农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响

边振兴, 张宇飞, 杨祎博, 于淼

边振兴, 张宇飞, 杨祎博, 于淼. 农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1475-1487. DOI: 10.13930/j.cnki.cjea.200021
引用本文: 边振兴, 张宇飞, 杨祎博, 于淼. 农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1475-1487. DOI: 10.13930/j.cnki.cjea.200021
BIAN Zhenxing, ZHANG Yufei, YANG Yibo, YU Miao. Effects of agricultural landscape pattern on qualitative food web structure of corn pest-predatory natural enemies[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1475-1487. DOI: 10.13930/j.cnki.cjea.200021
Citation: BIAN Zhenxing, ZHANG Yufei, YANG Yibo, YU Miao. Effects of agricultural landscape pattern on qualitative food web structure of corn pest-predatory natural enemies[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1475-1487. DOI: 10.13930/j.cnki.cjea.200021
边振兴, 张宇飞, 杨祎博, 于淼. 农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1475-1487. CSTR: 32371.14.j.cnki.cjea.200021
引用本文: 边振兴, 张宇飞, 杨祎博, 于淼. 农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1475-1487. CSTR: 32371.14.j.cnki.cjea.200021
BIAN Zhenxing, ZHANG Yufei, YANG Yibo, YU Miao. Effects of agricultural landscape pattern on qualitative food web structure of corn pest-predatory natural enemies[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1475-1487. CSTR: 32371.14.j.cnki.cjea.200021
Citation: BIAN Zhenxing, ZHANG Yufei, YANG Yibo, YU Miao. Effects of agricultural landscape pattern on qualitative food web structure of corn pest-predatory natural enemies[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1475-1487. CSTR: 32371.14.j.cnki.cjea.200021

农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响

基金项目: 

辽宁省自然科学基金项目 01064219009

详细信息
    作者简介:

    边振兴, 研究方向为农地利用与保护、农业景观生态学。E-mail:zhx-bian@syau.edu.cn

    通讯作者:

    于淼, 研究方向为数理统计与景观生态学。E-mail:yumiao77@163.com

  • 中图分类号: P901

Effects of agricultural landscape pattern on qualitative food web structure of corn pest-predatory natural enemies

Funds: 

