留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤有机碳矿物固持机制及其影响因素

陈梦蝶 崔晓阳

陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报 (中英文), 2022, 30(2): 175−183 doi: 10.12357/cjea.20210320
引用本文: 陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报 (中英文), 2022, 30(2): 175−183 doi: 10.12357/cjea.20210320
CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175−183 doi: 10.12357/cjea.20210320
Citation: CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175−183 doi: 10.12357/cjea.20210320

土壤有机碳矿物固持机制及其影响因素

doi: 10.12357/cjea.20210320
基金项目: 国家重点研发计划项目(2016YFA0600803)资助
详细信息
    作者简介:

    陈梦蝶, 主要研究方向为土壤有机碳稳定性。E-mail: 2258525618@qq.com

    通讯作者:

    崔晓阳, 主要研究方向为森林土壤生态学。E-mail: c_xiaoyang@126.com

  • 中图分类号: S152.1

Mechanisms and influencing factors of soil organic carbon sequestration by minerals

Funds: This study was supported by the National Key Research and Development Program of China (2016YFA0600803).
More Information
  • 摘要: 土壤碳库是陆地生态系统的最大碳库, 其在碳循环中起到重要作用。考虑到温室效应的日益严重, 增加土壤有机碳的稳定性成为迫在眉睫的问题。研究证实, 矿物吸附机制是最重要的土壤有机碳稳定机制之一。矿物吸附有机碳容量和稳定性受多重因素影响。土壤矿物类型、结晶程度和径级大小等矿物因素影响矿物吸附能力和机制。非晶质矿物如水铝英石和伊毛缟石对有机碳有很强的吸附能力。植物源碳多被粗径级矿物吸附, 微生物碳则易被细径级矿物吸附。微生物途径形成的微生物碳富集在微生物“热点”地区, 即矿物表面孔隙。微生物降解对矿物结合有机碳的形成有双重作用, 一方面微生物和矿物竞争活性有机碳, 部分矿化成CO2释放到大气中, 部分转化为微生物生物量被微生物循环利用或被矿物吸附。另一方面, 微生物分解惰性有机碳, 使其更易被矿物吸附。除上述因素外, 土壤物理性质、化学性质和土地利用等因素均影响矿物吸附能力。矿物在土壤碳储中的地位毋庸置疑, 研究矿物吸附有机碳机制和因素, 有助于增加土壤碳储量。本文对以往土壤碳研究中与矿物有关的内容进行了总结归纳, 旨在推断矿物保护土壤有机碳相关规律, 为增加土壤碳储量、缓解气候变暖对土壤碳储影响提供理论基础。
  • 图  1  矿物结合有机碳(MOC)形成途径

    MBC: 微生物生物量碳 Microbial biomass carbon.

    Figure  1.  Formation pathway of mineral associated organic carbon (MOC)

  • [1] CONANT R T, DRIJBER R A, HADDIX M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2008, 14(4): 868−877 doi: 10.1111/j.1365-2486.2008.01541.x
    [2] LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60−68 doi: 10.1038/nature16069
    [3] KRULL E S, BALDOCK J A, SKJEMSTAD J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology: FPB, 2003, 30(2): 207−222 doi: 10.1071/FP02085
    [4] BLANCO-CANQUI H, LAL R. Mechanisms of carbon sequestration in soil aggregates[J]. Critical Reviews in Plant Sciences, 2004, 23(6): 481−504 doi: 10.1080/07352680490886842
    [5] RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter — A key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1): 143−158
    [6] ANGST G, MUELLER K E, EISSENSTAT D M, et al. Soil organic carbon stability in forests: distinct effects of tree species identity and traits[J]. Global Change Biology, 2019, 25(4): 1529−1546 doi: 10.1111/gcb.14548
    [7] TORRES-SALLAN G, SCHULTE R P O, LANIGAN G J, et al. Clay illuviation provides a long-term sink for C sequestration in subsoils[J]. Scientific Reports, 2017, 7: 45635 doi: 10.1038/srep45635
    [8] DOETTERL S, STEVENS A, SIX J, et al. Soil carbon storage controlled by interactions between geochemistry and climate[J]. Nature Geoscience, 2015, 8(10): 780−783 doi: 10.1038/ngeo2516
    [9] KARHU K, HILASVUORI E, JÄRVENPÄÄ M, et al. Similar temperature sensitivity of soil mineral-associated organic carbon regardless of age[J]. Soil Biology and Biochemistry, 2019, 136: 107527 doi: 10.1016/j.soilbio.2019.107527
    [10] MIKUTTA R, MIKUTTA C, KALBITZ K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2569−2590 doi: 10.1016/j.gca.2007.03.002
    [11] GU B, SCHMITT J, CHEN Z, et al. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1): 38−46
    [12] 李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001

