留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米与大豆种间互作对根际细菌群落结构及多样性的影响

林伟伟 李娜 陈丽珊 吴则焰 林文雄 沈荔花

林伟伟, 李娜, 陈丽珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222
引用本文: 林伟伟, 李娜, 陈丽珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222
LIN W W, LI N, CHEN L S, WU Z Y, LIN W X, SHEN L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222
Citation: LIN W W, LI N, CHEN L S, WU Z Y, LIN W X, SHEN L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222

玉米与大豆种间互作对根际细菌群落结构及多样性的影响

doi: 10.12357/cjea.20210222
基金项目: 国家自然科学基金项目(31271670, 31070447, 31070403, 30471028)资助
详细信息
    作者简介:

    林伟伟, 研究方向为农业生态学。E-mail: linweiwei884477@163.com

    通讯作者:

    林文雄, 主要研究方向为农业生态学, E-mail: lwx@fafu.edu.cn

    沈荔花, 主要研究方向为农业生态学, E-mail: slh1213chenry@163.com

  • 中图分类号: S344.2

Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria

Funds: This study was supported by the National Natural Science Foundation of China (31271670, 31070447, 31070403, 30471028)
More Information
  • 摘要: 研究玉米||大豆种间互作对根际微生物群落结构的影响及其与产量的关系, 对于深入理解特定作物间套作模式的产量效应有重要理论与实际意义。本研究应用随机区组试验设计方法, 在玉米与大豆以最佳间作比例(2∶3)条件下, 采用无隔(无隔离)、网隔(尼龙网分隔)、全隔(塑料薄膜分隔) 3种种间根系间隔处理, 并以两作物的单作为对照, 借助BIOLOG和T-RFLP技术对不同处理下间作玉米与大豆的根际微生物多样性进行分析, 探究不同种间互作对微生物结构和功能的影响及其与复合作物群体产量的关系。结果表明, 玉米||大豆间作下, 无隔、网隔和全隔的根际土壤阻断处理的土地当量比分别为1.39、1.13和0.98, 同一间作模式下种间根系互作加强, 土地当量比随之提高。进一步分析表明, 无论是间作玉米还是间作大豆, 其根际土壤微生物多样性和均匀度指数均随根系互作加强而明显提高。AWCD分析根际微生物生理种群差异的结果显示, 在玉米与大豆间作体系中, 无隔和网隔处理的根际微生物对底物碳源利用能力分别占据第1和第2位; 全隔和单作下, 根际微生物对底物的利用能力相应降低; 而加强种间根系互作(即从网隔到无隔), 大豆根际微生物对6大类碳源底物中酚类碳源和羧酸类碳源利用能力有所下降, 对胺类碳源、聚合物类碳源、氨基酸类碳源和碳水化合物底物的利用能力分别提高181.01%、32.6%、37.84%和78.28%; 而玉米根际微生物对酚类碳源、聚合物类碳源和氨基酸类利用能力有所下降外, 对羧酸类碳源、碳水化合物类碳源和胺类碳源等底物利用能力分别提高46.26%、6.54%和15.84%。T-RFLP分析结果发现, 与全隔处理比较, 无隔处理的大豆根际红球菌属和喜盐芽孢杆菌属等优势菌群丰度明显增多。而玉米根际微生物中也发现相似生理功能红球菌属和芽孢杆菌属等有益优势菌群的丰度增多现象, 最终导致间作作物地上部产量和土地当量比提高。
  • 图  1  大豆和玉米间作不同分隔处理模式图

    Figure  1.  Intercropped patterns of soybean and maize under different separating treatments

    图  2  不同种间根系分隔处理下间作大豆(a)和玉米(b)根际土壤微生物平均颜色变化率(AWCD)随培养时间的变化

    NBS: 无隔大豆; MBS: 网隔大豆; PBS: 全隔大豆; MS: 单作大豆; NBM: 无隔玉米; MBM: 网隔玉米; PBM: 全隔玉米; MM: 单作玉米。NBS: no barrier for intercropped soybean; MBS: mesh barrier for intercropped soybean; PBS: polythene film barrier for intercropped soybean; MS: monoculture soybean; NBM: no barrier for intercropped maize; MBM: mesh barrier for intercropped maize; PBM: polythene film for intercropped maize; MM: monoculture maize

