留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应

穆心愿 马智艳 张兰薰 付景 刘天学 丁勇 夏来坤 张凤启 张君 齐建双 赵霞 唐保军

穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应[J]. 中国生态农业学报 (中英文), 2022, 30(1): 57−71 doi: 10.12357/cjea.20210313
引用本文: 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应[J]. 中国生态农业学报 (中英文), 2022, 30(1): 57−71 doi: 10.12357/cjea.20210313
MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57−71 doi: 10.12357/cjea.20210313
Citation: MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57−71 doi: 10.12357/cjea.20210313

不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应

doi: 10.12357/cjea.20210313
基金项目: 河南省科技攻关项目(192102110022)、国家重点研发计划项目(2017YFD0301101)和河南省玉米产业技术体系建设专项(S2015-02-04)资助
详细信息
    作者简介:

    穆心愿, 主要研究方向为玉米抗逆评价。E-mail: muxinyuan@163.com

    通讯作者:

    赵霞, 主要研究方向为玉米生理生态与精准生产, E-mail: zhaoxia1007@126.com

    唐保军, 主要研究方向为玉米品种评价与遗传育种, E-mail: henan.maize@163.com

  • 中图分类号: S513

Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering

Funds: This study was supported by the Henan Science and Technology Project (192102110022), the National Key R&D Program of China (2017YFD0301101) and the Henan Agriculture (Maize) Research System (S2015-02-04)
More Information
  • 摘要: 探讨不同基因型玉米叶片光合荧光特性、授粉结实能力及产量构成对花期高温胁迫及恢复的响应, 以期为未来气候变暖条件下夏玉米稳产高产提供理论依据。采用人工模拟增温试验, 选取2个耐热型玉米品种(‘浚单20’和‘郑单958’)和2个热敏感型玉米品种(‘先玉335’和‘农华101’)为试验材料, 设置花期高温胁迫和大田常温对照2个处理, 研究花期高温胁迫及恢复对不同耐热性玉米叶片光合荧光特性、授粉结实能力、干物质积累与分配和产量构成的影响。结果表明, 花期高温胁迫显著降低了玉米穗粒数, 增加了空秆率, 进而导致籽粒产量显著下降, 且耐热型品种产量下降幅度小于热敏感型品种。与对照相比, 花期高温胁迫下耐热型和热敏感型品种穗粒数分别降低22.25%和67.18%, 百粒重分别降低2.03%和5.00%, 空秆率分别增加206.37%和283.00%, 籽粒产量分别降低31.84%和67.33%, 其中穗粒数、空秆率和籽粒产量差异均达显著水平(P<0.05)。花期高温胁迫使得4个玉米品种有效绿叶面积和叶绿素含量降低, 光系统Ⅱ受损, 光合性能显著下降; 高温胁迫结束后, 光系统Ⅱ部分参数有所恢复, 叶绿素含量和净光合速率恢复至对照水平。花期高温胁迫对雌穗总小花数、雄穗总小花数和雄穗分枝数影响较小, 但使得散粉持续期缩短, 开花吐丝间隔期拉长, 造成雌雄不遇, 结实率显著降低。花期高温导致的授粉持续期缩短是结实率降低的主要原因。花期高温胁迫显著降低了4个玉米品种干物质积累量和干物质向穗(粒)的分配比例; 高温胁迫后, 耐热型和热敏感型品种成熟期的单株干物质量分别降低16.40%和25.73%, 籽粒干物质分配比率分别降低7.08%和46.80%, 差异均达显著水平(P<0.05)。花期高温胁迫导致玉米光合性能下降, 雌雄穗协调发育受到抑制, 干物质积累量显著减少, 使得结实率下降, 穗粒数减少, 籽粒产量显著降低。花期高温胁迫对热敏感型品种的产量形成、光合荧光特性、雌雄穗发育和干物质积累与分配的影响均高于耐热型品种。
  • 图  1  玉米花期高温处理(HT)和常温处理(CK)的1 d内平均温度变化(A)和15 d试验期的温度变化(B)

    Figure  1.  Temperature changes in one day (A) and during the 15 days experiment period (B) at maize flowering stage under normal temperature (CK) and high temperature (HT) treatments

    图  2  花期高温处理(HT)和常温处理(CK)对不同夏玉米穗位叶叶绿素相对含量(SPAD)的影响

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。7 d: 吐丝后7 d; 20 d: 吐丝后20 d。不同小写字母表示同一品种不同处理不同时间在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. 7 d: 7 days after silking; 20 d: 20 days after silking. Different lowercase letters above the bars represent significant differences among different treatments in different time after silking of the same cultivar at P<0.05 level.

