Impact of structural transformation, technological progress choice on agricultural carbon shadow price: An empirical analysis based on BP technology and a mediating effect model
-
摘要: 通过经济结构转型和技术进步有效实施减排策略, 已经成为实现中国经济社会低碳转型发展的必然选择。基于数据包络分析(DEA)框架建模、满足经济理论和物料守恒原则, 利用改进的By-production (BP)技术对1997—2020年我国31个省份农业碳影子价格进行了更加准确的测度, 并利用核密度分析了农业碳影子价格动态演变特征; 并采用可行广义最小二乘法(FGLS)模型考察结构转型、技术进步选择对农业碳排放影子价格的影响。结果表明: 1)我国农业碳影子价格呈上升态势, 东部、中部和西部地区农业碳排放影子价格分别为7759.69元∙t−1、4192.35元∙t−1和3997.51元∙t−1, 且东、中、西部地区农业碳影子价格上升趋势依次降低。2)我国农业碳影子价格核密度值有增加趋势; 东部地区农业碳影子价格核密度曲线出现较为明显的右移趋势; 中部地区农业碳影子价格核密度曲线呈现左移-右移趋势, 且区域间差异在变大; 西部地区农业碳影子价格核密度曲线呈现明显的向下、变宽趋势。3)整体回归显示, 结构转型、劳动节约型技术进步显著提升了农业碳影子价格, 而资本深化抑制了农业碳影子价格提升, 经济发展水平、农业经营规模、城市化水平及对外开放水平等对农业碳影子价格也会产生重要影响。4)东、中、西部地区部分样本回归显示农业碳影子价格影响因素有所差异, 结构转型在东部地区显著提升农业碳影子价格, 在西部地区却显著抑制了农业碳影子价格; 劳动节约型技术进步在东部抑制了农业碳影子价格, 而在西部显著提升农业碳影子价格; 资本深化在东、西部显著抑制农业碳影子价格, 在中部显著提升农业碳影子价格。为此, 提出持续推进产业结构转型、制定差异化绿色协调发展政策、适时建立农业碳排放交易市场等政策建议, 以促进农业低碳绿色高质量发展。
-
关键词:
- 结构转型 /
- 技术进步 /
- 农业碳排放 /
- 影子价格 /
- By-production技术
Abstract: The effective implementation of emission reduction strategies through economic structural transformation and technological progress has become an inevitable choice for achieving low-carbon economic and social transformation and development in China. Considering that the disposability assumption of the shadow price calculation method is inconsistent with the realistic theory in the existing literature, a new calculation method for the carbon shadow price based on the data envelopment analysis (DEA) framework modeling and satisfying the principles of economic theory and material conservation was applied, in which the expected output production sub-technology and the undesired output production sub-technology are linked according to the generation relationship of pollutants. Improved By-production technology was used to accurately measure the agricultural carbon shadow price in 31 provinces from 1997 to 2020, and kernel density was used to analyze the dynamic evolution characteristics of agricultural carbon shadow prices. A feasible generalized least squares (FGLS) model was used to examine the impact of structural transformation and technological progress choices on the shadow price of agricultural carbon emissions. The results showed that: 1) the shadow price of agricultural carbon price showed an increasing trend, which was 7759.69 ¥∙t−1 in the east region, 4192.35 ¥∙t−1 in the central region, and 3997.51 ¥∙t−1 in the west region, and the rising rates decreased in that order. 2) Kernel density analysis revealed that the kernel density value of the agricultural carbon shadow price had an increasing trend. The kernel density curve in the east region was right-shifted, in the central region left-right shifted with increasing regional differences, and in the west region it was downward and widened. 3) The overall regression analysis showed that the shadow price of agricultural carbon was significantly increased by structural transformation and labor-saving technological progress but that this increase was inhibited by capital deepening. Meanwhile, the level of economic development, the scale of agricultural operations, urbanization, and the level of opening up all played important roles in the agricultural carbon shadow price. 