the Natural Science Foundation of Liaoning Province 01064219009

More Information
  • 摘要: 农业过度集约化带来的农业景观均质化已成为农田生物多样性降低的主要原因之一。为研究农业景观格局对害虫-捕食性天敌定性食物网结构的影响,本文选择辽宁省昌图县为研究区,选取8个典型田块为样区,在分析定性食物网结构的基础上,采用回归分析和最优模型确定食物网参数与景观指数之间的关系。结果表明:1)互作丰度(IR)与各景观指数无显著相关性。2)连接密度(LD)与蔓延度指数(CONTAG,x1)、聚集度指数(AI,x2)呈显著正相关(P < 0.05),最优模型为:LD=-64.621+0.780x1+0.739x2。农业景观中非耕作斑块越聚集,玉米害虫-捕食性天敌定性食物网结构越复杂。3)连接性(C)与CONTAG(x1)、香农多样性指数(SHDI,x3)呈显著正相关(P < 0.05),而与香农均匀度指数(SHEI,x4)呈显著负相关(P < 0.05),最优模型为:C=-178.500+1.831x1-106.808x4。景观类型越多样,且同类斑块连接度越好,害虫与捕食性天敌的相互作用越频繁,也越有利于复杂食物网结构的维持。4)普遍性(G)与景观形状指数(LSI,x5)、斑块结合指数(COHESION,X7)、AI(x2)呈显著正相关(P < 0.05),而与斑块密度(PD,x6)呈显著负相关(P < 0.05),最优模型为:G=-2 994.798+26.891x2+27.090x5-0.491x6+2.851x7。非耕作斑块破碎化程度越低,天敌的搜寻行为和聚集行为越强,越有利于食物网结构的稳定。5)易损性(V)与SHEI(x4)呈显著正相关,而与CONTAG(x1)呈显著负相关(P < 0.05),最优模型为:V=8.411+5.351x4。斑块类型在景观中分布越均匀,害虫多样性越高,群落结构也越复杂。总体而言,农业景观异质性越强越有利于玉米害虫-捕食性天敌定性食物网的构建和抗干扰性的增强。而利用田间数据构建食物网矩阵的方法可以成为研究如何增强农业景观异质性的有力工具。
    Abstract: The homogenization of agricultural landscape caused by excessive agricultural intensification has been one of the main reasons for the reduction of farmland biodiversity. Research on the impact of the agricultural landscape pattern on the qualitative food web structure of pest-predatory natural enemies was conducted in Changtu County, Liaoning Province, where eight typical fields were sampled. Regression analysis and optimal model determined the relationship between food web parameters and landscape indexes. The results showed an insignificant correlation between food web interaction richness (IR) and landscape indexes. However, a significant positive multiple correlations between food web linkage density (LD) and contagion index (CONTAG, x1) and aggregation index (AI, x2) were observed. The corresponding optimal model was: LD=-64.621+0.780x1+0.739x2. The complexity of the qualitative food web structure of the corn pest-predatory natural enemies was dependent on the degree of concentration of the non-cultivated patches in the agricultural landscape. Furthermore, food web connectance (C) was significantly positively correlated with CONTAG, (x1) and Shannon diversity index (SHDI, x3), but was significantly negatively correlated with Shannon evenness index (SHEI, x4). The corresponding optimal model was: C=-178.500+1.831x1-106.808x4; the more diverse the landscape types, the better the connectivity of the same patches; the more frequent the interaction between pests and predatory natural enemies, the more beneficial it is to maintain the complex food web structure. Food web generality (G) was significantly positively correlated with landscape shape index (LSI, x5), cohesion index (COHESION, x7), and AI (x2); however, it was significantly negatively correlated with patch density (PD, x6). The corresponding optimal model was: G=-2 994.798+26.891x2+27.090x5-0.491x6+2.851x7; the lower the degree of non-cultivated patch fragmentation, the stronger the search and aggregation behavior of natural enemies, which is beneficial and increases the stability of the food web structure. Food web vulnerability (V) was significantly positively correlated with the SHEI (x4), but was significantly negatively correlated with CONTAG (x1). The corresponding optimal model was: V=8.411+5.351x4; the more evenly distributed patch types in the landscape, the higher the pest diversity and the increased complexity of the community structure. In general, the construction of the qualitative food web of corn pest-predatory natural enemies and the enhancement of anti-interference largely depends on the strength of the heterogeneity of the agricultural landscape. The use of field data in the construction of a food web matrix is a method that can be a powerful resource for studying ways to enhance the heterogeneity of agricultural landscapes.
  • 图  1   研究区土地利用类型和样区分布

    Figure  1.   Distribution of land use types and sampling areas in the study area

    图  2   典型采样区田块的土地利用现状图

    Figure  2.   Present land use map of field of the typical sampling areas

    图  3   样区内土壤动物样点布设示意图

    Figure  3.   Map of sample points for soil arthropod in the sampling area

    图  4   2018年和2019年玉米田害虫-捕食性天敌定性食物网参数值

    图中数据为平均值±标准误差, 数据来源于8个样区内1 056个陷阱布设点, 其中2018年和2019年各528个。合并代表两年数据的总平均值。

    Figure  4.   Qualitative metrics of pest-predatory natural enemies in the tested maize fields across 2018 and 2019

    The data was mean±standard error, which was came from a total of 1 056 study sites whereas 528 each in 2018 and 2019. Pooled represents the total average of the two-year data.