    Figure  2.  Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on SPAD values in the ear-leaf of different summer maize cultivars

    图  3  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种雄穗分枝数和雄穗总小花数的影响

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。不同小写字母表示同一品种不同处理不同时间在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Different lowercase letters above the bars represent significant differences among different treatments in different time after silking of the same cultivar at P<0.05 probability level.

    Figure  3.  Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on tassel branch number and tassel floret number of different summer maize cultivars

    图  4  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种散粉持续期、开花吐丝间隔期和授粉持续期的影响

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。不同小写字母表示同一品种不同处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Different lowercase letters above the bars represent significant differences btween two treatments of the same cultivar at P<0.05 level.

    Figure  4.  Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on pollen shedding duration, anthesis-silking interval and pollination duration of different summer maize cultivars

    图  5  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种雌穗总小花数和结实率的影响

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。不同小写字母表示同一品种不同处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Different lowercase letters above the bars represent significant differences between two treatments of the same cultivar at P<0.05 level.

    Figure  5.  Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on ear filament number and kernel setting rate of different summer maize cultivars

    图  6  花期高温处理结束当天高温处理(HT)和常温处理(CK)不同夏玉米品种地上部干物质量及分配比例

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。*和**分别表示同一品种不同处理间P<0.05和P<0.01水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. * and ** represent significant difference between two treatments for the same cultivar at P<0.05 and P<0.01 levels, respectively.

    Figure  6.  Dry matter mass and distribution in different organs of different summer maize cultivars under the normal temperature (CK) and high temperature (HT) treatments at flowering stage at the end of high temperature treatment

    图  7  花期高温处理(HT)和常温处理(CK)下不同夏玉米品种成熟期地上部干物质量及分配比例

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。*和**分别表示同一品种不同处理间P<0.05和P<0.01水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. * and ** represent significant differences between two treatments for the same cultivar at P<0.05 and P<0.01 levels, respectively.

    Figure  7.  Dry matter mass and distribution in different organs of different summer maize cultivars at the maturity stage under the normal temperature (CK) and high temperature (HT) treatments at flowering stages

    图  8  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种产量及其构成要素的影响

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。不同小写字母表示同一品种不同处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Different lowercase letters above the bars represent significant differences between two treatments of the same cultivar at P<0.05 level.

    Figure  8.  Effect of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on grain yield and its components of different summer maize cultivars

