留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

控释肥残膜积累对土壤微生物群落组成的影响

王学霞 曹兵 邹国元 张佳佳 王甲辰 刘东生 陈延华

王学霞, 曹兵, 邹国元, 张佳佳, 王甲辰, 刘东生, 陈延华. 控释肥残膜积累对土壤微生物群落组成的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1002−1013 doi: 10.12357/cjea.20210226
引用本文: 王学霞, 曹兵, 邹国元, 张佳佳, 王甲辰, 刘东生, 陈延华. 控释肥残膜积累对土壤微生物群落组成的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1002−1013 doi: 10.12357/cjea.20210226
WANG X X, CAO B, ZOU G Y, ZHANG J J, WANG J C, LIU D S, CHEN Y H. Effects of controlled-release fertilizer residual coat accumulation on soil microbial communities[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1002−1013 doi: 10.12357/cjea.20210226
Citation: WANG X X, CAO B, ZOU G Y, ZHANG J J, WANG J C, LIU D S, CHEN Y H. Effects of controlled-release fertilizer residual coat accumulation on soil microbial communities[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1002−1013 doi: 10.12357/cjea.20210226

控释肥残膜积累对土壤微生物群落组成的影响

doi: 10.12357/cjea.20210226
基金项目: 北京市农林科学院创新能力建设专项(KJCX20200419)、北京市农林科学院改革与发展计划项目(YZS202001)和北京市农林科学院平台建设(PT2021-16)资助
详细信息
    作者简介:

    王学霞, 主要从事土壤生态研究。E-mail: wxx0427@163.com

    通讯作者:

    陈延华, 主要从事土壤环境研究。E-mail: yhchen55@126.com

  • 中图分类号: S154.36

Effects of controlled-release fertilizer residual coat accumulation on soil microbial communities

Funds: The study was supported by the Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciences (KJCX20200419), the Independent Project Plan of Beijing Academy of Agriculture and Forestry Sciences (YZS202001) and the Platform Construction of Beijing Academy of Agriculture and Forestry Sciences (PT2021-16).
More Information
  • 摘要: 为探究控释肥残膜累积对土壤微生物群落的影响, 采用Illumina MiSeq高通量测序技术, 分析了不同控释肥残膜(聚氨酯)累积量下土壤细菌和真菌群落结构及多样性的差异。试验设不加聚氨酯残膜膜壳(CK)、添加聚氨酯残膜140 kg·hm−2 (CR1)、280 kg·hm−2 (CR2)、560 kg·hm−2 (CR3)和1400 kg·hm−2 (CR4) 5个处理。结果表明: 与CK相比, 聚氨酯残膜施入土壤120 d后, CR4处理下土壤可溶性有机碳(DOC)、土壤含水量(SM)和玉米地下生物量(BGB)及CR3处理土壤NO3-N含量显著增加(P<0.05), 而土壤pH、速效钾(AK)、总氮(TN)、速效磷(AP)、NH4+-N含量无显著差异。聚氨酯残膜处理提高了细菌和真菌OTU (operational taxonomic unit)数量、细菌群落多样性(Shannon)和丰富度(Ace、Chao)指数, CR4处理与CK间差异显著(P<0.05), 不同聚氨酯残膜处理下的土壤真菌群落多样性和丰富度无显著差异, 但改变了基于门、属水平上的群落组成。随土壤聚氨酯残膜添加量的增加, 变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和伯克氏菌属(Burkholderia)相对丰度增加, 而酸杆菌门(Acidobacteria)和鞘氨醇单胞菌属(Sphingomonas)相对丰度减少, CR4处理与CK相比差异显著(P<0.05)。与CK相比, 聚氨酯残膜处理提高了子囊菌门(Ascomycota)相对丰度, CR3处理其相对丰度显著增加(P<0.05); 聚氨酯残膜处理分别降低了球囊菌门(Glomeromycota), 增加了被孢霉属(Mortierella)相对丰度, CR4处理与CK相比差异达显著水平(P<0.05)。Mantel检验结果显示, DOC 对细菌群落结构的影响最大(P=0.003), AP、SM 和 BGB 对细菌群落结构也具有显著影响(P<0.05)。真菌群落结构与土壤 DOC、TN 和 SM 呈现显著相 关(P<0.05), 其中 DOC 影响最大。由此, 短期内聚氨酯残膜添加通过改变土壤可溶性有机碳、含水量、玉米根生物量等因子提高了细菌群落多样性, 影响土壤细菌和真菌群落组成。
  • 图  1  不同添加量下土壤中聚氨酯残膜累积降解速率(A)和平均累积降解率(B) (n=12)

    CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0.062 g∙kg−1、0.124 g∙kg−1、 0.620 g∙kg−1和1.240 g∙kg−1。CR1, CR2, CR3, and CR4 are treatments of addition of 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively.

    Figure  1.  Cumulative degradation rates under different addition rates (A) and their average (B) of polyurethane residual film in soil (n=12)

    图  2  不同处理土壤细菌(A)和真菌(B)群落门水平组成变化

    CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1

    Figure  2.  Characteristics of bacterial (A) and fungal (B) community structures at phylum level under different treatments

    0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively.

    图  3  不同处理土壤细菌(A)和真菌(B)群落属水平组成变化

    CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1

    Figure  3.  Characteristics of bacterial (A) and fungal (B) community structure at genus level under different treatments

    0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively.

    图  4  不同处理土壤细菌(A)和真菌(B)群落分析(PCA)

    CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1

    Figure  4.  Principal coordinate analysis (PCA) analysis of soil bacteria (A) and fungal (B) communities under different treatments

    0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively.

    表  1  不同处理下土壤理化性质与玉米生物量变化

    Table  1.   Soil physical and chemical properties and maize biomass under different treatments

    指标 FactorCKCR1CR2CR3CR4
    pH7.83±0.04a7.86±0.05a7.87±0.02a7.92±0.03a7.85±0.04a
    含水量 Soil moisture (%)14.98±0.62b15.47±1.21ab16.56±1.33ab16.74±1.20ab18.24±0.88a
    可溶性有机碳 Soluble organic carbon (mg∙kg−1)23.72±1.80b25.84±3.58ab28.04±3.46ab29.34±1.22a33.17±1.21a
    速效钾 Available potassium (mg∙kg−1)129.76±10.46a132.21±11.42a143.42±18.31a157.83±12.27a150.76±8.67a
    速效磷 Available phosphorus (mg∙kg−1)10.45±2.32a10.93±2.34a11.98±2.57a12.79±1.38a12.86±2.29a
    硝态氮 NO3-N (mg∙kg−1)27.12±2.17b32.37±1.56ab29.91±3.93ab35.43±1.53a34.83±2.09ab
    铵态氮 NH4+-N (mg∙kg−1)2.35±0.15a2.49±0.22a2.64±0.18a2.86±0.24a2.79±0.19a
    全氮 Total nitrogen (g∙kg−1)1.43±0.16a1.49±0.17a1.54±0.11a1.52±0.13a1.49±0.12a
    地上生物量 Aboveground biomass (g∙plot−1)167.45±11.81a178.80±11.52a200.44±17.28a201.75±15.84a209.78±16.42a
    地下生物量 Belowground biomass (g∙plot−1)20.20±1.47b23.25±1.77ab22.29±1.26ab24.84±1.48ab25.41±1.81a
      CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1。不同小写字母表示不同处理间差异显著(P<0.05)。0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively. Different lowercase letters indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  2  不同处理下土壤细菌和真菌的序列数统计

    Table  2.   Statistics of sample sequence of soil bacteria and funge under different treatments

    处理
    Treatment
    细菌 Bacterial真菌 Fungal
    序列(条) SequencesOTUs序列(条) SequencesOTUs
    CK32 520±2651b2449±43b16 225±1610b221.25±8.73b
    CR136 931±953ab2621±47ab19 880±989ab245.75±7.65ab
    CR238 635±1653a2684±32a18 961±2364ab234.25±31.76ab
    CR338 797±1277a2686±62a20 886±2609a249.00±23.37ab
    CR441 839±1845a2795±76a21 372±1666a274.50±9.46a
    总计 Total943 61066 175486 6206120
      CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1。不同小写字母表示不同处理间差异显著(P<0.05)。0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively. Different lowercase letters indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  3  不同处理土壤细菌和真菌OTU及多样性指数