    表  1   研究区8个样区田块的景观格局指数

    Table  1   Landscape pattern parameters of 8 fields of the sampling areas in the study area

    田块序号
    Number of sampling area
    LPI ED PD CONTAG AI LSI COHESION SHDI SHEI
    1 87.049 32.044 5.728 83.773 98.617 2.545 99.545 0.496 0.277
    2 97.416 6.682 2.228 93.146 99.700 1.423 99.860 0.131 0.119
    3 90.145 28.639 3.819 89.326 98.692 2.394 99.544 0.272 0.169
    4 94.135 21.448 4.137 86.745 98.990 2.076 99.665 0.238 0.216
    5 83.630 38.537 8.274 86.746 98.377 2.832 99.113 0.480 0.218
    6 83.748 38.951 7.956 81.197 98.333 2.851 99.368 0.569 0.318
    7 84.815 35.736 8.592 84.616 98.426 2.709 99.424 0.507 0.260
    8 81.874 47.034 10.820 83.375 97.999 3.209 99.250 0.606 0.276
    LPI:最大斑块指数; ED:边界密度; PD:斑块密度; CONTAG:蔓延度指数; AI:聚集度指数; LSI:景观形状指数; COHESION:斑块结合指数; SHDI:香农多样性指数; SHEI:香农均匀度指数。LPI: largest patch index; ED: edge density; PD: patch density; CONTAG: contagion index; AI: aggregation index; LSI: landscape shape index; COHESION: cohesion index; SHDI: Shannon’s diversity index; SHEI: Shannon’s evenness index.
    下载: 导出CSV

    表  2   定性食物网参数计算公式及意义

    Table  2   Calculation formula and significance of qualitative food web parameters

    食物网参数
    Food web parameters
    计算公式
    Calculation formula
    指数意义
    Meaning of metrics
    互作丰度 Interaction richness L 反映食物网中发生天敌-害虫相互作用的频繁程度 Reflect the frequency of natural enemy-pest interactions in the food web
    连接密度 Linkage density L/S 反映捕食作用范围的广泛程度 Reflect the breadth of predation range
    连接性 Connectance L/S2 反映食物网结构复杂程度 Reflect the complexity of food web structure
    普遍性 Generality L/Senemy 反映天敌多样性 Reflect the diversity of natural enemies
    易损性 Vulnerability L/Sprey 反映害虫多样性 Reflect the diversity of pest
    L代表食物网中实际发生的捕食关系数量; S代表食物网中总物种数; Senemy代表捕食性天敌物种数; Sprey代表害虫的物种数。L represents the number of actual predation relationships in the food web; S represents the total number of species in the food web; Senemy represents the number of predatory natural enemies; Sprey represents the number of species of pests.
    下载: 导出CSV

