留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化对蔬菜品质的影响及其机制

张璐 张伟 陈新平

张璐, 张伟, 陈新平. 气候变化对蔬菜品质的影响及其机制[J]. 中国生态农业学报(中英文), 2021, 29(12): 2034−2045 doi: 10.12357/cjea.20210327
引用本文: 张璐, 张伟, 陈新平. 气候变化对蔬菜品质的影响及其机制[J]. 中国生态农业学报(中英文), 2021, 29(12): 2034−2045 doi: 10.12357/cjea.20210327
ZHANG L, ZHANG W, CHEN X P. The effects and mechanism of climate change on vegetables quality: a review[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2034−2045 doi: 10.12357/cjea.20210327
Citation: ZHANG L, ZHANG W, CHEN X P. The effects and mechanism of climate change on vegetables quality: a review[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2034−2045 doi: 10.12357/cjea.20210327

气候变化对蔬菜品质的影响及其机制

doi: 10.12357/cjea.20210327
基金项目: 高等学校学科创新引智计划(B20053)与西南大学国家级人才团队支持项目资助
详细信息
    作者简介:

    张璐, 主要研究方向为植物营养生理调控与气候变化品质生理。E-mail: 628lulu@163.com

    通讯作者:

    陈新平, 主要研究方向为养分资源管理。E-mail: chenxp2017@swu.edu.cn

  • 中图分类号: S184

The effects and mechanism of climate change on vegetables quality: a review

Funds: This study was supported by the Discipline Innovation Program of Higher Education Institutions of China (B20053) and the Talent Team Support Project of Southwest University.
More Information
  • 摘要: 蔬菜不仅是人体所必需的维生素、矿质元素等的重要来源, 其提供的一些植物化学物质也对人体健康产生重要作用。气候变化背景下全球CO2浓度和温度升高等改变了蔬菜的生长条件, 然而气候变化如何影响蔬菜品质及其机理还缺乏全面系统的理解。本文综述了气候变化因子如大气CO2浓度、温度及其相互作用, 以及其与水分和氮素互作(非气候因子)对蔬菜品质的影响及其机制, 并对未来研究方向进行展望, 为气候变化背景下提升蔬菜品质促进人体健康提供依据。目前相关研究主要是通过人工模拟试验和作物生长模拟开展, 总体而言CO2浓度升高使蔬菜中蛋白质、硝酸盐、镁、铁和锌含量降低, 抗氧化能力增加(叶类蔬菜)或减少(果类蔬菜), 糖类和维生素含量增加, 植物素(总硫代葡萄糖苷、番茄红素、β-胡萝卜素等)含量增加。CO2浓度升高影响蔬菜品质的机制可能是: 1)促进了光合作用从而提供了更多的碳源, 增加可溶性糖含量; 2)增强硝酸还原酶(NR)活性和相关基因表达, 且碳水化合物增加可进一步促进NR的转录和翻译后调节, 增加硝酸盐的同化, 从而降低硝酸盐含量; 3)诱导抗坏血酸生物合成和再生途径基因表达, 导致抗坏血酸累积; 4)稀释作用、氮分配改变、气孔导度和呼吸作用降低、Rubsico酶合成减少、养分利用率和根系分泌物增加都可能导致蔬菜中矿质元素含量下降。温度升高总体上降低了蔬菜品质, 这是由于高温胁迫通过影响光反应电子传递中光系统Ⅱ和卡尔文循环暗反应Rubisco酶活性来限制光合作用。CO2浓度升高和温度升高的交互作用导致蔬菜品质整体下降。高CO2浓度下, 减少灌水和适量氮供应均可提高蔬菜品质。未来需要采取跨学科的综合方法结合生理学和基因组来研究蔬菜对环境变化的响应, 并研究气候适应性的品种和栽培措施。
  • 图  1  气候变化(CO2浓度升高和温度升高)对蔬菜品质影响机制理论模型图

    气候变化对蔬菜品质的影响和相互作用: 积极的(+); 阴性(−); 或仍不清楚(?); 虚线表示推测。AsA: 抗坏血酸; PSⅡ: 光系统Ⅱ; NR: 硝酸还原酶; HY5/HYH: 碱性亮氨酸(bZIP)反式5及其同源物。(+) and (−) mean the positive and negative influences and interactions; (?) means unclear. Dotted line indicates a speculation. AsA: ascorbic acid; PSⅡ: photosystem Ⅱ; NR: nitrate reductase; HY5/HYH: basic leucine (bZIP) trans 5 and its homolog.