4) The regional regression analysis results highlighted that the influencing factors of agricultural carbon shadow prices differed in different regions. Structural transformation significantly increased the carbon shadow price in the east region but significantly inhibited it in the west region. Labor-saving technological progress reduced the carbon shadow price in the east region while significantly increasing it in the west region. Therefore, it is necessary to promote the transformation of the industrial structure, formulate differentiated green and coordinated development policies, and establish an agricultural carbon emissions trading market to promote low-carbon, green, and high-quality agricultural development. -
表 1 结构转型、技术进步选择对农业碳影子价格影响效应的估计结果
Table 1. Estimation results of impact of structural transformation and technological progress choices on agricultural carbon shadow price
变量 Variable 符号 Symbol 模型1 Model 1 模型2 Model2 模型3 Model3 结构转型 Structural transformation st 0.299* (0.171) 0.794*** (0.168) 0.454*** (0.021) 劳动力节约型技术进步 Labor-saving technological progress ls −0.366 (0.250) −1.275*** (0.190) 0.455*** (0.067) 资本体现式技术进步选择 Capital-deepening technological progress cd 0.778*** (0.144) 1.127*** (0.198) −0.171*** (0.018) 农业经营规模化 Scale of agricultural management sam −0.139 (0.092) −0.150 (0.100) −0.084*** (0.016) 经济发展水平 Economic development ed 0.038 (0.037) −0.010 (0.019) −1.096*** (0.086) 城镇化 Urbanization ur −0.543** (0.262) −0.539** (0.234) 0.595*** (0.072) 对外开放 Opening-up op 0.619 (0.476) 0.921* (0.512) −0.597*** (0.041) 常数项 Constant cons 0.120 (1.333) −2.863 (1.941) −289.916*** (20.564) Wald test 54329.05*** F test 3.932** Frees test 1.969*** 模型(1)~(3)分别用随机效应模型、固定效应模型和全面用可行的广义最小二乘法(FGLS)。*、**和***分别表示回归系数在P<10%、P<5%和P<1%水平显著, 括号内为标准差。Model 1, model 2 and model 3 are random effects model, fixed effect model and full feasible generalized least squares (FGLS). *, ** and *** denote the significance levels of the regression coefficients of P<10%, P<5%, and P<1%, respectively. Data in parentheses are the corresponding standard deviations. 表 2 东、中、西部地区农业碳影子价格影响因素分析
Table 2. Analysis of influencing factors of agricultural carbon shadow price in eastern, central and western regions
变量 Variable 符号 Symbol 模型4 Model 4 模型5 Model 5 模型6 Model 6 结构转型 Structural transformation st 1.496*** (0.197) 0.368*** (0.164) −0.293*** (0.064) 劳动力节约型技术进步 Labor-saving technological progress ls −0.483*** (0.336) 0.116*** (0.016) 1.986*** (0.407) 资本体现式技术进步选择 Capital-deepening technological progress cd −0.142*** (0.039) 0.027*** (0.133) −0.502*** (0.085) 农业经营规模化 Scale of agricultural management sam −0.124* (0.074) −0.010 (0.028) −0.336*** (0.083) 经济发展水平 Economic development ed 0.457** (0.182) 0.303 (0.319) −1.549*** (0.387) 城镇化 Urbanization ur 0.324*** (0.098) 0.462 (1.000) 1.566*** (0.299) 对外开放 Opening-up op −0.119 (0.131) −4.932*** (1.160) −1.704*** (0.640) 常数项 Constant cons −113.352*** (34.211) −60.546 (91.962) −479.476*** (65.956) Wald test 2640.73*** 27 216.47*** 13 967.00*** F test 2.540 2.739 0.672 Frees test 0.338*** 0.301*** 0.930*** 模型(4)~(6)分别是东部、中部、西部地区回归结果。*、**和***分别表示回归系数在P<10%、P<5%和P<1%水平显著, 括号内为标准差。Model 4, model 5 and model 6 are regression results of the east, central and west regions. *, ** and *** denote the significance levels of the regression coefficients of P<10%, P<5%, and P<1%, respectively. Data in parentheses are the corresponding standard deviations. -