    表  3   调查玉米田土壤节肢动物类型及数量统计表

    Table  3   Types and quantities of arthropods in the tested maize fields

    土壤节肢动物类型 Soil arthropod type 数量
    Number
    优势度
    Dominance
    昆虫纲
    Insecta
    直翅目
    Orthoptera
    蟋蟀科 Gryllidae 黄脸油葫芦 Teleogryllus emma 12 109 +++
    棺头蟋 Doenitzi stein 550 ++
    蝗科 Acrididae 笨蝗 Haplotropis brunneriana Saussure 4 +
    中华蚱蜢 Acrida cinerea 14 +
    大垫尖翅蝗 Epacromius coerulipes 48 +
    宽翅曲背蝗 Pararcyptera microptera meridionalis 6 +
    短额附蝗 Atractomorpha sinensis 18 +
    短星翅蝗 Calliptamus abbreviatus 25 +
    棉蝗 Chondracris rosea 1 +
    辽宁金色蝗 Chrysacris 3 +
    鞘翅目
    Coleoptera
    步甲科 Carabidae 中华婪步甲 Harpalus sinicus 2 608 ++
    附边青步甲 Chlaenius prostenus 658 ++
    麻青步甲 Chlaenius junceus 4 846 +++
    蠋步甲 Dolichus halensis 529 ++
    大星步甲 Calosoma maximoviczi 1 522 ++
    毛婪步甲 Harpalus griseus 195 +
    中华金星步甲 Calosoma chinense 513 ++
    赤褐婪步甲 Harpalus rubefactu 1 115 ++
    虎甲科 Cicindelidae 细虎甲 Cicindelagracilis 15 +
    斜斑虎甲 Cicindela germanica 4 +
    埋葬甲科
    Staphylinoidea
    日负葬甲 Nicrophorus japonicuw 18 +
    双斑葬甲 Ptomascopus plagiatus 1 +
    叶甲科Chrysomeloidea 双斑长跗萤叶甲 Monolepta hieroglyphica 14 +
    刺松隐翅虫
    StaphylinidaePinophilus punctatissimus
    21 +
    粪金龟科 Geotrupidae 戴锤角粪金龟 Bolbotrypes davidis 30 +
    昆虫纲
    Insecta
    鞘翅目
    Coleoptera
    金龟科 Scarab 婪嗡蜣螂 Onthophagus lenzi 130 +
    花金龟科 Cetoniidae 白星花金龟 Protaetia brevitarsis 5 +
    鳃金龟科 Melolonthidae 额臀大黑鳃金龟 Holotrichia convespyga 5 +
    华北大黑鳃金龟 Holotrichia oblita 2 +
    蜉金龟科 Aphodiidae 黑蜉金龟 Aphodius breviusculus 2 +
    瓢虫科 Coccinellidae 异色瓢虫 Harmonia axyridis 23 +
    龟纹瓢虫 Propylaea japonica 1 +
    黄斑盘瓢虫 Lemnia saucia 3 +
    拟步甲科 Tenebrionindae 沙潜 Opatrum subaratum 1 797 ++
    鞘翅目幼虫 Coleoptera 4 +
    半翅目
    Hemiptera
    长蝽科 Lygaeidae 角红长蝽 Lygaeus hanseni 1 +
    红蝽科 Pyrrhocoridae 地红蝽 Pyrrhocoris tibialis 125 +
    革翅目
    Dermaptera
    蠼螋科 Labiduridae 蠼螋 Titanolabis colossea 3 +
    鳞翅目
    Lepidoptera
    螟蛾科 Pyralidae
    鳞翅目幼虫 Lepidoptera
    亚洲玉米螟 Ostrinia furnacalis 3 +
    14 +
    膜翅目
    Hymenoptera
    叶蜂科 Tenthredinidae 叶蜂 Tenthredinidae 2 +
    蚁科 Formicidae 5 089 +++
    蛛形纲
    Arachnida
    蜘蛛目
    Araneae
    幽灵蛛科 Pholcidae 2 863 ++
    皿蛛科 Linyphiidae 73 +
    漏斗蛛科 Agelenidae 320 +
    狼蛛科 Lycosidae 68 +
    转蛛科 Trochanteriidae 234 +
    栉足蛛科 Ctenidae 1 +
    近管蛛科 Anyphaenidae 1 +
    逸蛛科 Zoropsidae 3 +
    狼栉蛛科 Zoridae 19 +
    弱斑蛛科 Ischnothyreus 27 +
    软甲纲
    Malacostraca
    等足目
    Isopoda
    潮虫科 Onsicidae 鼠妇 Armadillidium vulgare 20 +
    总计 Sum 35 705
    +++表示个体数占总捕获量的10%以上, ++表示个体数占总捕获量的1%~10%, +表示个体数占总捕获量的1%以下。“+++”, “++” and “+” indicate that the number of individuals accounts for more than 10%, 1%-10%, and less than 1% of the total capture, respectively.
    下载: 导出CSV

    表  4   2018年和2019年不同景观格局指数对玉米田定性食物网参数影响的单变量回归分析结果

    Table  4   Effects of landscape pattern parameters on qualitative food web parameters from univariate regression analysis of the tested maize fields in 2018 and 2019