    Figure  1.  Conceptual framework of mechanism of climate change (elevated CO2 and higher temperature) effects on vegetable quality

    表  1  CO2浓度升高对蔬菜品质的影响

    Table  1.   Effect of elevated CO2 concentration on vegetable quality

    蔬菜种类
    Vegetable
    试验条件
    Growth condition
    CO2浓度
    CO2 concentration (mmol∙L−1)
    对品质的影响
    Effect on quality
    参考文献
    Reference
    胡萝卜、红萝卜、白萝卜 Carrot, radish, turnipGH1000可溶性糖含量增加
    Increasing soluble sugar content
    [33]
    红叶生菜 Red leaf lettuceEC1000[31]
    番茄 TomatoGH800~900[42]
    马铃薯 PotatoOTC550[30]
    胡萝卜、红萝卜、白萝卜、番茄
    Carrot, radish, turnip, tomato
    GH800~1000可滴定酸含量降低
    Reducing titratable acid content
    [33,42]
    生菜、甘蓝、红萝卜、西兰花、黄瓜
    Lettuce, cabbage, radish, broccoli, cucumber
    FACE, OTC500~700蛋白质含量下降
    Decreasing protein content
    [36]
    GH1000[33]
    胡萝卜、红萝卜、白萝卜、马铃薯
    Carrot, radish, turnip, potato
    OTC550[30]
    生菜、菠菜
    Lettuce, spinach
    EC700镁、铁和锌含量降低
    Decreasing Mg, Fe and Zn contents
    [35]
    叶类蔬菜(红/绿叶生菜、菠菜)
    Leaf vegetables (red/green leaf lettuce, spinach)
    EC700~1000抗氧化能力增加
    Increasing antioxidant capacity
    [31,35]
    生菜、芹菜、大白菜、番茄
    Lettuce, celery, Chinese cabbage, tomato
    GH800~1000维生素C 含量增加
    Increasing vitamin C content
    [32,42]
    根类蔬菜(胡萝卜、白萝卜、小萝卜)
    Root vegetables (carrot, radish, turnip)
    GH1000维生素C 含量降低
    Decreasing vitamin C content
    [33]
    生菜、芹菜、大白菜
    Lettuce, celery, Chinese cabbage
    GH800~1000硝酸盐含量下降
    Reducing nitrate content
    [32]
    番茄
    Tomato
    GH800~900番茄红素、β-胡萝卜素含量增加
    Increasing lycopene, β-carotene contents
    [42]
    西兰花
    Broccoli
    EC, GH685~820,
    620
    总硫代葡萄糖苷含量升高
    Increasing total glucosinolates content
    [43-44]
      GH: 温室; EC: 气候箱; OTC: 开顶室气室; FACE: 自由CO2富集试验。GH: greenhouse; EC: controlled-environment; OTC: open-top chamber; FACE: free-air CO2 enrichment.
    下载: 导出CSV
  • [1] STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC. Climate Change 2013: the Physical Science Basis. Cambridge: Cambridge University Press, 2013: 119−158
    [2] MATTOS L M, MORETTI C L, JAN S, et al. Climate changes and potential impacts on quality of fruit and vegetable crops[M]//Emerging Technologies and Management of Crop Stress Tolerance. Amsterdam: Elsevier, 2014: 467–486
    [3] WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508−513 doi: 10.1126/science.1239402
    [4] BISBIS M B, GRUDA N, BLANKE M. Potential impacts of climate change on vegetable production and product quality — A review[J]. Journal of Cleaner Production, 2018, 170: 1602−1620 doi: 10.1016/j.jclepro.2017.09.224
    [5] GRUDA N, BISBIS M, TANNY J. Influence of climate change on protected cultivation: impacts and sustainable adaptation strategies — A review[J]. Journal of Cleaner Production, 2019, 225: 481−495 doi: 10.1016/j.jclepro.2019.03.210
    [6] SCHMIDHUBER J, TUBIELLO F N. Global food security under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19703−19708 doi: 10.1073/pnas.0701976104
    [7] MÜLLER C, ELLIOTT J, LEVERMANN A. Fertilizing hidden hunger[J]. Nature Climate Change, 2014, 4(7): 540−541 doi: 10.1038/nclimate2290
    [8] AFSHIN A, SUR P J, FAY K A, et al. Health effects of dietary risks in 195 countries, 1990−2017: a systematic analysis for the global burden of disease study 2017[J]. The Lancet, 2019, 393(10184): 1958−1972 doi: 10.1016/S0140-6736(19)30041-8
