留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生态网络分析研究进展及其在农业生态系统氮循环中的应用前景

李晓波 KAZANCICaner 张婧 范如芹 马倩倩 杜建军

李晓波, KAZANCI Caner, 张婧, 范如芹, 马倩倩, 杜建军. 生态网络分析研究进展及其在农业生态系统氮循环中的应用前景[J]. 中国生态农业学报 (中英文), 2022, 30(3): 325−332 doi: 10.12357/cjea.20210767
引用本文: 李晓波, KAZANCI Caner, 张婧, 范如芹, 马倩倩, 杜建军. 生态网络分析研究进展及其在农业生态系统氮循环中的应用前景[J]. 中国生态农业学报 (中英文), 2022, 30(3): 325−332 doi: 10.12357/cjea.20210767
LI X B, KAZANCI C, ZHANG J, FAN R Q, MA Q Q, DU J J. Application of ecological network analysis in nitrogen cycling in agroecosystems: Progress and prospects[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 325−332 doi: 10.12357/cjea.20210767
Citation: LI X B, KAZANCI C, ZHANG J, FAN R Q, MA Q Q, DU J J. Application of ecological network analysis in nitrogen cycling in agroecosystems: Progress and prospects[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 325−332 doi: 10.12357/cjea.20210767

生态网络分析研究进展及其在农业生态系统氮循环中的应用前景

doi: 10.12357/cjea.20210767
基金项目: 国家自然科学基金项目(41977097, 31600392)、广东省自然科学基金项目(2019A1515012067, 2016A030310013)和广东省现代农业产业技术体系农业资源环境创新团队项目(2021KJ118)资助
详细信息
    作者简介:

    李晓波, 主要从事氮素生物地球化学循环及其生态环境效应研究。E-mail: 1984lxb@163.com

    通讯作者:

    马倩倩, 主要从事生态网络分析、全球变化生态学研究。E-mail: maqianqian@scbg.ac.cn

  • 中图分类号: S11

Application of ecological network analysis in nitrogen cycling in agroecosystems: Progress and prospects

Funds: This study was supported by the National Natural Science Foundation of China (41977097, 31600392), the Natural Science Foundation of Guangdong Province (2019A1515012067, 2016A030310013), and the Modern Agricultural Industrial Technology System of Guangdong Province (the Task of Innovation Team Building of Key Generic Technologies in Agricultural Resources and Environment) (2021KJ118).
More Information
    Corresponding author: E-mail: maqianqian@scbg.ac.cn
  • 摘要: 农业生态系统氮循环直接关系到粮食安全和生态环境保护, 受到国内外的广泛关注。生态系统氮循环包括氮在生态系统各个组分间迁移和转化的全部过程, 具有整体性和复杂性。然而, 现有研究大多集中在氮循环的单一或局部过程, 难以从全局水平上研究农业生态系统氮循环的变化规律。作为一种系统分析工具, 生态网络分析通过构建可以模拟复杂系统中物质或者能量流动结构的生态网络分室模型, 进而可以从全局的视角分析生态系统的内在、整体属性及其变化规律。因此, 利用生态网络分析从整体上审视农业生态系统氮素循环规律具有良好的应用及发展前景。鉴于此, 该文介绍了生态网络分析方法的基本原理、作者在生态网络分析方法研究中取得的新进展, 包括基于自主提出的网络粒子追踪法(network particle tracking, 简称NPT)将生态网络分析的应用范围由稳态系统扩展至动态系统和新提出两个性能更优的系统评价指标。此外, 分析了生态网络分析方法主要优势、实现步骤及应用案例, 指出了阻碍生态网络分析在农业生态系统氮循环研究中应用的主要问题以及应对策略, 展望了生态网络分析在农业生态系统氮循环研究中的可能应用。
  • 图  1  具有流量和储量信息的三分室生态网络概念模型[34]

    模型包括3个分室, 分别为生产者、消费者和营养库, 各自对应的储量(x)分别为50 units (x1)、20 units (x2)和5 units (x3)。z、yF 分别表示外部环境向分室的输入流速率、分室向外部环境的输出流速率和分室之间的流量速率。

    Figure  1.  A hypothetical three-compartment ecosystem model with flow and stock information[34]

    This model consists of producers, consumers, and nutrient pool with stocks x1 = 50 units, x2 = 20 units and x3 = 5 units, respectively. z, y and F represent rate of environmental input to compartment, rate of environmental output from compartment and rate of direct flow between compartments, respectively.