    LI X Y. Soil Chemistry[M]. Beijing: Higher Education Press, 2001
    [13] TOURNASSAT C, GRENECHE J M, TISSERAND D, et al. The titration of clay minerals:Ⅰ. Discontinuous backtitration technique combined with CEC measurements[J]. Journal of Colloid and Interface Science, 2004, 273(1): 224−233 doi: 10.1016/j.jcis.2003.11.021
    [14] ROWLEY M C, GRAND S, VERRECCHIA É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27−49
    [15] KWON K D, VADILLO-RODRIGUEZ V, LOGAN B E, et al. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3803−3819 doi: 10.1016/j.gca.2006.05.016
    [16] PETRIDIS L, AMBAYE H, JAGADAMMA S, et al. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization[J]. Environmental Science & Technology, 2014, 48(1): 79−84
    [17] TOTSCHE K U, AMELUNG W, GERZABEK M H, et al. Microaggregates in soils[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(1): 104−136 doi: 10.1002/jpln.201600451
    [18] DIAZ N, DIETRICH F, KING G E, et al. A 20-ka reconstruction of a Sahelo-Sudanian paleoenvironment using multi-method dating on pedogenic carbonate[C]//European Geosciences Union, EGU General Assembly 2016. Vienna, Austria, 2016: 42−43
    [19] ITO A, WAGAI R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies[J]. Scientific Data, 2017, 4: 170103 doi: 10.1038/sdata.2017.103
    [20] WATTEL-KOEKKOEK E J W, BUURMAN P, VAN DER PLICHT J, et al. Mean residence time of soil organic matter associated with kaolinite and smectite[J]. European Journal of Soil Science, 2003, 54(2): 269−278 doi: 10.1046/j.1365-2389.2003.00512.x
    [21] WATTEL-KOEKKOEK E J W, BUURMAN P. Mean residence time of kaolinite and smectite-bound organic matter in Mozambiquan soils[J]. Soil Science Society of America Journal, 2004, 68(1): 154−161 doi: 10.2136/sssaj2004.1540
    [22] WATTEL-KOEKKOEK E J W, VAN GENUCHTEN P P L, BUURMAN P, et al. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils[J]. Geoderma, 2001, 99(1/2): 27−49
    [23] SINGH M, SARKAR B, BISWAS B, et al. Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture[J]. Soil Biology and Biochemistry, 2017, 109: 95−106 doi: 10.1016/j.soilbio.2017.02.003
    [24] PARFITT R L. Allophane in New Zealand — A review[J]. Soil Research, 1990, 28(3): 343 doi: 10.1071/SR9900343
    [25] MARIA C. The role of aluminum-organo complexes in soil organic matter dynamics[M/OL]//HERNANDEZ-SORIANO M C. Soil Health and Land Use Management. InTech, 2012: 17−32. InTech, [2012-01-25]. http://www.intechopen.com/books/soil-health-and-land-usemanagement/the-role-of-aluminum-organo-complexes-in-soil-organic-matter-dynamics
    [26] RAKHSH F, GOLCHIN A, BEHESHTI AL AGHA A, et al. Mineralization of organic carbon and formation of microbial biomass in soil: effects of clay content and composition and the mechanisms involved[J]. Soil Biology and Biochemistry, 2020, 151: 108036 doi: 10.1016/j.soilbio.2020.108036
    [27] KAISER K, GUGGENBERGER G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7/8): 711−725
    [28] GAO J, JANSEN B, CERLI C, et al. Organic matter coatings of soil minerals affect adsorptive interactions with phenolic and amino acids[J]. European Journal of Soil Science, 2018, 69(4): 613−624 doi: 10.1111/ejss.12562