    [9] DONG J L, GRUDA N, LAM S K, et al. Effects of elevated CO2 on nutritional quality of vegetables: a review[J]. Frontiers in Plant Science, 2018, 9: 924 doi: 10.3389/fpls.2018.00924
    [10] MYERS S S, WESSELLS K R, KLOOG I, et al. Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study[J]. The Lancet Global Health, 2015, 3(10): e639−e645 doi: 10.1016/S2214-109X(15)00093-5
    [11] SPRINGMANN M, MASON-D’CROZ D, ROBINSON S, et al. Global and regional health effects of future food production under climate change: a modelling study[J]. The Lancet, 2016, 387(10031): 1937−1946 doi: 10.1016/S0140-6736(15)01156-3
    [12] AYYOGARI K, SIDHYA P, PANDIT M K. Impact of climate change on vegetable cultivation — A review[J]. International Journal of Agriculture, Environment and Biotechnology, 2014, 7(1): 145 doi: 10.5958/j.2230-732X.7.1.020
    [13] DONG J L, GRUDA N, LI X, et al. Sustainable vegetable production under changing climate: the impact of elevated CO2 on yield of vegetables and the interactions with environments — A review[J]. Journal of Cleaner Production, 2020, 253: 119920 doi: 10.1016/j.jclepro.2019.119920
    [14] KIMBALL B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations[J]. Agronomy Journal, 1983, 75(5): 779−788 doi: 10.2134/agronj1983.00021962007500050014x
    [15] SCHEELBEEK P F D, BIRD F A, TUOMISTO H L, et al. Effect of environmental changes on vegetable and legume yields and nutritional quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6804−6809 doi: 10.1073/pnas.1800442115
    [16] ALAE-CAREW C, NICOLEAU S, BIRD F A, et al. The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: a systematic review[J]. Environmental Research Letters, 2020, 15(2): 023002 doi: 10.1088/1748-9326/ab5cc0
    [17] DALRYMPLE D G. Controlled Environment Agriculture: A Global Review of Greenhouse Food Production[M]. Washington D. C. United States: Department of Agriculture, Economic Research Service, 1973: 136–144
    [18] HUANG B R, XU Y. Cellular and molecular mechanisms for elevated CO2-regulation of plant growth and stress adaptation[J]. Crop Science, 2015, 55(4): 1405−1424 doi: 10.2135/cropsci2014.07.0508
    [19] DONG J L, XU Q, GRUDA N, et al. Elevated and super-elevated CO2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber[J]. Journal of the Science of Food and Agriculture, 2018, 98(12): 4509−4516 doi: 10.1002/jsfa.8976
    [20] MAI K, COLEMAN D F, YANAGISAWA T. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L. )[J]. Japanese Journal of Crop Science, 1985, 54(4): 413−418 doi: 10.1626/jcs.54.413
    [21] HORIE T, NAKAGAWA H, NAKANO J, et al. Temperature gradient chambers for research on global environment change. iii. a system designed for rice in Kyoto, Japan[J]. Plant, Cell & Environment, 1995, 18(9): 1064−1069
    [22] OKADA M, LIEFFERING M, NAKAMURA H, et al. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description[J]. New Phytologist, 2001, 150(2): 251−260 doi: 10.1046/j.1469-8137.2001.00097.x
    [23] KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11(9): 1440−1451 doi: 10.1111/j.1365-2486.2005.00994.x
    [24] 柴如山, 牛耀芳, 朱丽青, 等. 大气CO2浓度升高对农产品品质影响的研究进展[J]. 应用生态学报, 2011, 22(10): 2765−2775