    Table  3.   Soil microbial diversity indexes of soil bacteria and funge under different treatments

    微生物 Microbial指标 FactorCKCR1CR2CR3CR4
    细菌 BacterialAce3401.27±67.39b3684.05±57.86ab3704.38±35.86ab3778.81±78.07ab3811.84±49.02a
    Chao3486.19±56.70b3602.71±35.05ab3610.38±45.99ab3695.04±41.39ab3729.14±57.25a
    Shannon6.59±0.03b6.70±0.04ab6.70±0.06ab6.72±0.04a6.78±0.03a
    Coverage0.967±0.001a0.964±0.001a0.964±0.001a0.963±0.002a0.966±0.001a
    真菌 FungalAce250.80±30.23a258.95±33.22a256.50±6.58a265.54 ±20.93a268.27±6.26a
    Chao251.03±29.62a257.77±33.62a259.54 ±5.95a272.20±7.92a274.67±17.14a
    Shannon2.96±0.18a3.24 ±0.21a3.18±0.39a3.62±0.23a3.36±0.20a
    Coverage0.999±0.001a0.999±0.001a0.999 ±0.001a0.999±0.001a0.999±0.001a
      CK、CR1、CR2、CR3和CR4的聚氨酯残膜累积添加量分别为0 g∙kg−1、0.062 g∙kg−1、0.124 g∙kg−1、0.620 g∙kg−1和1.240 g∙kg−1。不同小写字母表示不同处理间差异显著(P<0.05)。0, CR1, CR2, CR3, and CR4 are treatments of addition of 0, 0.062, 0.124, 0.620, and 1.240 g∙kg−1 polyurethane residual film, respectively. Differtent lowercase letters indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  4  Mantel 检验微生物群落结构与植物、土壤环境因子的相关性

    Table  4.   Mantel test showing the correlation among soil microbial community structure similarity and plant, soil environment factors

    因子
    Factor
    细菌群落结构 Bacterial community structure真菌群落结构 Fungal community structure
    rPrP
    地上生物量 Aboveground biomass (AGB) 0.1540.4210.1250.531
    地下生物量 Belowground biomass (BGB) 0.4460.0490.2980.159
    pH0.1330.4770.0950.623
    含水量 Soil moisture (SM)0.4520.0450.3870.048
    速效钾 Available potassium (AK)0.2480.2160.1520.469
    可溶性有机碳 Soluble organic carbon0.6220.0030.4320.008
    全氮 Total nitrogen (TN) 0.3150.1770.4010.020
    速效磷 Available phosphorus (AP)0.5170.0120.2870.149
    硝态氮 NO3-N0.2340.3210.1150.531
    铵态氮 NH4+-N 0.1170.5590.2740.165
      计算Pearson系数, 并基于999 permutations进行了显著性检验。The Pearson’s coefficients were calculated and their significances were tested based on 999 permutations.
    下载: 导出CSV

    表  5  优势细菌门、真菌门与土壤因子的相关分析

    Table  5.   Redundancy analysis of dominant bacterial phylum, dominant fungal phylum and environmental factors