[1] ZHANG X X, WU L Y, MA X Z, et al. Dynamic computable general equilibrium simulation of agricultural greenhouse gas emissions in China[J]. Journal of Cleaner Production, 2022, 345: 131122 doi: 10.1016/j.jclepro.2022.131122 [2] 王倩, 高翠云. 中国省际碳影子价格与碳生产率非线性关联研究[J]. 资源科学, 2018, 40(10): 2118−2131WANG Q, GAO C Y. Research on the nonlinear correlation between provincial carbon shadow price and carbon productivity[J]. Resources Science, 2018, 40(10): 2118−2131 [3] SHEN Z Y, BALEŽENTIS T, CHEN X L, et al. Green growth and structural change in Chinese agricultural sector during 1997−2014[J]. China Economic Review, 2018, 51: 83−96 doi: 10.1016/j.chieco.2018.04.014 [4] SONNENSCHEIN J, VAN BUSKIRK R, RICHTER J L, et al. Minimum energy performance standards for the 1.5℃ target: an effective complement to carbon pricing[J]. Energy Efficiency, 2019, 12(2): 387−402 doi: 10.1007/s12053-018-9669-x [5] CUI Q, LI Y. Airline efficiency measures under CNG2020 strategy: an application of a dynamic By-production model[J]. Transportation Research Part A: Policy and Practice, 2017, 106: 130−143 doi: 10.1016/j.tra.2017.09.006 [6] DAKPO K H, LANSINK A O. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs[J]. European Journal of Operational Research, 2019, 276(1): 202−211 doi: 10.1016/j.ejor.2018.12.040 [7] 邵帅, 范美婷, 杨莉莉. 经济结构调整、绿色技术进步与中国低碳转型发展−基于总体技术前沿和空间溢出效应视角的经验考察[J]. 管理世界, 2022, 38(2): 46−69, 4SHAO S, FAN M T, YANG L L. Economic restructuring, green technical progress, and low-carbon transition development in China: an empirical investigation based on the overall technology frontier and spatial spillover effect[J]. Journal of Management World, 2022, 38(2): 46−69, 4 [8] BONDAREV A, GREINER A. How ongoing structural change creates a double dividend: outdating of technologies and green growth[J]. Portuguese Economic Journal, 2022, 21(2): 125−160 doi: 10.1007/s10258-021-00196-6 [9] WANG S J, LI G D, FANG C L. Urbanization, economic growth, energy consumption, and CO2 emissions: empirical evidence from countries with different income levels[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2144−2159 doi: 10.1016/j.rser.2017.06.025 [10] 原嫄, 周洁. 中国省域尺度下产业结构多维度特征及演化对碳排放的影响[J]. 自然资源学报, 2021, 36(12): 3186−3202 doi: 10.31497/zrzyxb.20211213YUAN Y, ZHOU J. Influence of multi-dimensional characteristics and evolution of industrial structure on carbon emissions at provincial scale in China[J]. Journal of Natural Resources, 2021, 36(12): 3186−3202 doi: 10.31497/zrzyxb.20211213 [11] 齐昕, 郭薛南. 新兴经济体国家城镇化发展对碳排放影响的比较研究[J]. 生态经济, 2022, 38(3): 101−108QI X, GUO X N. A comparative study of the impact of urbanization on carbon emissions in emerging economies[J]. Ecological Economy, 2022, 38(3): 101−108 [12] CHURCHILL S A, INEKWE J, SMYTH R, et al. R&D intensity and carbon emissions in the G7: 1870–2014[J]. Energy Economics, 2019, 80: 30−37 doi: 10.1016/j.eneco.2018.12.020 [13] 佟新华, 周红岩, 陈武, 等. 工业化不同发展阶段碳排放影响因素驱动效应测度[J]. 中国人口·资源与环境, 2020, 30(5): 26−35TONG X H, ZHOU H Y, CHEN W, et al. Study on the measurement of carbon-driven effects from different development stages of industrialization[J]. China Population, Resources and Environment, 2020, 30(5): 26−35 [14] 何彬, 范硕. 自主创新、技术引进与碳排放−不同技术进步路径对碳减排的作用[J]. 商业研究, 2017(7): 58−66HE B, FAN S. Independent innovation, technological introduction and carbon emission: the role of different technological progress paths in carbon emission reduction[J]. Commercial Research, 2017(7): 58−66 [15] 黄凌云, 谢会强, 刘冬冬. 