    图  9  不同夏玉米品种各指标耐热系数分析

    高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。A: 吐丝后7 d叶片光合荧光性状指标的耐热系数分析; B: 吐丝后20 d叶片光合荧光性状指标的耐热系数分析; C: 雌雄穗性状指标的耐热系数分析; D: 干物质积累分配及产量性状指标的耐热系数分析。LA: 叶面积; SPAD: 叶绿素相对含量; Pn: 净光合速率; Gs: 气孔导度; Ci: 胞间CO2浓度; Fv/Fm: PSⅡ最大光化学效率; Fv/Fo: PSⅡ潜在活性; PIabs: 光合性能指数; φEo: 用于电子传递的量子产额; φRo: 用于还原PSⅠ受体侧末端电子受体的量子产额; TBN: 雄穗分枝数; TFN: 雄穗总小花数; PSD: 散粉持续期; ASI: 开花吐丝间隔期; PD: 授粉持续期; EFN: 雌穗总小花数; KSR: 雌穗结实率; DM7: 吐丝后7 d总干物质量; Ear/DM7: 吐丝后7 d穗干物质分配比例; DM50: 成熟期总干物质量; Grain/DM50: 成熟期籽粒干物质分配比例; EL: 穗长; ED: 穗粗; KPE: 穗粒数; GW: 百粒重; GY: 籽粒产量。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD 958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. A: analysis of heat resistance coefficients of chlorophyll photosynthetic fluorescence parameters at 7 days after silking; B: analysis of heat resistance coefficients of chlorophyll photosynthetic fluorescence parameters at 20 days after silking; C: analysis of heat resistance coefficients of male and female spike characters; D: analysis of heat resistance coefficients of dry matter and yield characters. LA: leaf area; SPAD: chlorophyll relative content; Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercelluar CO2 concentration; Fv/Fm: maximum photochemical efficiency; Fv/Fo: PSⅡ potential activity; PIabs: photosynthetic performance index; φEo: quantum yield for electron transport; φRo: quantum yield for reducing electron acceptor at the PSⅠ receptor side; TBN: tassel branch number; TFN: tassel floret number; PSD: pollen shedding duration; ASI: anthesis-silking interval; PD: pollination duration; EFN: ear filament number; KSR: kernel setting rate; DM7: dry matter mass at 7 d after silking; Ear/DM7: the distribution ratio of dry matter in the ear at 7 d after silking; DM50: dry matter mass at maturity stage; Grain/DM50: the distribution ratio of dry matter in the grain at the maturity stage; EL: ear length; ED: ear diameter; KPE: kernel number per ear; GW: 100-grain weight; GY: grain yield.

    Figure  9.  Analysis of heat resistance coefficients of each index of four summer maize cultivars

    表  1  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种不同生育时期单株叶面积的影响

    Table  1.   Effects of the normal temperature (CK) and high temperature (HT) treatments during flowering stage on leaf area per plant of different summer maize cultivars

    品种
    Cultivar
    处理
    Treatment
    单株叶面积 Leaf area per plant (cm2)
    7DAS20DAS30DAS50DAS
    XD20 CK 6730.2±308.8a 6667.8±326.3a 5105.9±397.6a 3385.7±120.9a
    HT 6714.1±366.1a 6576.2±291.2a 5442.2±147.2a 3758.5±166.6a
    ZD958 CK 6326.6±311.6a 6285.4±278.7a 5520.5±83.6b 4547.1±187.5b
    HT 6241.6±177.1a 6166.6±107.9a 6027.4±116.7a 4853.7±79.9a
    XY335 CK 6087.3±170.5a 5956.7±151.2a 5892.5±187.3a 3595.6±228.8a
    HT 5934.2±392.4a 5798.0±436.5a 5535.4±346.2a 4234.7±258.8a
    NH101 CK 6091.6±163.7a 5933.8±84.0a 5857.1±400.2a 2972.1±237.7b
    HT 5335.9±273.6b 5184.0±278.6b 5406.0±315.7a 3573.5±368.6a
      高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。7DAS: 吐丝后7 d; 20DAS: 吐丝后20 d; 30DAS: 吐丝后30 d; 50DAS: 吐丝后50 d。同一玉米品种同列不同小写字母表示两个处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. 7DAS: 7 days after silking, the ending time of high temperature stress; 20DAS: 20 days after silking; 30DAS: 30 days after silking; 50DAS: 50 days after silking. Values within a column followed by different lowercase letters of the same cultivar are significantly different at P<0.05 level.
    下载: 导出CSV

    表  2  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种穗位叶光合参数的影响

    Table  2.   Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on photosynthetic parameters in the ear-leaf of different summer maize cultivars