    门 PhylumSMDOCAGBNO3-NBGBAKTNNH4-NAPpH
    变形菌门 Proteobacteria0.423*0.763**−0.0470.1460.468*−0.248−0.169−0.0930.1350.089
    硝化螺旋菌门 Nitrospirae0.751**0.445*−0.0380.769**0.836***−0.1490.1240.070−0.1780.245
    拟杆菌门 Bacteroidetes0.1050.520*0.183−0.1220.478*−0.057−0.222−0.1390.432*−0.213
    放线菌门 Actinobacteria0.1160.738**0.2050.1080.024−0.112−0.398*0.0130.465*−0.229
    浮霉菌门 Planctomycetes−0.127−0.1820.067−0.142−0.1170.422*0.1240.027−0.057−0.174
    棒状杆菌门 Rokubacteria−0.238−0.757**−0.258−0.016−0.1730.0830.142−0.1620.009−0.105
    芽单胞菌门 Gemmatimonadetes0.678**0.0480.2570.306−0.0290.199−0.427*−0.158−0.062−0.186
    酸杆菌门 Acidobacteria−0.414*−0.442*−0.477*−0.304−0.120−0.1250.249−0.137−0.312−0.204
    异常球菌-栖热菌门 Deinococcus-Thermus−0.033−0.037−0.172−0.2470.0870.0820.445*0.104−0.083−0.148
    丝足虫门 Cercozoa0.452*0.3670.1610.1070.2310.0980.435*0.0060.232−0.312
    担子菌门 Basidiomycota0.426*0.746**0.2120.2960.242−0.0760.467*0.435*0.131−0.143
    子囊菌门 Ascomycota0.438*0.472*−0.1770.008−0.2130.162−0.214−0.007−0.2540.201
    球囊菌门 Glomeromycota−0.761**−0.126−0.424*−0.158−0.428*0.3140.096−0.235−0.008−0.157
      各土壤因子的缩写含义见表4。*、**和***分别表示P<0.05、P<0.01和P<0.001。The abbreviation of each environmental factor is shown in the table 4. *, **, and *** represent P<0.05, P<0.01 and P<0.001, respectively.
    下载: 导出CSV
  • [1] KYRIKOU I, BRIASSOULIS D, HISKAKIS M, et al. Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants[J]. Polymer Degradation and Stability, 2011, 96(12): 2237−225 doi: 10.1016/j.polymdegradstab.2011.09.001
    [2] GUO C, REN T, LI P F, et al. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea[J]. Environmental Science and Pollution Research, 2019, 26(3): 2569−2579 doi: 10.1007/s11356-018-3792-2
    [3] FU J J, WANG C Y, CHEN X X, et al. Classification research and types of slow controlled release fertilizers (SRFs) used — a review[J]. Communications in Soil Science and Plant Analysis, 2018, 49(17): 2219−2230 doi: 10.1080/00103624.2018.1499757
    [4] AZEEM B, KUSHAARI K, MAN Z B, et al. Review on materials & methods to produce controlled release coated urea fertilizer[J]. Journal of Controlled Release, 2014, 181: 11−21 doi: 10.1016/j.jconrel.2014.02.020
    [5] 包丽华. 控释肥高分子残膜的降解动态及对土壤生物学效应的影响研究[D]. 泰安: 山东农业大学, 2010: 5–6

    BAO L H. Degradation of polymer coating residual of controlled release fertilizer and its effects on soil biological properties[D]. Tai’an: Shandong Agricultural University, 2010: 5–6
    [6] 李丽霞, 曹兵, 李鸿雁, 等. 纳米TiO2-LDPE复合材料包膜控释肥残膜的降解特性[J]. 复合材料学报, 2014, 31(6): 1422−1427

    LI L X, CAO B, LI H Y, et al. Degradation behavior of residual films of controlled release fertilizers with nano-TiO2-LDPE composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1422−1427
    [7] 李亚星, 徐秋明, 杨宜斌, 等. 树脂包衣肥料残膜对土壤植物的影响及光降解膜肥料的研制[J]. 生态环境学报, 2010, 19(7): 1691−1695

    LI Y X, XU Q M, YANG Y B, et al. Effect of RCF residual coating on soil and plant and development of photodegradable coating of RCF[J]. Ecology and Environmental Sciences, 2010, 19(7): 1691−1695
    [8] BRIASSOULIS D, BABOU E, HISKAKIS M, et al. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions[J]. Environmental Science and Pollution Research, 2015, 22(4): 2584−2598 doi: 10.1007/s11356-014-3464-9
    [9] KATSUMI N, KUSUBE T, NAGAO S, et al. The role of coated fertilizer used in paddy fields as a source of microplastics in the marine environment[J]. Marine Pollution Bulletin, 2020, 161: 111727 doi: 10.1016/j.marpolbul.2020.111727
    [10] KATSUMI N, KUSUBE T, NAGAO S, et al. Accumulation of microcapsules derived from coated fertilizer in paddy fields[J]. Chemosphere, 2021, 267: 129185 doi: 10.1016/j.chemosphere.2020.129185
    [11] 鄂玉联, 谭兰兰, 安梦洁, 等. 高分子化合物对盐渍化棉田土壤团聚体组成及棉花产量的影响[J]. 南方农业学报, 2017, 48(11): 1989−1993