技术进步路径选择与中国制造业出口隐含碳排放强度[J]. 中国人口·资源与环境, 2017, 27(10): 94−102HUANG L Y, XIE H Q, LIU D D. Study on impacts of technological progress paths on embodied carbon emission intensity of Chinese manufacturing exports[J]. China Population, Resources and Environment, 2017, 27(10): 94−102 [16] 吴贤荣, 张俊飚. 中国省域农业碳排放: 增长主导效应与减排退耦效应[J]. 农业技术经济, 2017(5): 27−36WU X R, ZHANG J B. Agricultural carbon emissions in China: growth driving effects and reduction decoupling effects[J]. Journal of Agrotechnical Economics, 2017(5): 27−36 [17] 李成龙, 周宏. 农业技术进步与碳排放强度关系−不同影响路径下的实证分析[J]. 中国农业大学学报, 2020, 25(11): 162−171LI C L, ZHOU H. Relationship between agricultural technology progress and carbon emission intensity: an empirical analysis under different influence paths[J]. Journal of China Agricultural University, 2020, 25(11): 162−171 [18] 陈银娥, 陈薇. 农业机械化、产业升级与农业碳排放关系研究−基于动态面板数据模型的经验分析[J]. 农业技术经济, 2018(5): 122−133CHEN Y E, CHEN W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission — the empirical research based on dynamic panel data model[J]. Journal of Agrotechnical Economics, 2018(5): 122−133 [19] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37 [20] 田云, 尹忞昊. 技术进步促进了农业能源碳减排吗?−基于回弹效应与空间溢出效应的检验[J]. 改革, 2021(12): 45−58TIAN Y, YIN M H. Does technological progress promote carbon emission reduction of agricultural energy? test based on rebound effect and spatial spillover effect[J]. Reform, 2021(12): 45−58 [21] BOUSSEMART J P, LELEU H, SHEN Z Y. Worldwide carbon shadow prices during 1990−2011[J]. Energy Policy, 2017, 109: 288−296 doi: 10.1016/j.enpol.2017.07.012 [22] LI T X, BALEŽENTIS T, MAKUTĖNIENĖ D, et al. Energy-related CO2 emission in European Union agriculture: driving forces and possibilities for reduction[J]. Applied Energy, 2016, 180: 682−694 doi: 10.1016/j.apenergy.2016.08.031 [23] HE Y Q, ZHU S Y, ZHANG Y, et al. Calculation, elasticity and regional differences of agricultural greenhouse gas shadow prices[J]. The Science of the Total Environment, 2021, 790: 148061 doi: 10.1016/j.scitotenv.2021.148061 [24] 吴贤荣, 张俊飚, 程琳琳, 等. 中国省域农业碳减排潜力及其空间关联特征−基于空间权重矩阵的空间Durbin模型[J]. 中国人口·资源与环境, 2015, 25(6): 53−61 doi: 10.3969/j.issn.1002-2104.2015.06.009WU X R, ZHANG J B, CHENG L L, et al. Potential of agricultural carbon reduction under climate change and its spatial correlation characteristics in China: based on the spatial durbin model[J]. China Population, Resources and Environment, 2015, 25(6): 53−61 doi: 10.3969/j.issn.1002-2104.2015.06.009 [25] 何培培, 张俊飚, 何可, 等. 农业生产何以存在低碳效率幻觉?−来自1997—2016年31个省份面板数据的证据[J]. 自然资源学报, 2020, 35(9): 2205−2217 doi: 10.31497/zrzyxb.20200913HE P P, ZHANG J B, HE K, et al. Why there is a low-carbon efficiency illusion in agricultural production: evidence from Chinese provincial panel data in 1997−2016[J]. Journal of Natural Resources, 2020, 35(9): 2205−2217 doi: 10.31497/zrzyxb.20200913 [26] 吴丽丽, 李谷成, 周晓时. 要素禀赋变化与中国农业增长路径选择[J]. 中国人口·资源与环境, 2015, 25(8): 144−152 doi: 10.3969/j.issn.1002-2104.2015.08.018WU L L, LI G C, ZHOU X S. Change of factor endowments and China agricultural growth path selection[J]. China Population, Resources and Environment, 2015, 25(8): 144−152 doi: 10.3969/j.issn.1002-2104.2015.08.018 [27] ZHOU P, ZHOU X, FAN L W. On estimating shadow prices of undesirable outputs with efficiency models: a literature review[J]. Applied Energy, 2014, 130: 799−806 doi: 10.1016/j.apenergy.2014.02.049 [28] MURTY S, RUSSELL R R, LEVKOFF S