066

    [31] 杨玮宏, 廖媛红. 我国小麦生产成本收益分析[J]. 中国农业资源与区划, 2020, 41(8): 121−126

    YANG W H, LIAO Y H. Cost-benefit analysis of wheat production in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(8): 121−126

    [32] 白静静, 李嫣资, 王健, 等. 合作社在农业新技术转移中的作用[J]. 北方园艺, 2017(19): 184−188 doi: 10.11937/bfyy.20164654

    BAI J J, LI Y Z, WANG J, et al. Role of cooperatives in the transfer of new agricultural technology[J]. Northern Horticulture, 2017(19): 184−188 doi: 10.11937/bfyy.20164654

图(11)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-06-06
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回