    E Y L, TAN L L, AN M J, et al. Effects of polymer compounds on soil aggregate composition and cotton yield in salted cotton field[J]. Journal of Southern Agriculture, 2017, 48(11): 1989−1993
    [12] ABOBATTA W. Impact of hydrogel polymer in agricultural sector[J]. Advances in Agriculture and Environmental Science: Open Access: AAEOA, 2018, 1(2): 59−64
    [13] IFTIME M M, AILIESEI G L, UNGUREANU E, et al. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention[J]. Carbohydrate Polymers, 2019, 223: 115040 doi: 10.1016/j.carbpol.2019.115040
    [14] HUANG L B, BAI J H, WEN X J, et al. Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level[J]. Global Change Biology, 2020, 26(4): 2377−2389 doi: 10.1111/gcb.14995
    [15] FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626−631 doi: 10.1073/pnas.0507535103
    [16] PAN P, JIANG H M, ZHANG J F, et al. Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings[J]. Journal of Integrative Agriculture, 2016, 15(12): 2855−2864 doi: 10.1016/S2095-3119(15)61309-0
    [17] LIANG D, DU C W, MA F, et al. Interaction between polyacrylate coatings used in controlled-release fertilizers and soils in wheat-rice rotation fields[J]. Agriculture, Ecosystems & Environment, 2019, 286: 106650
    [18] HUANG D F, XU Y B, LEI F D, et al. Degradation of polyethylene plastic in soil and effects on microbial community composition[J]. Journal of Hazardous Materials, 2021, 416: 126173 doi: 10.1016/j.jhazmat.2021.126173
    [19] MURUGAN P, ONG S Y, HASHIM R, et al. Development and evaluation of controlled release fertilizer using P(3HB-co-3HHx) on oil palm plants (nursery stage) and soil microbes[J]. Biocatalysis and Agricultural Biotechnology, 2020, 28: 101710 doi: 10.1016/j.bcab.2020.101710
    [20] FACCIA P A, PARDINI F M, AGNELLO A C, et al. Degradability of poly (ether-urethanes) and poly (ether-urethane) / acrylic hybrids by bacterial consortia of soil[J]. International Biodeterioration & Biodegradation, 2021, 160: 105205
    [21] BARRATT S R, ENNOS A R, GREENHALGH M, et al. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities[J]. Journal of Applied Microbiology, 2003, 95(1): 78−85 doi: 10.1046/j.1365-2672.2003.01961.x
    [22] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 25−114