    Figure  2.  Changes of average well color development (AWCD) of microorganisms in rhizosphere soil of soybean (a) and maize (b) with incubation time under different partition patterns of interspecific roots of intercropped maize and soybean

    图  3  不同种间根系分隔处理下间作大豆和玉米根际微生物碳源利用特征的主成分分析

    NBS: 无隔大豆; MBS: 网隔大豆; PBS: 全隔大豆; MS: 单作大豆; NBM: 无隔玉米; MBM: 网隔玉米; PBM: 全隔玉米; MM: 单作玉米。NBS: no barrier for intercropped soybean; MBS: mesh barrier for intercropped soybean; PBS: polythene film barrier for intercropped soybean; MS: monoculture soybean; NBM: no barrier for intercropped maize; MBM: mesh barrier for intercropped maize; PBM: polythene film barrier for intercropped maize; MM: monoculture maize.

    Figure  3.  Principal component analysis of carbon utilization profiles of microbes in rhizosphere soil under different partition patterns of interspecific roots of intercropped maize and soybean

    图  4  种间相互作用对间作大豆与玉米根际土壤微生物群落结构的影响

    NBS: 无隔大豆; MBS: 网隔大豆; PBS: 全隔大豆; NBM: 无隔玉米; MBM: 网隔玉米; PBM: 全隔玉米。NBS: no barrier for intercropped soybean; MBS: mesh barrier for intercropped soybean; PBS: polythene film barrier for intercropped soybean; NBM: no barrier for intercropped maize; MBM: mesh barrier for intercropped maize; PBM: polythene film barrier for intercropped maize.

    Figure  4.  Effect of interspecific interaction on microbial community structure in of rhizosphere soil of intercropped soybean and maize

    表  1  种间根系分隔处理对间作玉米和大豆籽粒产量、百粒重和土地当量比的影响

    Table  1.   Effects of partition patterns of interspecific roots on grain yield, hundred-grain weight and land equivalent ratio of intercropped soybean and maize

    处理 Treatment籽粒产量 Grain yield (kg∙hm−2)百粒重 Hundred-grain weight (g)土地当量比
    Land equivalent ratio (LER)
    玉米 Maize大豆 Soybean玉米 Maize大豆 Soybean
    无隔 No barrier 3231.29±168.71a 887.62±60.97ab 32.98±1.32a 16.67±0.45ab 1.39±0.16a
    网隔 Mesh barrier 2324.26±123.76ab 932.91±92.48a 32.33±1.88a 17.34±0.73a 1.13±0.11b
    全隔 Polythene film barrier 2021.92±114.62b 717.04±81.27bc 28.73±1.34b 16.46±0.90b 0.98±0.03c
    单作 Monoculture 2006.80±325.26b 637.88±22.90c 27.06±0.39b 15.79±0.69b
      同列不同字母表示处理间在P<0.05水平差异显著。The values within the same column followed by different letters are significantly different at P<0.05 level.
    下载: 导出CSV

    表  2  不同种间根系分隔处理下间作玉米与大豆的根际微生物对碳源底物的利用能力

    Table  2.   Utilization ability to carbon substrates of rhizosphere microbes under different partition patterns of interspecific roots of intercropped maize and soybean