    测定时期
    Sampling time
    品种
    Cultivar
    处理
    Treatment
    净光合速率
    Net photosynthetic rate
    [μmol(CO2)·m−2·s−1]
    气孔导度
    Stomatal conductance
    [mmol(CO2)·m−2·s−1]
    胞间CO2浓度
    Intercelluar CO2 concentration (μmol·mmol−1)
    吐丝后7 d
    7 days after silking
    XD20 CK 26.8±1.3a 0.198±0.006a 59.3±9.9b
    HT 20.7±1.7b 0.156±0.013b 124.8±2.3a
    ZD958 CK 24.2±0.8a 0.204±0.009a 53.3±7.8b
    HT 20.1±0.9b 0.156±0.012b 112.9±20.2a
    XY335 CK 33.1±1.2a 0.210±0.012a 71.8±8.5b
    HT 24.9±2.0b 0.146±0.008b 199.4±4.7a
    NH101 CK 27.8±2.3a 0.175±0.012a 49.3±8.0b
    HT 17.1±3.2b 0.112±0.013b 132.4±10.1a
    吐丝后20 d
    20 days after silking
    XD20 CK 16.9±0.3a 0.164±0.029a 41.7±3.1a
    HT 16.5±1.5a 0.151±0.035a 37.3±6.9a
    ZD958 CK 17.3±0.8a 0.189±0.017a 44.6±2.4a
    HT 16.5±0.3a 0.173±0.015a 40.6±4.1a
    XY335 CK 17.4±1.1a 0.223±0.016a 87.3±3.1a
    HT 16.0±1.4a 0.215±0.005a 83.9±2.7a
    NH101 CK 16.1±0.6a 0.188±0.007a 50.2±10.0a
    HT 14.9±0.7a 0.178±0.015a 47.6±0.8a
      高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。同列同一玉米品种同一测定时间不同小写字母表示两个处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Values within a column followed by different lowercase letters of the same cultivar in the same sampling time are significantly different at P<0.05 level.
    下载: 导出CSV

    表  3  花期高温处理(HT)和常温处理(CK)对不同夏玉米品种叶绿素荧光参数的影响

    Table  3.   Effects of the normal temperature (CK) and high temperature (HT) treatments at flowering stage on fluorescence parameters in the ear-leaf of different summer maize cultivars

    测定时期 Sampling time品种 Cultivar处理 TreatmentFv/FmFv/FoPIabsφEoφRo
    吐丝后7 d
    7 days after silking
    XD20CK0.808±0.002a4.20±0.05a7.05±0.20a0.557±0.002a0.218±0.010a
    HT0.801±0.001b4.12±0.03b6.96±0.53a0.554±0.007a0.217±0.006a
    ZD958CK0.804±0.004a4.08±0.12a8.33±0.72a0.573±0.014a0.274±0.015a
    HT0.798±0.004a3.99±0.08a8.10±0.25a0.566±0.002a0.267±0.013a
    XY335CK0.803±0.001a4.08±0.02a7.40±0.61a0.558±0.008a0.206±0.010a
    HT0.791±0.016a3.83±0.34a7.00±1.40a0.550±0.021a0.198±0.015a
    NH101CK0.811±0.001a4.29±0.02a8.87±0.59a0.568±0.006a0.232±0.010a
    HT0.800±0.001b4.11±0.01b8.57±0.15a0.556±0.001a0.213±0.008a
    吐丝后20 d
    20 days after silking
    XD20CK0.737±0.008b2.81±0.12a2.04±0.34a0.409±0.023a0.208±0.009a
    HT0.777±0.007a3.53±0.34a3.84±0.32a0.463±0.026a0.192±0.004a
    ZD958CK0.723±0.036a2.74±0.49a2.62±0.90a0.428±0.032a0.232±0.031a
    HT0.776±0.014a3.50±0.29a3.30±0.59a0.449±0.022a0.211±0.004a
    XY335CK0.784±0.007a3.65±0.15a5.15±0.60a0.515±0.007a0.221±0.011a
    HT0.801±0.004a4.01±0.10a5.37±0.69a0.510±0.011a0.196±0.005a
    NH101CK0.791±0.004b3.78±0.08b6.11±1.09a0.536±0.019a0.208±0.035a
    HT0.806±0.005a4.14±0.12a6.22±0.23a0.508±0.004b0.180±0.014a
      高温处理时间为吐丝前7 d至吐丝后7 d; XD20和ZD958为耐热型品种, XY335和NH101为热敏感型品种。Fv/Fm: PSⅡ最大光化学效率; Fv/Fo: PSⅡ潜在活性; PIabs: 光合性能指数; φEo: 用于电子传递的量子产额; φRo: 用于还原PSⅠ受体侧末端电子受体的量子产额。同列同一玉米品种同一测定时间不同小写字母表示两个处理在P<0.05水平差异显著。The high temperature treatment duration is from 7 days before silking to 7 days after silking. XD20 and ZD958 are heat-resistant cultivars; XY335 and NH101 are heat-sensitive cultivars. Fv/Fm: maximum photochemical efficiency; Fv/Fo: PSⅡ potential activity; PIabs: photosynthetic performance index; φEo: quantum yield for electron transport; φRo: quantum yield for reducing electron acceptor at the PSⅠ receptor side. Values within a column followed by different lowercase letters of the same cultivar in the same sampling are significantly different at P<0.05 level.
    下载: 导出CSV
  • [1] HAWKINS E, FRICKER T E, CHALLINOR A J, et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s[J]. Global Change Biology, 2013, 19(3): 937−947 doi: 10.1111/gcb.12069
    [2] WANG L J, LIAO S H, HUANG S B, et al. Increasing concurrent drought and heat during the summer maize season in Huang-Huai-Hai Plain, China[J]. International Journal of Climatology, 2018, 38(7): 3177−3190 doi: 10.1002/joc.5492
    [3] 陈翔, 鲍杨俊, 李庆, 等. 黄淮海夏玉米花期高温发生特点、危害机理与防控措施综述[J]. 安徽农业大学学报, 2020, 47(2): 304−308

