留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江中下游典型种植业氨排放特征与减排关键技术

夏永秋 王慎强 孙朋飞 陈小琴 沈健林 王华 肖智华 李晓明 杨广 颜晓元

夏永秋, 王慎强, 孙朋飞, 陈小琴, 沈健林, 王华, 肖智华, 李晓明, 杨广, 颜晓元. 长江中下游典型种植业氨排放特征与减排关键技术[J]. 中国生态农业学报(中英文), 2021, 29(12): 1981−1989 doi: 10.12357/cjea.20210247
引用本文: 夏永秋, 王慎强, 孙朋飞, 陈小琴, 沈健林, 王华, 肖智华, 李晓明, 杨广, 颜晓元. 长江中下游典型种植业氨排放特征与减排关键技术[J]. 中国生态农业学报(中英文), 2021, 29(12): 1981−1989 doi: 10.12357/cjea.20210247
XIA Y Q, WANG S Q, SUN P F, CHEN X Q, SHEN J L, WANG H, XIAO Z H, LI X M, YANG G, YAN X Y. Ammonia emission patterns of typical planting systems in the middle and lower reaches of the Yangtze River and key technologies for ammonia emission reduction[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 1981−1989 doi: 10.12357/cjea.20210247
Citation: XIA Y Q, WANG S Q, SUN P F, CHEN X Q, SHEN J L, WANG H, XIAO Z H, LI X M, YANG G, YAN X Y. Ammonia emission patterns of typical planting systems in the middle and lower reaches of the Yangtze River and key technologies for ammonia emission reduction[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 1981−1989 doi: 10.12357/cjea.20210247

长江中下游典型种植业氨排放特征与减排关键技术

doi: 10.12357/cjea.20210247
基金项目: 国家重点基础研究发展计划项目(2018YFC0213302)资助
详细信息
    通讯作者:

    夏永秋, 研究方向为农田氮素循环与环境效应。E-mail: yqxia@issas.ac.cn

  • 中图分类号: S158.5

Ammonia emission patterns of typical planting systems in the middle and lower reaches of the Yangtze River and key technologies for ammonia emission reduction

Funds: This study was supported by the National Basic Research Program of China (2018YFC0213302)
More Information
  • 摘要: 长江中下游稻、菜、果种植业发达, 是氨挥发的主要场所, 迫切需要掌握其氨排放特征与减排关键技术。本文系统梳理了“十三五”国家重点研发计划项目课题“长江中下游种植业高效控氨减排关键技术研发”取得的主要进展, 并展望了“十四五”期间的研究重点。取得的主要研究结果包括: 1)明确了典型稻菜果氨排放系数与特征, 稻田氨排放系数和变异最大, 平均为14.2%, 露天蔬菜次之(平均为11.2%), 果树最低(平均为4.76%)。2)以“减、抑、控、固”全链条氨减排思路, 提出稻田优化减氮技术、稻田深施控氨技术、稻田周丛生物成膜抑氨技术、果树大颗粒肥料深施与蔬菜新型缓释肥等减排技术, 实现了高效控氨减排的目标。“十四五”期间, 建议加强氨挥发损失的长期原位监测与模拟, 氨减排环境和经济效益核算, 以及操作简易、成本低廉的氨挥发减排技术研发。
  • 图  1  长江中下游典型稻菜果田氨排放系数及变异(不同字母表示在 P<0.05水平差异显著, 方差分析软件为SPSS V19.0)

    Figure  1.  Ammonia emission coefficients and variations of paddy rice, open-air vegetables, and peach tree in the middle and lower reaches of the Yangtze River (different letters indicate significant differences at P<0.05 level, variance analysis is conducted by SPSS V19.0)

    图  2  双季稻稻田优化减氮技术及其减排潜力和经济效益

    Figure  2.  Optimized nitrogen reduction technology of double-cropping rice field and its mitigation potential of ammonia emission and economic benefit

    图  3  稻田肥球点位(圆点)优化

    Figure  3.  Location optimization for ball fertilizer (dots) in paddy field

    图  4  稻田周丛生物“控-固-释”技术

    Figure  4.  Periphyton “retrain-immobilization-release” technology in paddy field

    图  5  露天蔬菜新型缓释抑氨技术

    Figure  5.  Slow-release fertilizers in reducing ammonia emission for open-air vegetables

    图  6  果树大颗粒肥深施控氨技术

    Figure  6.  Deep application of large-size granular fertilizer in reducing ammonia emission for fruit trees

    表  1  不同施肥期稻田人工诱导的周丛生物氮储量

    Table  1.   Nitrogen storage in artificial induced and naturally growth periphyton in different fertilization periods of paddy field kg∙hm−2 

    处理
    Treatment
    基肥
    Basal fertilizer
    分蘖肥
    Tillering fertilizer
    穗肥
    Panicle fertilizer
    自然生长
    Natural growth
    1.11 4.462.37
    载体诱导
    Carrier induced
    1.5510.924.60
    下载: 导出CSV

    表  2  抑氨技术对稻田氨挥发累积量及损失率的影响

    Table  2.   Effects of ammonia inhibition technology on ammonia volatilization accumulation and ammonia volatilization loss rate in periphyton in paddy field