    作物
    Crop
    处理
    Treatment
    羧酸类
    Carboxylic acids
    多聚物类
    Polymers
    糖类
    Carbohydrates
    酚酸类
    Phenolics
    氨基酸类
    Amino acids
    胺类
    Amines
    大豆
    Soybean
    无隔
    No barrier
    0.957±0.017a0.675±0.018b0.517±0.011a1.027±0.017a0.652±0.021a0.933±0.006a
    网隔
    Mesh barrier
    0.825±0.007b0.745±0.016a0.514±0.015a0.784±0.003b0.687±0.003a0.558±0.008b
    全隔
    Polythene film barrier
    0.969±0.017a0.509±0.013c0.290±0.009b1.074±0.003a0.473±0.026b0.332±0.010c
    单作
    Monoculture
    0.915±0.027a0.489±0.010c0.234±0.012c1.037±0.025ab0.512±0.000b0.346±0.008c
    玉米
    Maize
    无隔
    No barrier
    0.939±0.006a0.741±0.002c0.505±0.002a0.994±0.005b0.650±0.011a0.563±0.006b
    网隔
    Mesh barrier
    0.841±0.001b0.773±0.006a0.469±0.004b0.829±0.013c0.472±0.006b0.820±0.005a
    全隔
    Polythene film barrier
    0.642±0.006c0.752±0.001bc0.474±0.004b1.091±0.052ab0.649±0.018a0.486±0.021c
    单作
    Monoculture
    0.658±0.006c0.764±0.006ab0.431±0.002c1.126±0.059a0.497±0.011b0.511±0.006c
      同列同一作物不同字母表示不同处理间在P<0.05水平差异显著。The values within the same column of the same crop followed by different letters are significantly different at P<0.05 level.
    下载: 导出CSV

    表  3  不同种间根系互作对间作作物根际土壤微生物多样性指数的影响

    Table  3.   Effects of different partition patterns of interspecific roots on soil microbial diversity indexes of intercropped maize and soybean

    作物
    Crop
    处理
    Treatment
    Shannon-Wiener指数
    Shannon-Wiener index
    Simpson指数
    Simpson index
    McIntosh指数
    McIntosh index
    大豆
    Soybean
    无隔
    No barrier
    3.09±0.01a 0.95±0.01a 5.12±0.02a
    网隔
    Mesh barrier
    3.07±0.01a 0.95±0.00a 4.83±0.03b
    全隔
    Polythene film
    barrier
    3.02±0.01b 0.94±0.00b 4.26±0.05c
    单作
    Monoculture
    3.02±0.01b 0.94±0.00b 4.35±0.00c
    玉米
    Maize
    无隔
    No barrier
    3.12±0.01a 0.95±0.00a 4.89±0.01a
    网隔
    Mesh barrier
    3.10±0.04a 0.95±0.01a 4.63±0.00c
    全隔
    Polythene film
    barrier
    3.00±0.06b 0.94±0.00b 4.67±0.00b
    单作
    Monoculture
    2.99±0.01b 0.94±0.00b 4.61±0.02c
      同列同一作物不同字母表示不同处理间在P<0.05水平差异显著。The values within the same column of the same crop followed by different letters are significantly different at P<0.05 level.
    下载: 导出CSV

    表  4  不同种间根系互作对间作玉米与大豆根际土壤细菌微生物多样性和均匀度指数的影响

    Table  4.   Effect of different partition patterns of interspecific roots on diversity indexes of soil bacteria community of intercropped system of maize and soybean

    作物
    Crop
    处理
    Treatment
    Shannon-Wiener指数
    Shannon-Wiener index
    Simpson指数
    Simpson index
    McIntosh指数
    McIntosh index
    大豆
    Soybean
    无隔
    No barrier
    2.24±0.075a 0.99±0.01a 0.65±0.01a
    网隔
    Mesh barrier
    2.22±0.041a 0.98±0.05a 0.62±0.01a
    全隔
    Polythene film barrier
    1.78±0.14b 0.98±0.01a 0.61±0.01b
    玉米
    Maize
    无隔
    No barrier
    1.96±0.02a 0.98±0.07a 0.60±0.01a
    网隔
    Mesh barrier
    1.86±0.06ab 0.98±0.01a 0.58±0.01ab
    全隔
    Polythene film barrier
    1.76±0.02b 0.97±0.02a 0.54±0.01b
      同列同一作物不同字母表示不同处理间在P<0.05水平差异显著。The values within the same column of the same crop followed by different letters are significantly different at P<0.05 level.
    下载: 导出CSV

    表  5  不同种间根系互作对间作大豆和玉米根际土壤细菌群落的影响

    Table  5.   Effect of interspecific interaction on bacterial community in rhizopshere soil of soybean and maize