    CHEN X, BAO Y J, LI Q, et al. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area[J]. Journal of Anhui Agricultural University, 2020, 47(2): 304−308
    [4] 和骅芸, 胡琦, 潘学标, 等. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析[J]. 中国农业气象, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001

    HE H Y, HU Q, PAN X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001
    [5] 刘哲, 汪雪滢, 刘帝佑, 等. 基于MODIS数据的黄淮海夏玉米高温风险空间分布[J]. 农业工程学报, 2018, 34(9): 175−181 doi: 10.11975/j.issn.1002-6819.2018.09.021

    LIU Z, WANG X Y, LIU D Y, et al. Spatial distribution of high temperature risk on summer maize in Huang-Huai-Hai Plain based on MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 175−181 doi: 10.11975/j.issn.1002-6819.2018.09.021
    [6] 张保仁, 董树亭, 胡昌浩, 等. 高温对玉米籽粒淀粉合成及产量的影响[J]. 作物学报, 2007, 33(1): 38−42 doi: 10.3321/j.issn:0496-3490.2007.01.007

    ZHANG B R, DONG S T, HU C H, et al. Effect of high air temperature during different growth stage on starch synthesis in grain and yield in maize (Zea mays L.)[J]. Acta Agronomica Sinica, 2007, 33(1): 38−42 doi: 10.3321/j.issn:0496-3490.2007.01.007
    [7] 李文阳, 王长进, 方伟, 等. 不同生育期高温对玉米子粒品质及淀粉糊化特性的影响[J]. 玉米科学, 2017, 25(1): 82−86

    LI W Y, WANG C J, FANG W, et al. Effects of high temperature at different stages on kernel quality and starch pasting properties of maize[J]. Journal of Maize Sciences, 2017, 25(1): 82−86
    [8] APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399 doi: 10.1146/annurev.arplant.55.031903.141701
    [9] LI Y T, XU W W, REN B Z, et al. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem Ⅱ[J]. Journal of Agronomy and Crop Science, 2020, 206(5): 548−564 doi: 10.1111/jac.12401
    [10] KALAJI H M, JAJOO A, OUKARROUM A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38(4): 1−11
    [11] 于康珂, 孙宁宁, 齐红志, 等. 不同成熟度玉米叶片光合生理对高温胁迫的响应特征及其基因型差异[J]. 河南农业科学, 2017, 46(5): 34−38

    YU K K, SUN N N, QI H Z, et al. Photosynthetic physiological response character of different maturity maize leaves to heat stress and their genotype difference[J]. Journal of Henan Agricultural Sciences, 2017, 46(5): 34−38
    [12] 于康珂, 孙宁宁, 詹静, 等. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响[J]. 玉米科学, 2017, 25(4): 84−91