    景观格局指数
    Landscape pattern parameter
    食物网参数
    Food web parameter
    P
    (2018)
    P
    (2019)
    效应
    Effect
    斑块密度
    Patch density
    互作丰度 Interaction richness 0.336 0.232 -
    连接密度 Linkage density 0.329 0.176 -
    连接性 Connectance 0.139 0.051 -
    普遍性 Generality 0.045* 0.039* -
    易损性 Vulnerability 0.155 0.108 +
    最大斑块指数
    Largest patch index
    互作丰度 Interaction richness 0.325 0.261 +
    连接密度 Linkage density 0.321 0.211 +
    连接性 Connectance 0.160 0.103 +
    普遍性 Generality 0.097 0.064 +
    易损性 Vulnerability 0.223 0.157 -
    景观形状指数
    Landscape shape index
    互作丰度 Interaction richness 0.362 0.195 -
    连接密度 Linkage density 0.373 0.152 -
    连接性 Connectance 0.238 0.089 -
    普遍性 Generality 0.048* 0.045* +
    易损性 Vulnerability 0.270 0.212 +
    蔓延度指数
    Contagion index
    互作丰度 Interaction richness 0.045* 0.466 -
    连接密度 Linkage density 0.002** 0.049* +
    连接性 Connectance 0.047* 0.043* +
    普遍性 Generality 0.268 0.192 +
    易损性 Vulnerability 0.038* 0.042* -
    斑块结合指数
    Cohesion index
    互作丰度 Interaction richness 0.472 0.145 +
    连接密度 Linkage density 0.435 0.120 +
    连接性 Connectance 0.177 0.115 +
    普遍性 Generality 0.049* 0.041* +
    易损性 Vulnerability 0.121 0.288 +
    香农多样性指数
    Shannon’s diversity index
    互作丰度 Interaction richness 0.114 0.435 -
    连接密度 Linkage density 0.125 0.357 -
    连接性 Connectance 0.030* 0.042* +
    普遍性 Generality 0.182 0.122 -
    易损性 Vulnerability 0.345 0.061 +
    香农均匀度指数
    Shannon’s evenness index
    互作丰度 Interaction richness 0.097 0.409 +
    连接密度 Linkage density 0.054 0.048* -
    连接性 Connectance 0.001** 0.048* -
    普遍性 Generality 0.317 0.223 -
    易损性 Vulnerability 0.029* 0.028* +
    边界密度
    Edge density
    互作丰度 Interaction richness 0.362 0.195 -
    连接密度 Linkage density 0.373 0.152 -
    连接性 Connectance 0.238 0.089 -
    普遍性 Generality 0.071 0.045* -
    易损性 Vulnerability 0.270 0.212 +
    聚集度指数
    Aggregation index
    互作丰度 Interaction richness 0.391 0.167 +
    连接密度 Linkage density 0.041* 0.046* +
    连接性 Connectance 0.297 0.079 +
    普遍性 Generality 0.038* 0.036* +
    易损性 Vulnerability 0.030* 0.234 -
    “*”和“**”表示该景观指数对相应的食物网参数有显著(P < 0.05)和极显著(P < 0.01)影响。“+”和“-”分别代表景观正负效应。“*” and “**” indicate significant effect at P < 0.05 and P < 0.01, “+” and “-” indicate positive and negative effects of landscape land use type, respectively.
    下载: 导出CSV

    表  5   景观格局指数与定性食物网参数关系的多元回归分析及基于AICc准则的最优模型筛选结果

    Table  5   Multivariate regression analysis and the best model selection to evaluate landscape effects on qualitative food web metrics in maize fields