    作物 Crop相对丰度 Relative abundance (%) 片段大小 Fragment size (bp)门 Phylum属 Genus
    NBMBPB MspⅠHaeⅢAfaⅠAluⅠ
    大豆
    Soybean
    0.92a 0.77b 1.01a 489 199 119 225 变形菌门 Proteobacteria 伯克氏菌属 Burkholderia
    1.12c 1.40b 1.63a 164 205 243 218 变形菌门 Proteobacteria 脱硫杆菌属 Desulfobacter
    3.19b 4.40a 4.48a 88 206 126 240 变形菌门 Proteobacteria 奈瑟菌属 Neisseria
    2.67a 2.35a 1.73b 163 67 80 223 放线菌门 Actinobacteria 棒状杆菌属 Corynebacterium
    5.48a 4.84b 3.87c 139 67 78 232 放线菌门 Actinobacteria 红球菌属 Rhodococcus
    5.61a 4.84b 4.82b 141 208 453 234 放线菌门 Actinobacteria 动孢囊菌属 Kineosporia
    2.46a 2.37a 2.01b 148 246 471 92 厚壁菌门 Firmicutes 喜盐芽孢杆菌属 Halobacillus
    1.96a 1.83a 0.91b 91 284 140 239 拟杆菌门 Bacteroidetes 噬细胞菌属 Cytophaga
    玉米
    Maize
    0.55b 0.65ab 0.68a 487 197 562 152 变形菌门 Proteobacteria 无色菌属 Achromobacter
    2.46b 2.46b 3.26a 488 198 427 153 变形菌门 Proteobacteria 伯克氏菌 Burkholderia
    3.42b 3.22b 7.96a 492 39 72 236 变形菌门 Proteobacteria 假单胞菌属 Pseudomonas
    2.37b 2.92ab 3.40a 89 207 127 241 变形菌门 Proteobacteria 艾肯氏菌属 Eikenella
    6.56a 7.56a 4.58b 164 207 246 221 变形菌门 Proteobacteria 脱硫杆菌属 Desulfobacter
    0.71a 0.59ab 0.46b 162 228 455 71 放线菌门 Actinobacteria 红球菌属 Rhodococcus
    1.78a 1.48ab 1.24b 159 224 449 217 放线菌门 Actinobacteria 动孢囊菌属 Kineosporia
    2.48a 1.45b 1.11b 122 152 467 229 厚壁菌门 Firmicutes 杆菌属 Bacilli
    1.37a 1.42a 0.85b 161 248 503 230 厚壁菌门 Firmicutes 芽孢杆菌属 Bacillus
    2.11a 1.70ab 1.53b 87 207 177 169 螺旋体门 Spirochaetes 螺旋体属 Spirnrhaetales
    1.82a 2.00a 0.91b 91 284 140 239 拟杆菌门 Bacteroidetes 噬细胞菌属 Cytophagaceae
      NB: 无隔; MB: 网隔; PB: 全隔。同行不同字母表示P<0.05水平差异显著。NB: no barrier; MB: mesh barrier; PB: polythene film barrier. The values in the same row followed by different letters are significantly different at P<0.05 level.
    下载: 导出CSV
  • [1] 林文雄, 陈婷. 中国农业的生态化转型与发展生态农业新视野[J]. 中国生态农业学报(中英文), 2019, 27(2): 169−176

    LIN W X, CHEN T. Transition of agricultural systems to ecologicalizaton and new vision of modern eco-agriculture development in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 169−176
    [2] LI C J, HOFFLAND E, KUYPER T W, et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants, 2020, 6(6): 653−660 doi: 10.1038/s41477-020-0680-9
    [3] 姜圆圆, 郑毅, 汤利, 等. 豆科禾本科作物间作的根际生物过程研究进展[J]. 农业资源与环境学报, 2016, 33(5): 407−415

    JIANG Y Y, ZHENG Y, TANG L, et al. Rhizosphere biological processes of legume//cereal intercropping systems: a review[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 407−415
    [4] ZHNG F S, LI L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant & Soil, 2003, 248(1/2): 305−312
    [5] PARK S E, BENJAMIN L R, WATKINSON A R. Comparing biological productivity in cropping systems: a competition approach[J]. Journal of Applied Ecology, 2002, 39(3): 416−426 doi: 10.1046/j.1365-2664.2002.00732.x
    [6] HAUGGAARD-NIELSEN H, GOODING M, AMBUS P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research, 2009, 113(1): 64−71 doi: 10.1016/j.fcr.2009.04.009
    [7] LI C J, LI Y Y, YU C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China[J]. Plant and Soil, 2011, 342(1/2): 221−231
    [8] 肖靖秀, 汤利, 郑毅, 等. 大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J]. 麦类作物学报, 2011, 31(3): 499−503 doi: 10.7606/j.issn.1009-1041.2011.03.020