    图  2  网络粒子追踪方法示意图[36]

    Figure  2.  Sketch map of Network Particle Tracking[36]

    图  3  西班牙埃布罗河三角洲稻田氮循环的生态网络分室模型

    PHY: 浮游植物; DON: 溶解有机氮; DIN: 溶解无机氮; DET: 碎屑+水生异养生物; SAV: 沉水水生植物; SED: 沉积物; STR: 水稻秸秆; RICE: 水稻。网络分室模型图采用EcoNet[43]制作, 构建模型所需数据源于Fores和Christian[31]

    Figure  3.  General ecological network compartmental model of nitrogen cycling in rice fields of the Ebro River Delta

    PHY: phytoplankton; DON: dissolved organic nitrogen; DIN: dissolved inorganic nitrogen; DET: detritus plus aquatic heterotrophs; SAV: submersed aquatic vegetation; SED: sediment; STR: rice straw; RICE: rice. The diagram was generated in EcoNet[43] based on data from Fores and Christian[31].

  • [1] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341−356 doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
    [2] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226 doi: 10.1007/s10533-004-0370-0
    [3] YAN X Y, TI C P, VITOUSEK P, et al. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen[J]. Environmental Research Letters, 2014, 9(9): 095002 doi: 10.1088/1748-9326/9/9/095002
    [4] 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题[J]. 植物营养与肥料学报, 2014, 20(1): 1−6 doi: 10.11674/zwyf.2014.0101

    CAI Z C, YAN X Y, ZHU Z L. A great challenge to solve nitrogen pollution from intensive agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1−6 doi: 10.11674/zwyf.2014.0101
    [5] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783−795 doi: 10.11674/zwyf.2014.0401

    JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783−795 doi: 10.11674/zwyf.2014.0401
    [6] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理[J]. 中国农业科学, 2016, 49(3): 503−517 doi: 10.3864/j.issn.0578-1752.2016.03.009

    WANG J G, LIN S, LI B G. Nitrogen cycling and management strategies in Chinese agriculture[J]. Scientia Agricultura Sinica, 2016, 49(3): 503−517 doi: 10.3864/j.issn.0578-1752.2016.03.009
    [7] 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): 1−6

    ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1−6
    [8] LI X B, HE H B, ZHANG X D, et al. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture[J]. Soil Biology and Biochemistry, 2019, 134: 81−89 doi: 10.1016/j.soilbio.2019.03.023
    [9] LI X B, LI Z A, ZHANG X D, et al. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment[J]. Geoderma, 2020, 374: 114450 doi: 10.1016/j.geoderma.2020.114450
    [10] LI X B, XIA L L, YAN X Y. Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil[J]. Biology and Fertility of Soils, 2014, 50(6): 891−900 doi: 10.1007/s00374-014-0910-2
    [11] ZHANG J B, CAI Z C, ZHU T B, et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China[J]. Scientific Reports, 2013, 3: 2342 doi: 10.1038/srep02342
    [12] ZHU T B, ZHANG J B, MENG T Z, et al. Tea plantation destroys soil retention of NO3 and increases N2O emissions in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 106−114 doi: 10.1016/j.soilbio.2014.02.016
    [13] 张金波, 程谊, 蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11−19 doi: 10.11867/j.issn.1001-8166.2019.01.0011

    ZHANG J B, CHENG Y, CAI Z C. The mechanisms of soil regulating nitrogen dynamics[J]. Advances in Earth Science, 2019, 34(1): 11−19 doi: 10.11867/j.issn.1001-8166.2019.01.0011
    [14] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003

    ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003
    [15] FATH B D, PATTEN B C. Review of the foundations of network environ analysis[J]. Ecosystems, 1999, 2(2): 167−179 doi: 10.1007/s100219900067
    [16] PATTEN B C. Environs: the superniches of ecosystems[J]. American Zoologist, 1981, 21(4): 845−852 doi: 10.1093/icb/21.4.845
    [17] ULANOWICZ R E. Quantitative methods for ecological network analysis[J]. Computational Biology and Chemistry, 2004, 28(5/6): 321−339
    [18] HANNON B. The structure of ecosystems[J]. Journal of Theoretical Biology, 1973, 41(3): 535−546 doi: 10.1016/0022-5193(73)90060-X
    [19] LEONTIEF W W. Input-output economics[J]. Scientific American, 1951, 185(4): 15−21 doi: 10.1038/scientificamerican1051-15
    [20] LEONTIEF W W. The Structure of American Economy, 1919–1939: An Empirical Application of Equilibrium Analysis[M]. New York: Oxford University Press, 1951
    [21] BORRETT S R, SHEBLE L, MOODY J, et al. Bibliometric review of ecological network analysis: 2010–2016[J]. Ecological Modelling, 2018, 382: 63−82 doi: 10.1016/j.ecolmodel.2018.04.020
    [22] CHRISTIAN R R, FORÉS E, COMIN F, et al. Nitrogen cycling networks of coastal ecosystems: influence of trophic status and primary producer form[J]. Ecological Modelling, 1996, 87(1/2/3): 111−129
    [23] ZHANG Y, YANG Z F, FATH B D. Ecological network analysis of an urban water metabolic system: Model development, and a case study for Beijing[J]. Science of the Total Environment, 2010, 408(20): 4702−4711 doi: 10.1016/j.scitotenv.2010.06.019
    [24] ZHANG Y, YANG Z F, FATH B D, et al. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities[J]. Ecological Modelling, 2010, 221(16): 1865−1879 doi: 10.1016/j.ecolmodel.2010.05.006
    [25] 程蕾, 郝增超, 曾维华. 基于生态网络分析法的煤化工水网络结构解析[J]. 中国环境科学, 2017, 37(6): 2363−2368 doi: 10.3969/j.issn.1000-6923.2017.06.046

    CHENG L, HAO Z C, ZENG W H. Analysis of the water network structure of coal chemical industry based on ecological network analysis[J]. China Environmental Science, 2017, 37(6): 2363−2368 doi: 10.3969/j.issn.1000-6923.2017.06.046
    [26] 张妍, 郑宏媚, 陆韩静. 城市生态网络分析研究进展[J]. 生态学报, 2017, 37(12): 4258−4267

    ZHANG Y, ZHENG H M, LU H J. A review of ecological network analysis in urban ecosystems[J]. Acta Ecologica Sinica, 2017, 37(12): 4258−4267
    [27] CHRISTIAN R R, THOMAS C R. Network analysis of nitrogen inputs and cycling in the Neuse River estuary, North Carolina, USA[J]. Estuaries, 2003, 26(3): 815−828 doi: 10.1007/BF02711992
    [28] LI Y, CHEN B, YANG Z F. Ecological network analysis for water use systems — A case study of the Yellow River Basin[J]. Ecological Modelling, 2009, 220(22): 3163−3173 doi: 10.1016/j.ecolmodel.2009.08.007
    [29] MAO X F, YANG Z F, CHEN B, et al. Examination of wetlands system using ecological network analysis: a case study of Baiyangdian Basin, China[J]. Procedia Environmental Sciences, 2010, 2: 427−439 doi: 10.1016/j.proenv.2010.10.047
    [30] SMALL G E, STERNER R W, FINLAY J C. An ecological network analysis of nitrogen cycling in the laurentian great lakes[J]. Ecological Modelling, 2014, 293: 150−160 doi: 10.1016/j.ecolmodel.2014.02.001
    [31] FORES E, CHRISTIAN R R. Network analysis of nitrogen cycling in temperate, wetland ricefields[J]. Oikos, 1993, 67(2): 299−308 doi: 10.2307/3545475
    [32] 韩博平, 吴刚. 农林生态系统中营养元素N、P、K流动的网络分析[J]. 应用生态学报, 1996, 7(1): 19−22