    [29] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200 doi: 10.1038/nature10855
    [30] KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2): 219−236 doi: 10.1046/j.1365-2389.2003.00544.x
    [31] PATZNER M S, MUELLER C W, MALUSOVA M, et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw[J]. Nature Communications, 2020, 11: 6329 doi: 10.1038/s41467-020-20102-6
    [32] MAYER L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology, 1994, 114(3/4): 347−363
    [33] WAGAI R, MAYER L M, KITAYAMA K. Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach[J]. Geoderma, 2009, 149(1/2): 152−160
    [34] KIRSTEN M, MIKUTTA R, VOGEL C, et al. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics[J]. Scientific Reports, 2021, 11: 5076 doi: 10.1038/s41598-021-84777-7
    [35] HAN L F, SUN K, JIN J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94: 107−121 doi: 10.1016/j.soilbio.2015.11.023
    [36] KAISER K, GUGGENBERGER G. Sorptive stabilization of organic matter by microporous goethite: Sorption into small pores vs. surface complexation[J]. European Journal of Soil Science, 2007, 58(1): 45−59 doi: 10.1111/j.1365-2389.2006.00799.x
    [37] LEINEMANN T, PREUSSER S, MIKUTTA R, et al. Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles[J]. Soil Biology and Biochemistry, 2018, 118: 79−90 doi: 10.1016/j.soilbio.2017.12.006
    [38] KÖGEL-KNABNER I, GUGGENBERGER G, KLEBER M, et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 61−82 doi: 10.1002/jpln.200700048
    [39] AREVALO C B M, CHANG S X, BHATTI J S, et al. Mineralization potential and temperature sensitivity of soil organic carbon under different land uses in the parkland region of Alberta, Canada[J]. Soil Science Society of America Journal, 2012, 76(1): 241−251 doi: 10.2136/sssaj2011.0126
    [40] ANGST G, MUELLER K E, NIEROP K G J, et al. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter[J]. Soil Biology and Biochemistry, 2021, 156: 108189 doi: 10.1016/j.soilbio.2021.108189
    [41] KIEM R, KÖGEL-KNABNER I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 101−118 doi: 10.1016/S0038-0717(02)00242-0
    [42] JONES A R, SANDERMAN J, ALLEN D, et al. Subtropical giant podzol chronosequence reveals that soil carbon stabilisation is not governed by litter quality[J]. Biogeochemistry, 2015, 124(1): 205−217
    [43] SINGH B P, COWIE A L, SMERNIK R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770−11778
    [44] KEITH A, SINGH B, SINGH B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental Science & Technology, 2011, 45(22): 9611−9618
    [45] COLLINS H P, CHRISTENSON D R, BLEVINS R L, et al. Soil carbon dynamics in corn-based agroecosystems: results from carbon-13 natural abundance[J]. Soil Science Society of America Journal, 1999, 63(3): 584−591 doi: 10.2136/sssaj1999.03615995006300030022x
    [46] YE C L, BAI T S, YANG Y, et al. Physical access for residue-mineral interactions controls organic carbon retention in an Oxisol soil[J]. Scientific Reports, 2017, 7: 6317 doi: 10.1038/s41598-017-06654-6