    响应变量
    Response variables
    模型方程
    Model
    残差平方和
    Sp2
    样本量
    Sample size n
    阶数
    Ki
    校正的AIC值
    AICc
    调整R2
    Adjusted R2
    连接密度(LD)
    Linkage density
    LD=b0+b1x1+b2x2 0.407 8 4 2.808 0.443
    LD=b0+b1x1 0.728 8 3 5.460 0.004
    LD=b0+b2x2 0.598 8 3 3.887 0.182
    连接性(C)
    Connectance
    C=b0+b1x1+b3x3+b4x4 2.206 8 5 18.329 0.531
    C=b0+b1x1+b3x3 4.555 8 4 22.130 0.032
    C=b0+b1x1+b4x4 2.474 8 4 17.247 0.475
    C=b0+b3x3+b4x4 4.328 8 4 21.721 0.081
    C=b0+b1x1 4.688 8 3 20.360 0.004
    C=b0+b3x3 4.625 8 3 20.252 0.017
    C=b0+b4x4 4.707 8 3 20.392 0.019
    普遍性(G)
    Generality
    G=b0+b2x2+b5x5+b6x6+b7x7 0.918 8 6 13.316 0.914
    G=b0+b2x2+b5x5+b6x6 1.358 8 5 14.448 0.873
    G=b0+b2x2+b5x5+b7x7 2.480 8 5 19.266 0.769
    G=b0+b2x2+b6x6+b7x7 5.097 8 5 25.029 0.524
    G=b0+b5x5+b6x6+b7x7 5.702 8 5 25.927 0.468
    G=b0+b2x2+b5x5 2.863 8 4 18.415 0.733
    G=b0+b2x2+b6x6 5.260 8 4 23.281 0.509
    G=b0+b2x2+b7x7 5.116 8 4 23.059 0.523
    G=b0+b5x5+b6x6 5.783 8 4 24.039 0.460
    G=b0+b5x5+b7x7 5.767 8 4 24.017 0.462
    G=b0+b6x6+b7x7 6.199 8 4 24.595 0.422
    G=b0+b2x2 5.260 8 3 21.281 0.509
    G=b0+b5x5 5.824 8 3 22.096 0.457
    G=b0+b6x6 6.213 8 3 22.613 0.420
    G=b0+b7x7 7.077 8 3 23.655 0.340
    易损性(V)
    Vulnerability
    V=b0+b1x1+b4x4 2.913 8 4 18.553 0.334
    V=b0+b1x1 3.656 8 3 18.371 0.164
    V=b0+b4x4 3.537 8 3 18.106 0.191
    表中粗体行代表最优模型(AICc值最小)。模型中的x1-x7分别代表景观蔓延度指数(CONTAG)、聚集度指数(AI)、香农多样性指数(SHDI)、香农均匀度指数(SHEI)、景观形状指数(LSI)、斑块密度(PD)、斑块结合指数(COHESIOH)。Bold lines are the best models. x1-x7 in the model represent the landscape indexes of contagion index (CONTAG), aggregation index (AI), Shannon’s diversity index (SHDI), Shannon’s evenness index (SHEI), landscape shape index (LSI), patch density (PD), and cohesion index (COHESIOH).
    下载: 导出CSV
  • [1] 戈峰, 欧阳芳, 赵紫华.基于服务功能的昆虫生态调控理论[J].应用昆虫学报, 2014, 51(3):597-605 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczs201403001

    GE F, OUYANG F, ZHAO Z H. Ecological management of insects based on ecological services at a landscape scale[J]. Chinese Journal of Applied Entomology, 2014, 51(3):597-605 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczs201403001

    [2] 宇振荣, 谷卫彬, 胡敦孝.江汉平原农业景观格局及生物多样性研究——以两个村为例[J].资源科学, 2000, 22(2):19-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200002004

    YU Z R, GU W B, HU D X. On landscape pattern and biodiversity in rural areas of Jianghan Plain-Taking two villages as a case study[J]. Resources Science, 2000, 22(2):19-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200002004

    [3] 张鑫.农田景观格局对地表步甲和蜘蛛多样性影响研究[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164655.htm

    ZHANG X. The effects of agriculture landscape pattern on the diversity of ground carabid and spider[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164655.htm

    [4] 张永生.农田景观格局对蚜虫及天敌瓢虫种群的生态学效应[D].长沙: 湖南农业大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10537-1019876866.htm

    ZHANG Y S. Ecological effects of agricultural landscape patterns on aphids and ladybeetles[D]. Changsha: Hunan Agricultural University, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10537-1019876866.htm

    [5] 张永生, 欧阳芳, 门兴元, 等.区域农田景观格局对麦蚜种群数量的影响[J].生态学报, 2018, 38(23):8652-8659 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201823039

    ZHANG Y S, OUYANG F, MEN X Y, et al. Effects of regional agricultural landscape patterns on populations of wheat aphids[J]. Acta Ecologica Sinica, 2018, 38(23):8652-8659 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201823039

    [6]

    KNAPP M, ŘEZÁČ M. Even the smallest non-crop habitat islands could be beneficial:Distribution of carabid beetles and spiders in agricultural landscape[J]. PLoS One, 2015, 10(4):e0123052 doi: 10.1371/journal.pone.0123052

    [7]

    GABRIEL D, TSCHARNTKE T. Insect pollinated plants benefit from organic farming[J]. Agriculture, Ecosystems & Environment, 2007, 118(1/4):43-48 http://www.sciencedirect.com/science/article/pii/S0167880906001484