    YU K K, SUN N N, ZHAN J, et al. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties[J]. Journal of Maize Sciences, 2017, 25(4): 84−91
    [13] WANG Y Y, TAO H B, TIAN B J, et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering[J]. Environmental and Experimental Botany, 2019, 158: 80−88 doi: 10.1016/j.envexpbot.2018.11.007
    [14] 高英波, 张慧, 单晶, 等. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响[J]. 中国农业科学, 2020, 53(19): 3954−3963 doi: 10.3864/j.issn.0578-1752.2020.19.009

    GAO Y B, ZHANG H, SHAN J, et al. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars[J]. Scientia Agricultura Sinica, 2020, 53(19): 3954−3963 doi: 10.3864/j.issn.0578-1752.2020.19.009
    [15] 侯昕芳, 王媛媛, 黄收兵, 等. 花期前后高温对玉米花粉发育及结实率的影响[J]. 中国农业大学学报, 2020, 25(3): 10−16 doi: 10.11841/j.issn.1007-4333.2020.03.02

    HOU X F, WANG Y Y, HUANG S B, et al. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.)[J]. Journal of China Agricultural University, 2020, 25(3): 10−16 doi: 10.11841/j.issn.1007-4333.2020.03.02
    [16] LIU X W, WANG X L, WANG X Y, et al. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering[J]. Environmental and Experimental Botany, 2020, 179: 104213 doi: 10.1016/j.envexpbot.2020.104213
    [17] 杨欢, 沈鑫, 陆大雷, 等. 籽粒建成期高温胁迫持续时间对糯玉米籽粒产量和淀粉品质的影响[J]. 中国农业科学, 2017, 50(11): 2071−2082 doi: 10.3864/j.issn.0578-1752.2017.11.013

    YANG H, SHEN X, LU D L, et al. Effects of heat stress durations at grain formation stage on grain yield and starch quality of waxy maize[J]. Scientia Agricultura Sinica, 2017, 50(11): 2071−2082 doi: 10.3864/j.issn.0578-1752.2017.11.013
    [18] 张萍, 陈冠英, 耿鹏, 等. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响[J]. 中国农业科学, 2017, 50(11): 2061−2070 doi: 10.3864/j.issn.0578-1752.2017.11.012

    ZHANG P, CHEN G Y, GENG P, et al. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties[J]. Scientia Agricultura Sinica, 2017, 50(11): 2061−2070 doi: 10.3864/j.issn.0578-1752.2017.11.012
    [19] 赵丽晓, 张萍, 王若男, 等. 花后前期高温对玉米强弱势籽粒生长发育的影响[J]. 作物学报, 2014, 40(10): 1839−1845 doi: 10.3724/SP.J.1006.2014.01839

    ZHAO L X, ZHANG P, WANG R N, et al. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels[J]. Acta Agronomica Sinica, 2014, 40(10): 1839−1845 doi: 10.3724/SP.J.1006.2014.01839
    [20] 胡秀丽, 李艳辉, 杨海荣, 等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J]. 作物学报, 2010, 36(4): 636−644 doi: 10.3724/SP.J.1006.2010.00636

    HU X L, LI Y H, YANG H R, et al. Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves[J]. Acta Agronomica Sinica, 2010, 36(4): 636−644 doi: 10.3724/SP.J.1006.2010.00636
    [21] 吴伟华, 柳家友, 袁刘正, 等. 花期高温对不同玉米品种主要农艺形状和产量的影响[J]. 安徽农业科学, 2020, 48(6): 33−36 doi: 10.3969/j.issn.0517-6611.2020.06.010

    WU W H, LIU J Y, YUAN L Z, et al. Effects of high temperature at florescence stage on the yield and major agronomic characters of different maize varieties[J]. Journal of Anhui Agricultural Sciences, 2020, 48(6): 33−36 doi: 10.3969/j.issn.0517-6611.2020.06.010
    [22] 赵霞, 穆心愿, 马智艳, 等. 不同玉米杂交种对花期高温、干旱复合胁迫的响应[J]. 河南农业科学, 2017, 46(8): 32−37

    ZHAO X, MU X Y, MA Z Y, et al. Response of different maize hybrids to high temperature and drought stresses at flowering stage[J]. Journal of Henan Agricultural Sciences, 2017, 46(8): 32−37
    [23] 赵龙飞, 李潮海, 刘天学, 等. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响[J]. 中国农业科学, 2012, 45(23): 4947−4958 doi: 10.3864/j.issn.0578-1752.2012.23.023