    [47] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776−779 doi: 10.1038/ngeo2520
    [48] HADDIX M L, GREGORICH E G, HELGASON B L, et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil[J]. Geoderma, 2020, 363: 114160 doi: 10.1016/j.geoderma.2019.114160
    [49] KAISER K, GUGGENBERGER G, HAUMAIER L, et al. Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science, 1997, 48(2): 301−310 doi: 10.1111/j.1365-2389.1997.tb00550.x
    [50] DERRIEN D, MAROL C, BALABANE M, et al. The turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundances[J]. European Journal of Soil Science, 2006, 57(4): 547−557 doi: 10.1111/j.1365-2389.2006.00811.x
    [51] KANG S, XING B S. Humic acid fractionation upon sequential adsorption onto Goethite[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(6): 2525−2531 doi: 10.1021/la702914q
    [52] LEHMANN J, KINYANGI J, SOLOMON D. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms[J]. Biogeochemistry, 2007, 85(1): 45−57 doi: 10.1007/s10533-007-9105-3
    [53] AMELUNG W, FLACH K W, ZECH W. Neutral and acidic sugars in particle-size fractions as influenced by climate[J]. Soil Science Society of America Journal, 1999, 63(4): 865−873 doi: 10.2136/sssaj1999.634865x
    [54] SOLOMON D, LEHMANN J, ZECH W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates[J]. Agriculture, Ecosystems & Environment, 2000, 78(3): 203−213
    [55] GUGGENBERGER G, CHRISTENSEN B T, ZECH W. Land-use effects on the composition of organic matter in particle-size separates of soil:Ⅰ. Lignin and carbohydrate signature[J]. European Journal of Soil Science, 1994, 45(4): 449−458 doi: 10.1111/j.1365-2389.1994.tb00530.x
    [56] NI X Y, LIAO S, TAN S Y, et al. A quantitative assessment of amino sugars in soil profiles[J]. Soil Biology and Biochemistry, 2020, 143: 107762 doi: 10.1016/j.soilbio.2020.107762
    [57] CÓRDOVA S C, OLK D C, DIETZEL R N, et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter[J]. Soil Biology and Biochemistry, 2018, 125: 115−124 doi: 10.1016/j.soilbio.2018.07.010
    [58] HUANG W J, HAMMEL K E, HAO J L, et al. Enrichment of lignin-derived carbon in mineral-associated soil organic matter[J]. Environmental Science & Technology, 2019, 53(13): 7522−7531
    [59] THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: A review[J]. Soil Biology and Biochemistry, 2010, 42(8): 1200−1211 doi: 10.1016/j.soilbio.2010.03.017
    [60] KLOTZBÜCHER T, KALBITZ K, CERLI C, et al. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils[J]. SOIL, 2016, 2(3): 325−335 doi: 10.5194/soil-2-325-2016
    [61] HERNES P J, KAISER K, DYDA R Y, et al. Molecular trickery in soil organic matter: hidden lignin[J]. Environmental Science & Technology, 2013, 47(16): 9077−9085
    [62] LIN L H, SIMPSON M J. Enhanced extractability of cutin-and suberin-derived organic matter with demineralization implies physical protection over chemical recalcitrance in soil[J]. Organic Geochemistry, 2016, 97: 111−121 doi: 10.1016/j.orggeochem.2016.04.012
    [63] GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000, 31(7/8): 669−678
    [64] 徐嘉晖, 孙颖, 高雷, 等. 土壤有机碳稳定性影响因素的研究进展[J]. 中国生态农业学报, 2018, 26(2): 222−230