    CHAI R S, NIU Y F, ZHU L Q, et al. Effects of elevated CO2 concentration on the quality of agricultural products: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2765−2775
    [25] HASEGAWA T, SAKAI H, TOKIDA T, et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan[J]. Functional Plant Biology, 2013, 40(2): 148 doi: 10.1071/FP12357
    [26] LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant Physiology, 2006, 140(2): 779−790 doi: 10.1104/pp.105.073957
    [27] TAUSZ-POSCH S, SENEWEERA S, NORTON R M, et al. Can a wheat cultivar with high transpiration efficiency maintain its yield advantage over a near-isogenic cultivar under elevated CO2?[J]. Field Crops Research, 2012, 133: 160−166 doi: 10.1016/j.fcr.2012.04.007
    [28] 房世波, 沈斌, 谭凯炎, 等. 大气[CO2]和温度升高对农作物生理及生产的影响[J]. 中国生态农业学报, 2010, 18(5): 1116−1124 doi: 10.3724/SP.J.1011.2010.01116

    FANG S B, SHEN B, TAN K Y, et al. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 1116−1124 doi: 10.3724/SP.J.1011.2010.01116
    [29] 朱艳, 汤亮, 刘蕾蕾, 等. 作物生长模型(CropGrow)研究进展[J]. 中国农业科学, 2020, 53(16): 3235−3256 doi: 10.3864/j.issn.0578-1752.2020.16.004

