留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华东沿海稻麦轮作区生态系统能量闭合度和CO2通量特征研究

徐敏 徐敬争 刘文菁 徐萌 徐经纬 高苹 罗晓春

徐敏, 徐敬争, 刘文菁, 徐萌, 徐经纬, 高苹, 罗晓春. 华东沿海稻麦轮作区生态系统能量闭合度和CO2通量特征研究[J]. 中国生态农业学报 (中英文), 2022, 30(3): 367−379 doi: 10.12357/cjea.20210731
引用本文: 徐敏, 徐敬争, 刘文菁, 徐萌, 徐经纬, 高苹, 罗晓春. 华东沿海稻麦轮作区生态系统能量闭合度和CO2通量特征研究[J]. 中国生态农业学报 (中英文), 2022, 30(3): 367−379 doi: 10.12357/cjea.20210731
XU M, XU J Z, LIU W J, XU M, XU J W, GAO P, LUO X C. Characteristics of ecosystem energy closure and CO2 flux in a rice-wheat rotation area along the coast of East China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 367−379 doi: 10.12357/cjea.20210731
Citation: XU M, XU J Z, LIU W J, XU M, XU J W, GAO P, LUO X C. Characteristics of ecosystem energy closure and CO2 flux in a rice-wheat rotation area along the coast of East China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 367−379 doi: 10.12357/cjea.20210731

华东沿海稻麦轮作区生态系统能量闭合度和CO2通量特征研究

doi: 10.12357/cjea.20210731
基金项目: 国家自然科学基金项目(42075118)、科技助力经济2020重点专项(KJZLJJ202010)和国家重点研发计划项目(2019YFD1002201)资助
详细信息
    通讯作者:

    徐敏, 主要从事农业气象研究。E-mail: amin0506@163.com

  • 中图分类号: S161.9

Characteristics of ecosystem energy closure and CO2 flux in a rice-wheat rotation area along the coast of East China

Funds: This study was supported by the National Natural Science Foundation of China (42075118), the Key Projects of Science and Technology Helps Economy 2020 (KJZLJJ202010) and the National Key Research and Development Project of China (2019YFD1002201)
More Information
  • 摘要: 为科学评估华东沿海水稻-小麦轮作(简称“稻麦轮作”)农田生态系统能量通量变化特征和固碳能力, 基于2019—2020年涡度相关系统观测的稻麦轮作全生育期通量数据, 经质量控制, 研究分析了太阳净辐射(Rn)、潜热通量(LE)、显热通量(H)、土壤热通量(G)、CO2通量(FC)多时间尺度变化特征和稻麦轮作系统固碳量及其环境影响因子。结果表明: 有效能量和湍流通量能量平衡比率为0.80, 能量闭合度较高, 说明通量观测数据可靠。月均LE和Rn年内变化总体均呈“倒U型”, 两者变化基本同步, 峰值主要在5—8月, 谷值主要在1—2月、11—12月。HG的波动幅度明显小于LE和Rn。日内逐小时FC呈“U型”单峰二次曲线, 总体为白天吸收CO2、夜间排放CO2, CO2日吸收峰值主要出现在10:00—12:30; 逐日FC和逐月FC在年内总体呈“W型”变化特征, 全年碳排放时段主要集中在1月、6月、11—12月, 其余均为碳吸收, 吸收峰值分别在冬小麦拔节孕穗期(3—4月)和水稻拔节孕穗期(8月)。2019年和2020年的2—5月冬小麦生长期的固碳量分别为387.4 g(C)∙m−2和382.2 g(C)∙m−2, 7—10月水稻生长期的固碳量分别为678.2 g(C)∙m−2和599.7 g(C)∙m−2; 白天, 若气温升高, 冬小麦和水稻的CO2吸收能力会随之增强, 但当饱和水汽压差高于1.7 kPa时, 会降低这种吸收趋势, 夜间主要是受气温影响。由此可见, 沿海稻麦轮作农田生态系统碳吸收能力有着明显的日变化和季节变化, 全年尺度上是碳汇, 且为强固碳区。
  • 图  1  2019年和2020年稻麦轮作农田生态系统太阳净辐射(Rn)、潜热通量(LE)、显热通量(H)、土壤热通量(G)逐半小时序列

    DOY: 儒略日序数。DOY: days of year.

    Figure  1.  Half hour sequences of solar net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) of rice-wheat rotation system in 2019 and 2020

    图  2  2019年和2020年稻麦轮作农田生态系统太阳净辐射(Rn)、潜热通量(LE)、显热通量(H)、土壤热通量(G)的逐月平均值

    Figure  2.  Monthly average of solar net radiation (Rn), latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) of rice-wheat rotation system in 2019 and 2020

    图  3  2019年和2020年稻麦轮作农田生态系统潜热通量(LE)、显热通量(H)、土壤热通量(G)和太阳净辐射(Rn)各季节的日内变化

    图a、b、c、d分别为2019年春季、夏季、秋季、冬季, 图e、f、g、h分别为2020年春季、夏季、秋季、冬季。Fig. a, b, c and d are spring, summer, autumn and winter in 2019; fig. e, f, g and h are spring, summer, autumn and winter in 2020, respectively.