    BAO S D. Soil Agrochemical Analysis[M]. 3rd Edition. Beijing: Chinese Agricultural Press, 2000: 25−114
    [23] DE SOUZA MACHADO A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044−6052
    [24] SUI X. Diversity of soil acidobacterial community of different land use types in the Sanjiang Plain, northeast of China[J]. International Journal of Agriculture and Biology, 2017, 19(5): 1279−1285 doi: 10.17957/IJAB/15.0452
    [25] GRAVUER K, ESKELINEN A, WINBOURNE J B, et al. Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions[J]. PNAS, 2020, 117(13): 7263−7270 doi: 10.1073/pnas.1908117117
    [26] DRENOVSKY R E, VO D, GRAHAM K J, et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology, 2004, 48(3): 424−430 doi: 10.1007/s00248-003-1063-2
    [27] DAS S, PANDEY P, MOHANTY S, et al. Evaluation of biodegradability of green polyurethane/nanosilica composite synthesized from transesterified castor oil and palm oil based isocyanate[J]. International Biodeterioration & Biodegradation, 2017, 117: 278−288
    [28] BLAGODATSKY S, BLAGODATSKAYA E, YUYUKINA T, et al. Model of apparent and real priming effects: Linking microbial activity with soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2010, 42(8): 1275−1283 doi: 10.1016/j.soilbio.2010.04.005
    [29] YU C, LI Y, MO R L, et al. Effects of long-term straw retention on soil microorganisms under a rice-wheat cropping system[J]. Archives of Microbiology, 2020, 202(7): 1915−1927 doi: 10.1007/s00203-020-01899-8
    [30] BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115−131 doi: 10.1007/s00374-008-0334-y
    [31] JIAO P P, LI Z W, YANG L, et al. Bacteria are more sensitive than fungi to moisture in eroded soil by natural grass vegetation restoration on the Loess Plateau[J]. Science of the Total Environment, 2021, 756: 143899 doi: 10.1016/j.scitotenv.2020.143899
    [32] ZHOU W P, SHEN W J, LI Y E, et al. Interactive effects of temperature and moisture on composition of the soil microbial community[J]. European Journal of Soil Science, 2017, 68(6): 909−918 doi: 10.1111/ejss.12488
    [33] CHARLOTTE V, LAURE V G, POUTEAU V, et al. Spatial and temporal evolution of detritusphere hotspots at different soil moistures[J]. Soil Biology and Biochemistry, 2020, 150: 107975 doi: 10.1016/j.soilbio.2020.107975
    [34] WANG X K, WANG G, GUO T, et al. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system[J]. European Journal of Soil Science, 2021, 72(1): 400−412 doi: 10.1111/ejss.12954
    [35] WANG H, WANG S L, WANG R, et al. Conservation tillage increased soil bacterial diversity and improved soil nutrient status on the Loess Plateau in China[J]. Archives of Agronomy and Soil Science, 2020, 66(11): 1509−1519 doi: 10.1080/03650340.2019.1677892
    [36] YAN Y Y, CHEN Z H, ZHU F X, et al. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils[J]. Bulletin of Environmental Contamination and Toxicology, 2020, DOI: 10.1007/s00128-020-02900-2
    [37] SUN L, XUN W B, HUANG T, et al. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments[J]. Soil Biology and Biochemistry, 2016, 96: 207−215 doi: 10.1016/j.soilbio.2016.02.011
    [38] MANZONI S, SCHIMEL J P, PORPORATO A. Responses of soil microbial communities to water stress: results from a meta-analysis[J]. Ecology, 2012, 93(4): 930−938 doi: 10.1890/11-0026.1
    [39] PASCAULT N, RANJARD L, KAISERMANN A, et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect[J]. Ecosystems, 2013, 16(5): 810−822 doi: 10.1007/s10021-013-9650-7
    [40] ARSHAD A, DALCIN MARTINS P, FRANK J, et al. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio[J]. Environmental Microbiology, 2017, 19(12): 4965−4977 doi: 10.1111/1462-2920.13977
    [41] DEBRUYN J M, NIXON L T, FAWAZ M N, et al. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil[J]. Applied and Environmental Microbiology, 2011, 77(17): 6295−6300 doi: 10.1128/AEM.05005-11
    [42] ACOSTA-MARTÍNEZ V, DOWD S, SUN Y, et al. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use[J]. Soil Biology and Biochemistry, 2008, 40(11): 2762−2770 doi: 10.1016/j.soilbio.2008.07.022
    [43] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634 doi: 10.1016/j.scitotenv.2019.135634
    [44] HE T X, LI Z L, XIE D T, et al. Simultaneous nitrification and denitrification with different mixed nitrogen loads by a hypothermia aerobic bacterium[J]. Biodegradation, 2018, 29(2): 159−170 doi: 10.1007/s10532-018-9820-6
    [45] BLÖCKER L, WATSON C, WICHERN F. Living in the plastic age — Different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy[J]. Environmental Pollution, 2020, 267: 115468 doi: 10.1016/j.envpol.2020.115468
    [46] GAO B, YAO H Y, LI Y Y, et al. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil[J]. Environmental Toxicology and Chemistry, 2021, 40(2): 352−365 doi: 10.1002/etc.4916
    [47] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233−237 doi: 10.1038/s41586-018-0386-6
    [48] REN C J, ZHANG W, ZHONG Z K, et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics[J]. Science of the Total Environment, 2018, 610/611: 750−758 doi: 10.1016/j.scitotenv.2017.08.110
    [49] RIEKE E L, SOUPIR M L, MOORMAN T B, et al. Temporal dynamics of bacterial communities in soil and leachate water after swine manure application[J]. Frontiers in Microbiology, 2018, 9: 3197 doi: 10.3389/fmicb.2018.03197
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  89
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-07-01
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回