    XIAO J X, TANG L, ZHENG Y, et al. Effects of N level on yield of crops, N absorption and accumulation of barley in barley and Faba bean intercropping system[J]. Journal of Triticeae Crops, 2011, 31(3): 499−503 doi: 10.7606/j.issn.1009-1041.2011.03.020
    [9] 王恭祎, 段碧华, 石书兵. 作物间作[M]. 北京: 中国农业科学技术出版社, 2013

    WANG G Y, DUAN B H, SHI S B. Crops Intercropping[M]. Beijing: China Agricultural Science and Technology Press, 2013
    [10] 李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响[J]. 生态学报, 2011, 31(6): 1617−1630

    LI Y Y, HU H S, CHENG X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in Faba bean/mazie intercropping system[J]. Acta Ecologica Sinica, 2011, 31(6): 1617−1630
    [11] LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. PNAS, 2007, 104(27): 11192− 11196 doi: 10.1073/pnas.0704591104
    [12] LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2): 280−290 doi: 10.1007/s00442-005-0256-4
    [13] LI X F, WANG C B, ZHANG W P, et al. The role of complementarity and selection effects in P acquisition of intercropping systems[J]. Plant and Soil, 2018, 422(1/2): 479−493
    [14] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014(5): 55–58

    SHEN X F, FANG Y, DONG Z X, et al. Effects of sugarcane /peanut intercropping on soil microbes and soil enzyme activities[J]. Crops, 2014(5): 55–58
    [15] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报, 2009, 20(7): 1597−1602

    ZHANG J E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1597−1602
    [16] 宋亚娜, MARSCHNER Petra, 张福锁, 等. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J]. 生态学报, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028

    SONG Y N, MARSCHNER P, ZHANG F S, et al. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.)[J]. Acta Ecologica Sinica, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028
    [17] 陈平, 杜青, 庞婷, 等. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响[J]. 四川农业大学学报, 2018, 36(1): 28−37

    CHEN P, DU Q, PANG T, et al. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system[J]. Journal of Sichuan Agricultural University, 2018, 36(1): 28−37
    [18] WANG J Y, WU L K, TANTAI H P, et al. Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture[J]. Plant Growth Regulation, 2019, 89(2): 167−178 doi: 10.1007/s10725-019-00523-0
    [19] WU L K, YANG B, LI M L, et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease[J]. Plant Disease, 2020, 104(1): 25−34 doi: 10.1094/PDIS-04-19-0833-RE
    [20] 吴林坤, 陈军, 杨波, 等. 地黄连作对叶际细菌群落结构及多样性的影响[J]. 应用生态学报, 2019, 30(10): 3509−3517

    WU L K, CHEN J, YANG B, et al. Effects of Rehmannia glutinosa consecutive monoculture on the community structure and diversity of phyllosphere bacteria[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3509−3517
    [21] LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping[J]. Journal of Integrative Agriculture, 2016, 15(1): 101−110 doi: 10.1016/S2095-3119(15)61089-9
    [22] 刘朝茂, 李成云. 玉米与大豆、马铃薯间作对玉米叶片衰老、产量及病害控制的影响[J]. 江苏农业科学, 2017, 45(6): 75−78

    LIU C M, LI C Y. Effects of maize intercropping with soybean or potato on leaf senescence, yield and disease control[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 75−78
    [23] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1989

    GUAN S Y. Soil Enzyme and its Research Method[M]. Beijing: Agriculture Press, 1989
    [24] 刘广才, 李隆, 黄高宝, 等. 大麦/玉米间作优势及地上部和地下部因素的相对贡献研究[J]. 中国农业科学, 2005, 38(9): 1787−1795 doi: 10.3321/j.issn:0578-1752.2005.09.011