    ZHAO L F, LI C H, LIU T X, et al. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.)[J]. Scientia Agricultura Sinica, 2012, 45(23): 4947−4958 doi: 10.3864/j.issn.0578-1752.2012.23.023
    [24] 赵龙飞, 李潮海, 刘天学, 等. 玉米花期高温响应的基因型差异及其生理机制[J]. 作物学报, 2012, 38(5): 857−864

    ZHAO L F, LI C H, LIU T X, et al. Genotypic responses and physiological mechanisms of maize (Zea mays L.) to high temperature stress during flowering[J]. Acta Agronomica Sinica, 2012, 38(5): 857−864
    [25] 付景, 孙宁宁, 刘天学, 等. 高温胁迫对玉米形态、叶片结构及其产量的影响[J]. 玉米科学, 2019, 27(1): 46−53

    FU J, SUN N N, LIU T X, et al. Effect of high temperature stress on morphology, leaf structure and grain yield of maize[J]. Journal of Maize Sciences, 2019, 27(1): 46−53
    [26] 孙宪芝, 郑成淑, 王秀峰. 高温胁迫对切花菊‘神马’光合作用与叶绿素荧光的影响[J]. 应用生态学报, 2008, 19(10): 2149−2154

    SUN X Z, ZHENG C S, WANG X F. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of cut flower Chrysanthemum (Dendranthema grandiflora ‘Jinba’)[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2149−2154
    [27] 罗海波, 马苓, 段伟, 等. 高温胁迫对‘赤霞珠’葡萄光合作用的影响[J]. 中国农业科学, 2010, 43(13): 2744−2750 doi: 10.3864/j.issn.0578-1752.2010.13.014

    LUO H B, MA L, DUAN W, et al. Influence of heat stress on photosynthesis in Vitis vinifera L. cv. cabernet sauvignon[J]. Scientia Agricultura Sinica, 2010, 43(13): 2744−2750 doi: 10.3864/j.issn.0578-1752.2010.13.014
    [28] 盛得昌, 王媛媛, 黄收兵, 等. 高温对玉米植株形态与功能、产量构成及子粒养分的影响[J]. 玉米科学, 2020, 28(5): 86−92

    SHENG D C, WANG Y Y, HUANG S B, et al. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants[J]. Journal of Maize Sciences, 2020, 28(5): 86−92
    [29] 刘东焕, 赵世伟, 高荣孚, 等. 植物光合作用对高温的响应[J]. 植物研究, 2002, 22(2): 205−212 doi: 10.3969/j.issn.1673-5102.2002.02.017

    LIU D H, ZHAO S W, GAO R F, et al. Response of plants photosynthesis to higher temperature[J]. Bulletin of Botanical Research, 2002, 22(2): 205−212 doi: 10.3969/j.issn.1673-5102.2002.02.017
    [30] 唐婷, 郑国伟, 李唯奇. 植物光合系统对高温胁迫的响应机制[J]. 中国生物化学与分子生物学报, 2012, 28(2): 127−132

    TANG T, ZHENG G W, LI W Q. Defense mechanisms of plants photosystem to heat stress[J]. Chinese Journal of Biochemistry and Molecular Biology, 2012, 28(2): 127−132
    [31] CAO Z Z, ZHAO Q, HUANG F D, et al. Effects of high temperature at anthesis on spikelet fertility and grain weight in relation to floral positions within a panicle of rice (Oryza sativa L.)[J]. Crop and Pasture Science, 2015, 66(9): 922 doi: 10.1071/CP14207
    [32] EDREIRA J I R, MAYER L I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling[J]. Field Crops Research, 2014, 166: 162−172 doi: 10.1016/j.fcr.2014.06.018
    [33] 于康珂, 刘源, 李亚明, 等. 玉米花期耐高温品种的筛选与综合评价[J]. 玉米科学, 2016, 24(2): 62−71

    YU K K, LIU Y, LI Y M, et al. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage[J]. Journal of Maize Sciences, 2016, 24(2): 62−71
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  126
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 录用日期:  2021-07-16
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回