    Figure  3.  Diurnal variations of latent heat flux (LE), sensible heat flux (H), soil heat flux (G) and solar net radiation (Rn) of rice-wheat rotation system in 2019 and 2020

    图  4  2019年(a)和2020年(b)稻麦轮作农田生态系统能量平衡闭合情况

    H: 显热通量; LE: 潜热通量; Rn: 太阳净辐射; G: 土壤热通量; RnG: 有效能量; LE+H: 湍流通量。H: sensible heat flux; LE: latent heat flux; Rn: solar net radiation; G: soil heat flux; RnG: effective energy; LE+H: turbulent flux.

    Figure  4.  Closure of energy balance of rice-wheat rotation system in 2019 (a) and 2020 (b)

    图  5  2019—2020年稻麦轮作农田生态系统CO2通量(FC)逐半小时的逐日序列(a)和逐月(b)序列

    DOY: 儒略日序数。DOY: days of year.

    Figure  5.  Half hour series of daily (a) and monthly (b) CO2 flux (FC) of rice-wheat rotation system in 2019 and 2020

    图  6  2019—2020年稻麦轮作农田生态系统CO2通量(FC)各季节的日内变化

    图a、b、c、d分别为2019年春季、夏季、秋季、冬季; 图e、f、g、h分别为2020年春季、夏季、秋季、冬季。Fig. a, b, c and d are spring, summer, autumn and winter of 2019; fig. e, f, g and h are spring, summer, autumn and winter in 2020, respectively.

    Figure  6.  Diurnal variations of CO2 flux (FC) of rice-wheat rotation system in each season of 2019 and 2020

    图  7  稻麦轮作农田生态系统夜间CO2通量(FC)与气温(Ta, a)和饱和水汽压差(VPD, b)的关系

    图上方公式中xTa, yFC, R2为决定系数, N为样本天数, P为显著性水平检验值。In the formula above the figure, x is Ta; y is FC; R2 is the determination coefficient; N is the sample days; and P is the significance level test value.

    Figure  7.  Relationship between night CO2 flux (FC) and air temperature (Ta, a) and saturated water vapor pressure difference (VPD, b) of rice-wheat rotation system

    图  8  稻麦轮作农田生态系统白天CO2通量(FC)与气温(Ta, 左列)和饱和水汽压差(VPD, 右列)的块平均图

    图a、b为2019年冬小麦, 图c、d为2019年水稻, 图e、f为2020年冬小麦, 图g、h为2020年水稻。Fig. a and b represent winter wheat in 2019; fig. c and d represent rice in 2019; fig. e and f represent winter wheat in 2020; fig. g and h represent rice in 2020.

    Figure  8.  Block average diagram of daytime CO2 flux (FC) versus air temperature (Ta, left column) and saturated water vapor pressure difference (VPD, right column) of rice-wheat rotation system

    表  1  2019—2020年稻麦轮作农田生态系统各月份能量平衡闭合线性回归参数和能量平衡比率

    Table  1.   Linear regression coefficients of energy balance closure and energy balance ratio of rice-wheat rotation system during 2019−2020