    ZHU Y, TANG L, LIU L L, et al. Research progress on the crop growth model crop grow[J]. Scientia Agricultura Sinica, 2020, 53(16): 3235−3256 doi: 10.3864/j.issn.0578-1752.2020.16.004
    [30] HÖGY P, FANGMEIER A. Atmospheric CO2 enrichment affects potatoes: 2. tuber quality traits[J]. European Journal of Agronomy, 2009, 30(2): 85−94 doi: 10.1016/j.eja.2008.07.006
    [31] BECKER C, KLÄRING H P. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations[J]. Food Chemistry, 2016, 199: 736−745 doi: 10.1016/j.foodchem.2015.12.059
    [32] JIN C W, DU S T, WANG Y, et al. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 418−424 doi: 10.1002/jpln.200700220
    [33] AZAM A, KHAN I, MAHMOOD A, et al. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide[J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3237−3244 doi: 10.1002/jsfa.6165
    [34] WANG S, BUNCE J. Elevated carbon dioxide affects fruit flavor in field-grown strawberries (Fragaria × ananassa Duch)[J]. Journal of the Science of Food and Agriculture, 2004, 84(12): 1464−1468 doi: 10.1002/jsfa.1824
    [35] GIRI A, ARMSTRONG B, RAJASHEKAR C B. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach[J]. American Journal of Plant Sciences, 2016, 7(1): 246−258 doi: 10.4236/ajps.2016.71024
    [36] MEDEK D E, SCHWARTZ J, MYERS S S. Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region[J]. Environmental Health Perspectives, 2017, 125(8): 087002 doi: 10.1289/EHP41
    [37] TAUB D R, MILLER B, ALLEN H. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis[J]. Global Change Biology, 2008, 14(3): 565−575 doi: 10.1111/j.1365-2486.2007.01511.x
    [38] LOLADZE I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition[J]. eLife, 2014, 3: 02245 doi: 10.7554/elife.02245
    [39] MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139−142 doi: 10.1038/nature13179
    [40] GHASEMZADEH A, JAAFAR H Z E, RAHMAT A. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties[J]. Molecules (Basel, Switzerland), 2010, 15(11): 7907−7922 doi: 10.3390/molecules15117907
    [41] BASLAM M, GARMENDIA I, GOICOECHEA N. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce[J]. Annals of Applied Biology, 2012, 161(2): 180−191 doi: 10.1111/j.1744-7348.2012.00563.x
    [42] ZHANG Z M, LIU L H, ZHANG M, et al. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse[J]. Food Chemistry, 2014, 153: 157−163 doi: 10.1016/j.foodchem.2013.12.052
    [43] SCHONHOF I, KLÄRING H P, KRUMBEIN A, et al. Interaction between atmospheric CO2 and glucosinolates in broccoli[J]. Journal of Chemical Ecology, 2007, 33(1): 105−114
    [44] ALMUHAYAWI M S, ABDELGAWAD H, AL JAOUNI S K, et al. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts[J]. Food Chemistry, 2020, 328: 127102 doi: 10.1016/j.foodchem.2020.127102
    [45] WU X R, LI Y P, TU S X, et al. Elevated atmospheric CO2 might increase the health risk of long-term ingestion of leafy vegetables cultivated in residual DDT polluted soil[J]. Chemosphere, 2019, 227: 289−298 doi: 10.1016/j.chemosphere.2019.04.024
    [46] LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide: plants face the future[J]. Annual Review of Plant Biology, 2004, 55: 591−628 doi: 10.1146/annurev.arplant.55.031903.141610
    [47] SONG H X, LI Y L, XU X Y, et al. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.)[J]. Scientia Horticulturae, 2020, 261: 108988 doi: 10.1016/j.scienta.2019.108988
    [48] LARIOS B, AGÜERA E, DE LA HABA P, et al. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity[J]. Planta, 2001, 212(2): 305−312 doi: 10.1007/s004250000395
    [49] CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26(5): 640−646 doi: 10.1016/j.cub.2015.12.066
    [50] BIAN Z H, WANG Y, ZHANG X Y, et al. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments[J]. Foods (Basel, Switzerland), 2020, 9(6): 732
    [51] LI P, LI H Y, ZONG Y Z, et al. Photosynthesis and metabolite responses of Isatis indigotica fortune to elevated [CO2][J]. The Crop Journal, 2017, 5(4): 345−353 doi: 10.1016/j.cj.2017.03.007
    [52] WU X J, SUN S, XING G M, et al. Elevated carbon dioxide altered morphological and anatomical characteristics, ascorbic acid accumulation, and related gene expression during taproot development in carrots[J]. Frontiers in Plant Science, 2017, 7: 2026
    [53] MUTHUSAMY M, HWANG J E, KIM S H, et al. Elevated carbon dioxide significantly improves ascorbic acid content, antioxidative properties and restricted biomass production in cruciferous vegetable seedlings[J]. Plant Biotechnology Reports, 2019, 13(3): 293−304 doi: 10.1007/s11816-019-00542-3
    [54] MCGRATH J M, LOBELL D B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations[J]. Plant, Cell & Environment, 2013, 36(3): 697−705
    [55] BLOOM A J, KASEMSAP P, RUBIO-ASENSIO J S. Rising atmospheric CO2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants[J]. Physiologia Plantarum, 2020, 168(4): 963−972 doi: 10.1111/ppl.13040
    [56] ANDREWS M, CONDRON L M, KEMP P D, et al. Will rising atmospheric CO2 concentration inhibit nitrate assimilation in shoots but enhance it in roots of C3 plants?[J]. Physiologia Plantarum, 2020, 170(1): 40−45 doi: 10.1111/ppl.13096
    [57] DONG J L, HUNT J, DELHAIZE E, et al. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review[J]. Science of the Total Environment, 2021, 754: 142434 doi: 10.1016/j.scitotenv.2020.142434
    [58] WIEN H C. The Physiology of Vegetable Crops[M]. Oxon-New York: Cab International, 1997: 120–128
    [59] RUIZ-VERA U M, SIEBERS M H, DRAG D W, et al. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated CO2[J]. Global Change Biology, 2015, 21(11): 4237−4249 doi: 10.1111/gcb.13013
    [60] KIMBALL B A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature[J]. Current Opinion in Plant Biology, 2016, 31: 36−43 doi: 10.1016/j.pbi.2016.03.006
    [61] 牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31(2): 262−271 doi: 10.3321/j.issn:1005-264X.2007.02.009