B. On modeling pollution-generating technologies[J]. Journal of Environmental Economics and Management, 2012, 64(1): 117−135 doi: 10.1016/j.jeem.2012.02.005 [29] BALEŽENTIS T, BLANCARD S, SHEN Z Y, et al. Analysis of environmental total factor productivity evolution in European agricultural sector[J]. Decision Sciences, 2021, 52(2): 483−511 doi: 10.1111/deci.12421 [30] SHEN Z Y, LI R R, BALEŽENTIS T. The patterns and determinants of the carbon shadow price in China’s industrial sector: a by-production framework with directional distance function[J]. Journal of Cleaner Production, 2021, 323: 129175 doi: 10.1016/j.jclepro.2021.129175 [31] 政府间气候变化专门委员会(IPCC). 2006年IPCC国家温室气体清单指南[R]. 日本: 日本全球环境战略研究所, 2006IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Japan: Institute for Global Environmental Strategies, 2006 [32] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 [33] 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011, 46(5): 4−16, 31GAN C H, ZHENG R G, YU D F. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research Journal, 2011, 46(5): 4−16, 31 [34] 杨海钰, 马兴栋, 邵砾群. 区域要素禀赋变化与农业技术变迁路径差异−基于苹果产业视角和7个主产省的数据[J]. 湖南农业大学学报(社会科学版), 2018, 19(2): 16−22YANG H Y, MA X D, SHAO L Q. Variation of regional factor endowments and agricultural technological changes: based on the apple industry and the data from seven major producing provinces[J]. Journal of Hunan Agricultural University (Social Sciences), 2018, 19(2): 16−22 [35] 朱轶, 曾春琼. 中国工业的资本深化与技术进步偏向是否互为关联−基于省际面板数据的实证检验[J]. 现代财经(天津财经大学学报), 2016, 36(9): 49−63ZHU Y, ZENG C Q. Is capital deepening and biased technical progress of China’s industrial sector interrelated — a empirical study on provincial panel data[J]. Modern Finance and Economics-Journal of Tianjin University of Finance and Economics, 2016, 36(9): 49−63 [36] 姚增福, 刘欣. 技术进步约束、不确定性与农业环境效率−基于730份微观数据和改进的两步法DEA模型的检验[J]. 调研世界, 2021(7): 24−33YAO Z F, LIU X. Constraints, uncertainties and agricultural environmental efficiency of technological progress — the test of two-step DEA model based on 730 micro data and improved[J]. The World of Survey and Research, 2021(7): 24−33 [37] 邹利林, 刘彦随, 王永生. 1978—2017年中国农业污染物影子价格及污染成本测算[J]. 农业工程学报, 2020, 36(6): 223−230 doi: 10.11975/j.issn.1002-6819.2020.06.026ZOU L L, LIU Y S, WANG Y S. Shadow prices and pollution costs of agricultural pollutants in China from 1978 to 2017[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 223−230 doi: 10.11975/j.issn.1002-6819.2020.06.026 [38] 吴贤荣, 张俊飚, 田云, 等. 基于公平与效率双重视角的中国农业碳减排潜力分析[J]. 自然资源学报, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010WU X R, ZHANG J B, TIAN Y, et al. Analysis on China’s agricultural carbon abatement capacity from the perspective of both equity and efficiency[J]. Journal of Natural Resources, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010 [39] 杨子晖, 陈里璇, 罗彤. 边际减排成本与区域差异性研究[J]. 管理科学学报, 2019, 22(2): 1−21 doi: 10.3969/j.issn.1007-9807.2019.02.001YANG Z H, CHEN L X, LUO T. Marginal cost of emission reduction and regional differences[J]. Journal of Management Sciences in China, 2019, 22(2): 1−21 doi: 10.3969/j.issn.1007-9807.2019.02.001 [40] 张金鑫, 王红玲. 环境规制、农业技术创新与农业碳排放[J]. 湖北大学学报(哲学社会科学版), 2020, 47(4): 147−156ZHANG J X, WANG H L. Analysis on environmental planning, agricultural technological innovation and agricultural carbon emission[J]. Journal of Hubei University (Philosophy and Social Science), 2020, 47(4): 147−156 -