    处理
    Treatment
    氨挥发排放量 NH3 emission [kg(N)∙hm−2]氨挥发损失率
    NH3 emission rate (%)
    基肥
    Basal fertilizer
    分蘖肥
    Tillering fertilizer
    穗肥
    Panicle fertilizer
    累计排放量
    Total NH3 flux
    对照田
    Control field
    24.75±1.0510.92±0.070.21±0.0335.8814.9
    试验田
    Treatment field
    7.11±0.536.63±0.070.10±0.2513.845.8
    下载: 导出CSV
  • [1] 朱兆良. 中国土壤氮素[M]. 南京: 江苏科技出版社, 1992

    ZHU Z L. Nitrogen in Soils of China[M]. Nanjing: Jiangsu Science and Technology Press, 1992
    [2] ZHANG Y S, LUAN S J, CHEN L L, et al. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China[J]. Journal of Environmental Management, 2011, 92(3): 480−493 doi: 10.1016/j.jenvman.2010.09.018
    [3] PAN B B, LAM S K, MOSIER A, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 232: 283−289
    [4] 肖其亮, 朱坚, 彭华, 等. 稻田氨挥发损失及减排技术研究进展[J]. 农业环境科学学报, 2021, 40(1): 16−25 doi: 10.11654/jaes.2020-0767

    XIAO Q L, ZHU J, PENG H, et al. Ammonia volatilization loss and emission reduction measures in paddy fields[J]. Journal of Agro-Environment Science, 2021, 40(1): 16−25 doi: 10.11654/jaes.2020-0767
    [5] 侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360−367

    HOU M Y, ZHANG L, WANG Z W, et al. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360−367
    [6] MENCARONI M, DAL FERRO N, FURLANETTO J, et al. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach[J]. Journal of Environmental Management, 2021, 277: 111445 doi: 10.1016/j.jenvman.2020.111445
    [7] SOARES J R, CANTARELLA H, MENEGALE M L D C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J]. Soil Biology and Biochemistry, 2012, 52: 82−89 doi: 10.1016/j.soilbio.2012.04.019
    [8] LIN D X, FAN X H, HU F, et al. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake region, China[J]. Pedosphere, 2007, 17(5): 639−645 doi: 10.1016/S1002-0160(07)60076-9
    [9] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009, 106(19): 8077 doi: 10.1073/pnas.0902655106
    [10] 田昌, 周旋, 谢桂先, 等. 控释尿素减施对双季稻田氨挥发损失和氮肥利用率的影响[J]. 中国水稻科学, 2018, 32(4): 387−397

    TIAN C, ZHOU X, XIE G X, et al. Ammonia volatilization loss and nitrogen use efficiency in double-cropping rice field as affected by decreasing controlled-release urea application level[J]. Chinese Journal of Rice Science, 2018, 32(4): 387−397
    [11] SHAN L N, HE Y F, CHEN J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Journal of Environmental Sciences, 2015, 38: 14−23 doi: 10.1016/j.jes.2015.04.028
    [12] ZHANG Y F, LUO J J, PENG F T, et al. Application of bag-controlled release fertilizer facilitated new root formation, delayed leaf, and root senescence in peach trees and improved nitrogen utilization efficiency[J]. Frontiers in Plant Science, 2021, 12: 627313 doi: 10.3389/fpls.2021.627313
    [13] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [14] 刘学军, 沙志鹏, 宋宇, 等. 我国大气氨的排放特征、减排技术与政策建议[J]. 环境科学研究, 2021, 34(1): 149−157

    LIU X J, SHA Z P, SONG Y, et al. China’ s atmospheric ammonia emission characteristics, mitigation options and policy recommendations[J]. Research of Environmental Sciences, 2021, 34(1): 149−157
    [15] SHA Z P, MA X, LOICK N, et al. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: Field and laboratory investigation[J]. Journal of Cleaner Production, 2020, 258: 121025 doi: 10.1016/j.jclepro.2020.121025
    [16] 葛顺峰, 彭玲, 任饴华, 等. 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J]. 中国农业科学, 2014, 47(2): 366−373 doi: 10.3864/j.issn.0578-1752.2014.02.016

    GE S F, PENG L, REN Y H, et al. Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil[J]. Scientia Agricultura Sinica, 2014, 47(2): 366−373 doi: 10.3864/j.issn.0578-1752.2014.02.016
    [17] LARNED S T, KILROY C. Effects of Didymosphenia geminata removal on river macroinvertebrate communities[J]. Journal of Freshwater Ecology, 2014, 29(3): 345−362 doi: 10.1080/02705060.2014.898595
    [18] 王梦凡, 俞映倞, 杨梖, 等. 不同表面分子膜材料抑制稻田氨挥发的效果及其作用途径[J]. 农业环境科学学报, 2019, 38(8): 1685−1695 doi: 10.11654/jaes.2019-0657

    WANG M F, YU Y L, YANG B, et al. Effect of different surface molecular membrane materials on inhibition of ammonia volatilization and the action pathways in paddy fields[J]. Journal of Agro-Environment Science, 2019, 38(8): 1685−1695 doi: 10.11654/jaes.2019-0657
    [19] HUANG J, LIU X M, LIU Y Q, et al. Non-linear response of ammonia volatilization to periphyton in paddy soils[J]. Journal of Geophysical Research: Biogeosciences, 2021, DOI: 10.1029/2020jg005870
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  141
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-07-10
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-12-07

目录

    /

    返回文章
    返回