    [8]

    GABRIEL D, THIES C, TSCHARNTKE T. Local diversity of arable weeds increases with landscape complexity[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7(2):85-93 doi: 10.1016/j.ppees.2005.04.001

    [9]

    MCCANN K S. The diversity-stability debate[J]. Nature, 2000, 405(6783):228-233 doi: 10.1038/35012234

    [10]

    MCCANN K S, ROONEY N. The more food webs change, the more they stay the same[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1524):1789-1801 doi: 10.1098/rstb.2008.0273

    [11] 曾颖达.农田景观组成对小麦、棉花捕食性天敌-害虫定性食物网结构的影响[D].北京: 中国农业科学院, 2018 http://cdmd.cnki.com.cn/Article/CDMD-82101-1018160603.htm

    ZENG Y D. Effects of landscape compositions on predator-prey qualitative food web in wheat and cotton fields[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018 http://cdmd.cnki.com.cn/Article/CDMD-82101-1018160603.htm

    [12] 江婷, 付道猛, 张万娜, 等.农田景观格局对害虫天敌生态控害功能的调控作用[J].应用生态学报, 2019, 30(7):2511-2520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201907040

    JIANG T, FU D M, ZHANG W N, et al. Regulating effect of agricultural landscape pattern on ecological pest control by natural enemies[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2511-2520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201907040

    [13] 张晴晴, 卢增斌, 李丽莉, 等.区域性农田景观格局对棉蚜种群数量的生态学效应[J].生态学报, 2018, 38(4):1366-1374 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201804022

    ZHANG Q Q, LU Z B, LI L L, et al. Ecological effects of farmland landscape patterns on the populations of cotton aphids, Aphis gossypii Glover, in North China[J]. Acta Ecologica Sinica, 2018, 38(4):1366-1374 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201804022

    [14] 范敏, 彭羽, 王庆慧, 等.景观格局与植物多样性的关系及其空间尺度效应——以浑善达克沙地为例[J].生态学报, 2018, 38(7):2450-2461 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201807022

    FAN M, PENG Y, WANG Q H, et al. Correlations between landscape pattern and plant diversity at multiple spatial scales:A case study of Hunshandak Sandland[J]. Acta Ecologica Sinica, 2018, 38(7):2450-2461 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201807022

    [15]

    AVIRON S, BUREL F, BAUDRY J, et al. Carabid assemblages in agricultural landscapes:Impacts of habitat features, landscape context at different spatial scales and farming intensity[J]. Agriculture, Ecosystems & Environment, 2005, 108(3):205-217 http://europepmc.org/abstract/AGR/IND43716560

    [16]

    CLOUGH Y, BARKMANN J, JUHRBANDT J, et al. Combining high biodiversity with high yields in tropical agroforests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8311-8316 doi: 10.1073/pnas.1016799108

    [17]

    SCHMIDT M H, THIES C, NENTWIG W, et al. Contrasting responses of arable spiders to the landscape matrix at different spatial scales[J]. Journal of Biogeography, 2008, 35(1):157-166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=865ef611f74046c422ef6e6763618d2b

    [18]

    TSCHARNTKE T, KLEIN A M, KRUESS A, et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management[J]. Ecology Letters, 2005, 8(8):857-874 doi: 10.1111/j.1461-0248.2005.00782.x

    [19] 尹文英, 胡圣豪, 沈韫芬, 等.中国土壤动物检索图鉴[M].北京:科学出版社, 1998

    YIN W Y, HU S H, SHEN Y F, et al. Pictorical Keys to Soil Animals of China[M]. Beijing:Science Press, 1998

    [20] 张治良, 赵颖, 丁秀云.沈阳昆虫原色图鉴[M].沈阳:辽宁民族出版社, 2009

    ZHANG Z L, ZHAO Y, DING X Y. A Color Atlas of the Shenyang Insect[M]. Shenyang:Liaoning Nationality Publishing House, 2009

    [21]

    TYLIANAKIS J M, TSCHARNTKE T, LEWIS O T. Habitat modification alters the structure of tropical host-parasitoid food webs[J]. Nature, 2007, 445(7124):202-205 doi: 10.1038/nature05429