    LIU G C, LI L, HUANG G B, et al. Intercropping advantage and contribution of above-ground and below-ground interactions in the barley-maize intercropping[J]. Scientia Agricultura Sinica, 2005, 38(9): 1787−1795 doi: 10.3321/j.issn:0578-1752.2005.09.011
    [25] 陈胜男, 谷洁, 付青霞, 等. 接种自生固氮菌对玉米根际土壤酶活性和细菌群落功能多样性的影响[J]. 植物营养与肥料学报, 2012, 18(2): 444−450 doi: 10.11674/zwyf.2012.11325

    CHEN S N, GU J, FU Q X, et al. Effects of inoculating Azotobacter on soil enzyme activities and bacterial community functional diversity in the rhizosphere of maize (Zea mays L.)[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 444−450 doi: 10.11674/zwyf.2012.11325
    [26] 高阳, 段爱旺, 刘祖贵, 等. 玉米和大豆条带间作模式下的光环境特性[J]. 应用生态学报, 2008, 19(6): 1248−1254

    GAO Y, DUAN A W, LIU Z G, et al. Light environment characteristics in maize-soybean strip intercropping system[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1248−1254
    [27] 冷志杰, 贝丽霞, 徐中儒, 等. 不同熟期大豆、玉米间作的产量产值数学模型的建立[J]. 吉林农业大学学报, 1998, 20(1): 16−19

    LENG Z J, BEI L X, XU Z R, et al. The mathematical models of yield and output value of intercrop corn and soybean[J]. Journal of Jilin Agricultural University, 1998, 20(1): 16−19
    [28] 宋日, 牟瑛, 王玉兰, 等. 玉米、大豆间作对两种作物根系形态特征的影响[J]. 东北师大学报: 自然科学版, 2002, 34(3): 83−86

    SONG R, MU Y, WANG Y L, et al. Effects of intercropping of maize and soybean on the morphological character of roots[J]. Journal of Northeast Normal University: Natural Science Edition, 2002, 34(3): 83−86
    [29] 李鑫, 张会慧, 岳冰冰, 等. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响[J]. 应用生态学报, 2012, 23(7): 1825−1831

    LI X, ZHANG H H, YUE B B, et al. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825−1831
    [30] GAO X, WU M, XU R N, et al. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot[J]. PLoS One, 2014, 9(5): e95031 doi: 10.1371/journal.pone.0095031
    [31] LI L, TANG C X, RENGEL Z, et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J]. Plant and Soil, 2003, 248(1/2): 297−303 doi: 10.1023/A:1022389707051
    [32] EL DESSOUGI H, ZU DREELE A, CLAASSEN N. Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 254−261 doi: 10.1002/jpln.200390037
    [33] 王建花, 陈婷, 林文雄. 植物化感作用类型及其在农业中的应用[J]. 中国生态农业学报, 2013, 21(10): 1173−1183 doi: 10.3724/SP.J.1011.2013.01173

    WANG J H, CHEN T, LIN W X. Plant allelopathy types and their application in agriculture[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1173−1183 doi: 10.3724/SP.J.1011.2013.01173
    [34] CHEN J, WU L K, XIAO Z G, et al. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR[J]. Front in Microbiol, 2017, 8: 1748 doi: 10.3389/fmicb.2017.01748
    [35] 马瑞霞, 冯怡, 李萱. 化感物质对枯草芽孢杆菌(Bacillus subtilis)在厌氧条件下的生长及反硝化作用的影响[J]. 生态学报, 2000, 20(3): 452−457 doi: 10.3321/j.issn:1000-0933.2000.03.019

    MA R X, FENG Y, LI X. Effects of allelochemicals on growth of Bacillus subtilis and its denitrification under anaerobic condition[J]. Acta Ecologica Sinica, 2000, 20(3): 452−457 doi: 10.3321/j.issn:1000-0933.2000.03.019
    [36] LI Y Z, XU L N, LETUMA P, et al. Metabolite profiling of rhizosphere soil of different allelopathic potential rice accessions[J]. BMC Plant Biology, 2020, 20(1): 265 doi: 10.1186/s12870-020-02465-6
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  49
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-08-18
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回