    月份
    Month
    20192020
    样本数
    Number of samples
    线性回归
    斜率
    Linear regression slope
    线性回归截距
    Linear regression intercept
    能量平衡
    比率
    Energy balance ratio
    决定系数
    Coefficient of determination
    样本数
    Number of samples
    线性回归
    斜率
    Linear regression slope
    线性回归截距
    Linear regression intercept
    能量平衡
    比率
    Energy balance ratio
    决定系数
    Coefficient of determination
    1 131 0.67 13.02 0.99 0.94 343 0.61 12.02 0.85 0.92
    2 909 0.62 11.16 0.83 0.90 981 0.64 15.70 0.84 0.92
    3 1160 0.71 12.68 0.84 0.97 1067 0.68 13.56 0.80 0.96
    4 1089 0.70 8.99 0.77 0.96 1020 0.68 15.59 0.77 0.97
    5 1151 0.77 8.73 0.82 0.97 1190 0.72 10.23 0.78 0.97
    6 1194 0.64 31.02 0.83 0.88 879 0.67 19.46 0.81 0.85
    7 1183 0.65 20.98 0.79 0.93 1255 0.63 15.29 0.77 0.91
    8 1180 0.67 19.5 0.79 0.97 1193 0.72 19.67 0.84 0.96
    9 1109 0.67 12.49 0.76 0.96 1035 0.70 15.32 0.80 0.96
    10 1119 0.65 11.21 0.76 0.95 1041 0.65 10.95 0.73 0.96
    11 179 0.68 9.58 0.76 0.95 1019 0.64 11.59 0.78 0.93
    12 1151 0.51 15.37 0.83 0.86
    下载: 导出CSV
  • [1] DENNISON M S, BERRY J F. Wetlands, Guide to Science, Law, and Technology[M]. New Jersey: Cambridge University Press, 1993: 421−239 https://www.sciencedirect.com/science/article/pii/0160412094901309
    [2] DICKINSON R E, HENDERSON-SELLERS A, ROSENZWEIG C, et al. Evapotranspiration models with canopy resistance for use in climate models, a review[J]. Agricultural and Forest Meteorology, 1991, 54(2/3/4): 373−388
    [3] UNLAND H E, HOUSER P R, SHUTTLEWORTH W J, et al. Surface flux measurement and modeling at a semi-arid Sonoran Desert site[J]. Agricultural and Forest Meteorology, 1996, 82(1/2/3/4): 119−153
    [4] 高志球, 卞林根, 陆龙骅, 等. 水稻不同生长期稻田能量收支、CO2通量模拟研究[J]. 应用气象学报, 2004, 15(2): 129−140 doi: 10.3969/j.issn.1001-7313.2004.02.001

    GAO Z Q, BIAN L G, LU L H, et al. Modeling of energy and CO2 fluxes during different growth periods over rice field by using SIB2[J]. Quarterly Journal of Applied Meteorology, 2004, 15(2): 129−140 doi: 10.3969/j.issn.1001-7313.2004.02.001
    [5] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京: 高等教育出版社, 2006

    YU G R, SUN X M. Principles of Flux Measurment in Terrestrial Ecosystems[M]. Beijing: Higher Education Press, 2006
    [6] 徐昔保, 杨桂山, 孙小祥. 太湖流域典型稻麦轮作农田生态系统碳交换及影响因素[J]. 生态学报, 2015, 35(20): 6655−6665

    XU X B, YANG G S, SUN X X. Analysis of net ecosystem CO2 exchange (NEE) in the rice-wheat rotation agroecosystem of the Lake Taihu Basin, China[J]. Acta Ecologica Sinica, 2015, 35(20): 6655−6665
    [7] LE QUÉRÉ C, MORIARTY R, ANDREW R M, et al. Global carbon budget 2015[J]. Earth System Science Data, 2015, 7(2): 349−396 doi: 10.5194/essd-7-349-2015
    [8] SMITH P, LANIGAN G, KUTSCH W L, et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands[J]. Agriculture, Ecosystems & Environment, 2010, 139(3): 302−315
    [9] LEUNING R, VAN GORSEL E, MASSMAN W J, et al. Reflections on the surface energy imbalance problem[J]. Agricultural and Forest Meteorology, 2012, 156: 65−74 doi: 10.1016/j.agrformet.2011.12.002
    [10] FOKEN T. The energy balance closure problem: an overview[J]. Ecological Applications, 2008, 18(6): 1351−1367 doi: 10.1890/06-0922.1
    [11] 徐敏, 徐经纬, 高苹, 等. 不同统计模型在冬小麦产量预报中的预报能力评估−以江苏麦区为例[J]. 中国生态农业学报(中英文), 2020, 28(3): 438−447

    XU M, XU J W, GAO P, et al. Evaluation of winter wheat yield prediction ability of different statistical models — A case study of Jiangsu wheat-growing region[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 438−447
    [12] AUBINET M, VESALA T, PAPALE D. Eddy Covariance[M]. Dordrecht: Springer Netherlands, 2012
    [13] MONCRIEFF J B, MASSHEDER J M, DE BRUIN H, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology, 1997, 188/189: 589−611 doi: 10.1016/S0022-1694(96)03194-0
    [14] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447): 85−100 doi: 10.1002/qj.49710644707
    [15] MAUDER M, FOKEN T. Documentation and instruction manual of the eddy covariance software package TK2[R]. Proceedings of the Royal Society of Medicine, 2011: 1−60 https://xueshu.baidu.com/usercenter/paper/show?paperid=02d48ab8131592af87afed0c1e8f0757
    [16] MAHRT L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416−429 doi: 10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2
    [17] MCCAUGHEY J H. Energy balance storage terms in a mature mixed forest at Petawawa, Ontario — A case study[J]. Boundary-Layer Meteorology, 1985, 31(1): 89−101 doi: 10.1007/BF00120036
    [18] MOORE C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology, 1986, 37(1/2): 17−35
    [19] KURBATOVA J, ARNETH A, VYGODSKAYA N N, et al. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog Ⅰ. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period[J]. Tellus B: Chemical and Physical Meteorology, 2002, 54(5): 497−513
    [20] 时元智, 时红, 崔远来, 等. 基于涡度相关法的长江中下游稻田水分利用效率变化规律[J]. 农业工程学报, 2021, 37(4): 130−139 doi: 10.11975/j.issn.1002-6819.2021.4.016