    [22]

    BANAŠEK-RICHTER C, CATTIN M L, BERSIER L F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors[J]. Journal of Theoretical Biology, 2004, 226(1):23-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bda84004e7a70f8097d924cbed17fe0c

    [23]

    GAGIC V, TSCHARNTKE T, DORMANN C F, et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient[J]. Proceedings of the Royal Society B:Biological Sciences, 2011, 278(1720):2946-2953 doi: 10.1098/rspb.2010.2645

    [24]

    CURTSDOTTER A, BANKS H T, BANKS J E, et al. Ecosystem function in predator-prey food webs-Confronting dynamic models with empirical data[J]. Journal of Animal Ecology, 2019, 88(2):196-210 doi: 10.1111/1365-2656.12949/abstract

    [25]

    DASSOU A G, TIXIER P. Response of pest control by generalist predators to local-scale plant diversity:A meta-analysis[J]. Ecology and Evolution, 2016, 6(4):1143-1153 doi: 10.1002/ece3.1917

    [26]

    MARTINSON H M, FAGAN W F. Trophic disruption:A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems[J]. Ecology Letters, 2014, 17(9):1178-1189 doi: 10.1111/ele.12305

    [27]

    KOH I, HOLLAND J D. Grassland plantings and landscape natural areas both influence insect natural enemies[J]. Agriculture, Ecosystems & Environment, 2015, 199:190-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bb4a0518d9ae297ff07093ef3eb93f1

    [28] 赵紫华, 关晓庆, 贺达汉.农业景观结构对麦蚜寄生蜂群落组成的影响[J].应用昆虫学报, 2012, 49(1):220-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczs201201030

    ZHAO Z H, GUAN X Q, HE D H. Community composition of parasitoids and hyperparasitoids of wheat aphids in different agricultural landscapes[J]. Chinese Journal of Applied Entomology, 2012, 49(1):220-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczs201201030

    [29] 边振兴, 龚玲春, 果晓玉, 等.农业景观组成对玉米螟天敌数量的影响[J].中国生态农业学报(中英文), 2019, 27(1):30-41 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0104&flag=1

    BIAN Z X, GONG L C, GUO X Y, et al. Effect of agricultural landscape composition on natural enemy population of corn borer[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1):30-41 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0104&flag=1

    [30] 尤民生, 刘雨芳, 侯有明.农田生物多样性与害虫综合治理[J].生态学报, 2004, 24(1):117-122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200401018

    YOU M S, LIU Y F, HOU Y M. Biodiversity and integrated pest management in agroecosystems[J]. Acta Ecologica Sinica, 2004, 24(1):117-122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200401018

    [31] 徐磊.农田景观格局对玉米田天敌与蚜虫发生的调控作用[D].北京: 中国农业科学院, 2017 http://cdmd.cnki.com.cn/Article/CDMD-82101-1017255232.htm

    XU L. Effects of landscape pattern on enemy occurrence and aphid biocontrol in corn fields[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017 http://cdmd.cnki.com.cn/Article/CDMD-82101-1017255232.htm

    [32] 卢增斌, 欧阳芳, 张永生, 等.华北平原地区景观格局对麦田害螨种群数量的影响[J].生态学报, 2016, 36(14):4447-4455 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201614025

    LU Z B, OUYANG F, ZHANG Y S, et al. Impacts of landscape patterns on populations of the wheat mites, Petrobia latens (Müller) and Penthaleus major (Duges), in the North China Plain[J]. Acta Ecologica Sinica, 2016, 36(14):4447-4455 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201614025

    [33] 李子晗.黄河下游典型农区不同尺度景观异质性对中小型土壤动物群落的影响[D].郑州: 河南大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016207384.htm

    LI Z H. Effects of multi-scale landscape heterogeneity on soil meso-and microfaunal communities in typical regions of the lower reaches of the Yellow River[D]. Zhengzhou: Henan University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016207384.htm

图(4)  /  表(5)
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  161
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-08
  • 录用日期:  2020-03-18
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回