    XU J H, SUN Y, GAO L, et al. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 222−230
    [65] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
    [66] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588−595 doi: 10.1038/nclimate2580
    [67] YANG J Q, ZHANG X N, BOURG I C, et al. 4D imaging reveals mechanisms of clay-carbon protection and release[J]. Nature Communications, 2021, 12: 622 doi: 10.1038/s41467-020-20798-6
    [68] WOOLF D, LEHMANN J. Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence[J]. Scientific Reports, 2019, 9: 6522 doi: 10.1038/s41598-019-43026-8
    [69] MCFARLAND J W, WALDROP M P, STRAWN D G, et al. Biological and mineralogical controls over cycling of low molecular weight organic compounds along a soil chronosequence[J]. Soil Biology and Biochemistry, 2019, 133: 16−27 doi: 10.1016/j.soilbio.2019.01.013
    [70] KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1−140
    [71] ROLLER B R K, SCHMIDT T M. The physiology and ecological implications of efficient growth[J]. The ISME Journal, 2015, 9(7): 1481−1487 doi: 10.1038/ismej.2014.235
    [72] SUSHKO M L, ROSSO K M. The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: implications for oriented attachment in metal oxides[J]. Nanoscale, 2016, 8(47): 19714−19725 doi: 10.1039/C6NR06953C
    [73] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [74] LEHMANN J, HANSEL C M, KAISER C, et al. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529−534 doi: 10.1038/s41561-020-0612-3
    [75] SOKOL N W, SANDERMAN J, BRADFORD M A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12−24 doi: 10.1111/gcb.14482
    [76] SAMSON M E, CHANTIGNY M H, VANASSE A, et al. Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils[J]. Soil Biology and Biochemistry, 2020, 148: 107867 doi: 10.1016/j.soilbio.2020.107867
    [77] MIKUTTA R, TURNER S, SCHIPPERS A, et al. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient[J]. Scientific Reports, 2019, 9: 10294 doi: 10.1038/s41598-019-46501-4
    [78] TIPPING E. Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH[J]. Geoderma, 2005, 127(3/4): 293−304
    [79] MAYES M A, HEAL K R, BRANDT C C, et al. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 2012, 76(3): 1027−1037 doi: 10.2136/sssaj2011.0340
    [80] AVERILL C, WARING B. Nitrogen limitation of decomposition and decay: How can it occur?[J]. Global Change Biology, 2018, 24(4): 1417−1427 doi: 10.1111/gcb.13980
    [81] WHITTINGHILL K A, HOBBIE S E. Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra[J]. Biogeochemistry, 2012, 111(1): 569−581
    [82] COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019, 12(12): 989−994 doi: 10.1038/s41561-019-0484-6
    [83] MURPHY E M, ZACHARA J M, SMITH S C, et al. Interaction of hydrophobic organic compounds with mineral-bound humic substances[J]. Environmental Science & Technology, 1994, 28(7): 1291−1299
    [84] TONNEIJCK F H, JANSEN B, NIEROP K G J, et al. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador[J]. European Journal of Soil Science, 2010, 61(3): 392−405 doi: 10.1111/j.1365-2389.2010.01241.x
    [85] CRAIG M E, TURNER B L, LIANG C, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter[J]. Global Change Biology, 2018, 24(8): 3317−3330 doi: 10.1111/gcb.14132
    [86] DING X L, QIAO Y F, FILLEY T, et al. Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol[J]. Biology and Fertility of Soils, 2017, 53(3): 281−286 doi: 10.1007/s00374-017-1179-z
    [87] TURRIÓN M B, GLASER B, ZECH W. Effects of deforestation on contents and distribution of amino sugars within particle-size fractions of mountain soils[J]. Biology and Fertility of Soils, 2002, 35(1): 49−53 doi: 10.1007/s00374-001-0440-6
    [88] GLASER B, TURRIÓN M-B, SOLOMON D, et al. Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change[J]. Biology and Fertility of Soils, 2000, 31(5): 407−413 doi: 10.1007/s003749900187
    [89] KLEBER M, BOURG I C, COWARD E K, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth & Environment, 2021, 2(6): 402−421
    [90] SHI A D, CHAKRAWAL A, MANZONI S, et al. Substrate spatial heterogeneity reduces soil microbial activity[J]. Soil Biology and Biochemistry, 2021, 152: 108068 doi: 10.1016/j.soilbio.2020.108068
  • 加载中
图(1)
计量
  • 文章访问数:  1643
  • HTML全文浏览量:  223
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-11-12
  • 刊出日期:  2022-02-08

目录

    /

    返回文章
    返回