    SHI Y Z, SHI H, CUI Y L, et al. Variation of water use efficiency in a paddy field in the middle and lower reaches of the Yangtze River using eddy covariance method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 130−139 doi: 10.11975/j.issn.1002-6819.2021.4.016
    [21] 田红, 伍琼, 童应祥. 安徽省寿县农田能量平衡评价[J]. 应用气象学报, 2011, 22(3): 356−361 doi: 10.3969/j.issn.1001-7313.2011.03.012

    TIAN H, WU Q, TONG Y X. Evaluation on energy balance of farmland in Shouxian County of Anhui Province[J]. Journal of Applied Meteorological Science, 2011, 22(3): 356−361 doi: 10.3969/j.issn.1001-7313.2011.03.012
    [22] 吴东星, 李国栋, 张茜. 华北平原典型冬小麦农田生态系统能量平衡与闭合研究[J]. 中国生态农业学报, 2017, 25(10): 1413−1422

    WU D X, LI G D, ZHANG X. Energy balance and closure of typical winter wheat farmland ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2017, 25(10): 1413−1422
    [23] 李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J]. 中国科学: D辑: 地球科学, 2004, 34(S2): 46−56

    LI Z Q, YU G R, WEN X F, et al. Evaluation of energy balance closure of China flux observation network[J]. Science in China: Series D: Earth Sciences, 2004, 34(S2): 46−56
    [24] WILSON K, GOLDSTEIN A, FALGE E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1/2/3/4): 223−243
    [25] 贾志军, 张稳, 黄耀. 三江平原稻田能量通量研究[J]. 中国生态农业学报, 2010, 18(4): 820−826 doi: 10.3724/SP.J.1011.2010.00820

    JIA Z J, ZHANG W, HUANG Y. Analysis of energy flux in rice paddy in the Sanjiang Plain[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 820−826 doi: 10.3724/SP.J.1011.2010.00820
    [26] 朱咏莉, 吴金水, 胡晶亮, 等. 亚热带稻田能量平衡闭合状况分析[J]. 中国农学通报, 2007, 23(8): 536−539 doi: 10.3969/j.issn.1000-6850.2007.08.117

    ZHU Y L, WU J S, HU J L, et al. Energy balance closure at rice paddy fields in subtropical region[J]. Chinese Agricultural Science Bulletin, 2007, 23(8): 536−539 doi: 10.3969/j.issn.1000-6850.2007.08.117
    [27] 孙小祥, 常志州, 杨桂山, 等. 长三角地区稻麦轮作生态系统净碳交换及其环境影响因子[J]. 中国生态农业学报, 2015, 23(7): 803−811

    SUN X X, CHANG Z Z, YANG G S, et al. Characteristics of net ecosystem exchange and environmental factors of rice-wheat rotation system in the Yangtze River Delta of China[J]. Chinese Journal of Eco-Agriculture, 2015, 23(7): 803−811
    [28] 段春锋, 田红, 黄勇, 等. 淮河流域稻麦轮作农田生态系统CO2通量多时间尺度变化特征[J]. 气象科技进展, 2020, 10(5): 138−145 doi: 10.3969/j.issn.2095-1973.2020.05.020

    DUAN C F, TIAN H, HUANG Y, et al. Multi-time scale variation of net ecosystem CO2 flux over rice-wheat rotation agroecosystem in Huaihe River Basin[J]. Advances in Meteorological Science and Technology, 2020, 10(5): 138−145 doi: 10.3969/j.issn.2095-1973.2020.05.020
    [29] 李俊, 于强, 孙晓敏, 等. 华北平原农田生态系统碳交换及其环境调控机制[J]. 中国科学: D辑: 地球科学, 2006, 36(S1): 210−223

    LI J, YU Q, SUN X M, et al. Carbon exchange and environmental regulation mechanism of farmland ecosystem in North China Plain[J]. Science in China: Series D: Earth Sciences, 2006, 36(S1): 210−223
    [30] 林同保, 王志强, 宋雪雷, 等. 冬小麦农田二氧化碳通量及其影响因素分析[J]. 中国生态农业学报, 2008, 16(6): 1458−1463

    LIN T B, WANG Z Q, SONG X L, et al. CO2 flux and impact factors in winter wheat field ecosystem[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1458−1463
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  63
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2021-12-08
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回