    HAN B P, WU G. Network analysis of N, P and K flows in an agroforestry ecosystem[J]. Chinese Journal of Applied Ecology, 1996, 7(1): 19−22
    [33] FATH B D, SCHARLER U M, ULANOWICZ R E, et al. Ecological network analysis: network construction[J]. Ecological Modelling, 2007, 208(1): 49−55 doi: 10.1016/j.ecolmodel.2007.04.029
    [34] MA Q Q, KAZANCI C. Analysis of indirect effects within ecosystem models using pathway-based methodology[J]. Ecological Modelling, 2013, 252: 238−245 doi: 10.1016/j.ecolmodel.2012.05.002
    [35] KAZANCI C, MA Q Q. System-wide measures in ecological network analysis[M]//PARK Y S, LEK S, BAEHR C, et al. Developments in Environmental Modelling. Amsterdam: Elsevier, 2015: 45–68
    [36] MA Q Q, KAZANCI C. How much of the storage in the ecosystem is due to cycling?[J]. Journal of Theoretical Biology, 2014, 357: 134−142 doi: 10.1016/j.jtbi.2014.05.014
    [37] ULANOWICZ R E. The dual nature of ecosystem dynamics[J]. Ecological Modelling, 2009, 220(16): 1886−1892 doi: 10.1016/j.ecolmodel.2009.04.015
    [38] ULANOWICZ R E. Growth and Development: Ecosystems Phenomenology[M]. New York: Springer, 1986
    [39] FINN J T. Measures of ecosystem structure and function derived from analysis of flows[J]. Journal of Theoretical Biology, 1976, 56(2): 363−380 doi: 10.1016/S0022-5193(76)80080-X
    [40] PATTEN B C. Energy cycling, length of food chains, and direct versus indirect effects in ecosystems[EB/OL]. Canadian Bulletin of Fisheries and Aquatic Sciences, 1985, 213: 119–138
    [41] KAZANCI C, MA Q Q. Extending ecological network analysis measures to dynamic ecosystem models[J]. Ecological Modelling, 2012, 242: 180−188 doi: 10.1016/j.ecolmodel.2012.05.021
    [42] HEIN R, CRUTZEN P J, HEIMANN M. An inverse modeling approach to investigate the global atmospheric methane cycle[J]. Global Biogeochemical Cycles, 1997, 11(1): 43−76 doi: 10.1029/96GB03043
    [43] KAZANCI C. EcoNet: a new software for ecological modeling, simulation and network analysis[J]. Ecological Modelling, 2007, 208(1): 3−8 doi: 10.1016/j.ecolmodel.2007.04.031
    [44] KAZANCI C, ADAMS M R, AL BASHEER A, et al. LINX: a topology based methodology to rank the importance of flow measurements in compartmental systems[J]. Environmental Modelling & Software, 2020, 133: 104796
    [45] CHRISTENSEN V, PAULY D. Ecopath Ⅱ — a software for balancing steady-state ecosystem models and calculating network characteristics[J]. Ecological Modelling, 1992, 61(3/4): 169−185 doi: 10.1016/0304-3800(92)90016-8
    [46] ALLESINA S, BONDAVALLI C. Wand: An ecological network analysis user-friendly tool[J]. Environmental Modelling & Software, 2004, 19(4): 337−340
    [47] FATH B D, BORRETT S R. A matlab® function for network environ analysis[J]. Environmental Modelling & Software, 2006, 21(3): 375−405
    [48] BORRETT S R, LAU M K. enaR: An R package for Ecosystem Network Analysis[J]. Methods in Ecology and Evolution, 2014, 5(11): 1206−1213 doi: 10.1111/2041-210X.12282
    [49] XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2292−2303 doi: 10.1111/gcb.14958
  • 加载中
图(3)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  186
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 录用日期:  2021-12-03
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回