    NIU S L, HAN X G, MA K P, et al. Field facilities in global warming and terrestrial ecosystem research[J]. Journal of Plant Ecology, 2007, 31(2): 262−271 doi: 10.3321/j.issn:1005-264X.2007.02.009
    [62] LIN D L, XIA J Y, WAN S Q. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis[J]. New Phytologist, 2010, 188(1): 187−198 doi: 10.1111/j.1469-8137.2010.03347.x
    [63] HUANG B R, RACHMILEVITCH S, XU J C. Root carbon and protein metabolism associated with heat tolerance[J]. Journal of Experimental Botany, 2012, 63(9): 3455−3465 doi: 10.1093/jxb/ers003
    [64] MCKEOWN A W, WARLAND J, MCDONALD M R. Long-term climate and weather patterns in relation to crop yield: a minireview[J]. Canadian Journal of Botany, 2006, 84(7): 1031−1036 doi: 10.1139/b06-080
    [65] WANG Y X, FREI M. Stressed food – The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 271−286
    [66] GRUDA N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption[J]. Critical Reviews in Plant Sciences, 2005, 24(3): 227−247 doi: 10.1080/07352680591008628
    [67] MORETTI C L, MATTOS L M, CALBO A G, et al. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review[J]. Food Research International, 2010, 43(7): 1824−1832 doi: 10.1016/j.foodres.2009.10.013
    [68] KLIMENKO S B, PESHKOVA A A, DOROFEEV N V. Nitrate reductase activity during heat shock in winter wheat[J]. Journal of Stress Physiology & Biochemistry, 2006, 2(1): 50
    [69] VAN DER BOON J, STEENHUIZEN J W, STEINGROVER E G. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4/NO3 ratio and temperature of the recirculating nutrient solution[J]. Journal of Horticultural Science, 1990, 65(3): 309−321 doi: 10.1080/00221589.1990.11516060
    [70] NIEUWHOF M. Effects of temperature and light on nitrate content of radish (Raphanus sativus L.)[J]. Gartenbauwissenschaft, 1995, 59(5): 220−224
    [71] SATO S, KAMIYAMA M, IWATA T, et al. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development[J]. Annals of Botany, 2006, 97(5): 731−738 doi: 10.1093/aob/mcl037
    [72] LI Z M, PALMER W M, MARTIN A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit[J]. Journal of Experimental Botany, 2012, 63(3): 1155−1166
    [73] MAGAN N, MEDINA A, ALDRED D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest[J]. Plant Pathology, 2011, 60(1): 150−163 doi: 10.1111/j.1365-3059.2010.02412.x
    [74] SAGE R F, KUBIEN D S. The temperature response of C3 and C4 photosynthesis[J]. Plant, Cell & Environment, 2007, 30(9): 1086−1106
    [75] HECKATHORN S A, RYAN S L, BAYLIS J A, et al. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem Ⅱ during heat stress[J]. Functional Plant Biology, 2002, 29(8): 935 doi: 10.1071/PP01191
    [76] CRAFTS-BRANDNER S J, SALVUCCI M E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13430−13435 doi: 10.1073/pnas.230451497
    [77] MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J]. Trends in Biochemical Sciences, 2012, 37(3): 118−125 doi: 10.1016/j.tibs.2011.11.007
    [78] PÉREZ-JIMÉNEZ M, PIÑERO M C, DEL AMOR F M. Heat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperatures[J]. Scientia Horticulturae, 2019, 244: 322−329 doi: 10.1016/j.scienta.2018.09.072
    [79] ZHANG A D, ZHU Z W, SHANG J, et al. Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L. ) under heat stress[J]. PLoS One, 2020, 15(8): e0236980 doi: 10.1371/journal.pone.0236980
    [80] HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643−9684 doi: 10.3390/ijms14059643
    [81] ULLAH A, ROMDHANE L, REHMAN A, et al. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea[J]. Plant Physiology and Biochemistry, 2019, 143: 11−18 doi: 10.1016/j.plaphy.2019.08.020
    [82] HE J, AUSTIN P T, LEE S K. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants[J]. Journal of Experimental Botany, 2010, 61(14): 3959−3969 doi: 10.1093/jxb/erq207
    [83] LONG S P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated?[J]. Plant, Cell & Environment, 1991, 14(8): 729−739
    [84] KIRSCHBAUM M U F. The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration[J]. Plant, Cell and Environment, 1994, 17(6): 747−754 doi: 10.1111/j.1365-3040.1994.tb00167.x
    [85] SICHER R. Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets: evidence for dynamic changes of tca cycle intermediates[J]. Planta, 2013, 238(2): 369−380 doi: 10.1007/s00425-013-1899-8
    [86] SETH C S, MISRA V. Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario[J]. Journal of Plant Research, 2014, 127(6): 793−802 doi: 10.1007/s10265-014-0664-9
    [87] KUMARI M, VERMA S C, BHARDWAJ S K, et al. Impact of elevated CO2 and temperature on quality and biochemical parameters of bell pepper (Capsicum annuum) crop[J]. Indian Journal of Agricultural Sciences, 2017, 87(2): 179−184
    [88] ABDELGAWAD H, PESHEV D, ZINTA G, et al. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators[J]. PLoS One, 2014, 9(3): e92044 doi: 10.1371/journal.pone.0092044
    [89] WANG D, HECKATHORN S A, WANG X Z, et al. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2[J]. Oecologia, 2012, 169(1): 1−13 doi: 10.1007/s00442-011-2172-0
    [90] JAYAWARDENA D M, HECKATHORN S A, BISTA D R, et al. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots[J]. Physiologia Plantarum, 2017, 159(3): 354−365 doi: 10.1111/ppl.12532
    [91] FORBES S J, CERNUSAK L A, NORTHFIELD T D, et al. Elevated temperature and carbon dioxide alter resource allocation to growth, storage and defence in cassava (Manihot esculenta)[J]. Environmental and Experimental Botany, 2020, 173: 103997 doi: 10.1016/j.envexpbot.2020.103997
    [92] AINSWORTH E A, LONG S P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation?[J]. Global Change Biology, 2021, 27(1): 27−49 doi: 10.1111/gcb.15375
    [93] MORISON J I L, LAWLOR D W. Interactions between increasing CO2 concentration and temperature on plant growth[J]. Plant, Cell & Environment, 1999, 22(6): 659−682
    [94] REICH M, VAN DEN MEERAKKER A N, PARMAR S, et al. Temperature determines size and direction of effects of elevated CO2 and nitrogen form on yield quantity and quality of Chinese cabbage[J]. Plant Biology, 2015, 18: 63−75
    [95] VENTRELLA D, CHARFEDDINE M, MORIONDO M, et al. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization[J]. Regional Environmental Change, 2012, 12(3): 407−419 doi: 10.1007/s10113-011-0256-3
    [96] TAUSZ-POSCH S, TAUSZ M, BOURGAULT M. Elevated [CO2] effects on crops: advances in understanding acclimation, nitrogen dynamics and interactions with drought and other organisms[J]. Plant Biology, 2019, 22: 38−51
    [97] 牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407−2414

    NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407−2414
    [98] FAN X D, CAO X, ZHOU H R, et al. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.)[J]. Environmental and Experimental Botany, 2020, 179: 104203 doi: 10.1016/j.envexpbot.2020.104203
    [99] YANG X, ZHANG P, WEI Z H, et al. Effects of CO2 fertilization on tomato fruit quality under reduced irrigation[J]. Agricultural Water Management, 2020, 230: 105985 doi: 10.1016/j.agwat.2019.105985
    [100] SERRET M D, YOUSFI S, VICENTE R, et al. Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper[J]. Frontiers in Plant Science, 2018, 8: 2180 doi: 10.3389/fpls.2017.02180
    [101] GAO J, HAN X, SENEWEERA S, et al. Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2][J]. Journal of Integrative Agriculture, 2015, 14(5): 977−983 doi: 10.1016/S2095-3119(14)60941-2
    [102] PIÑERO M C, PÉREZ-JIMÉNEZ M, LÓPEZ-MARÍN J, et al. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration[J]. Journal of Plant Physiology, 2016, 200: 18−27 doi: 10.1016/j.jplph.2016.05.020
    [103] CONESA M À, GALMÉS J, OCHOGAVÍA J M, et al. The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes[J]. Postharvest Biology and Technology, 2014, 93: 114−121 doi: 10.1016/j.postharvbio.2014.02.014
    [104] PETER M A, MARK D. Abiotic stress in harvested fruits and vegetables[M]//SHANKER A K, VENKATESWARLU B. Abiotic Stress in Plants — Mechanisms and Adaptations. Rijeka, Croata: Intech, 2011
    [105] 高凯敏, 刘锦春, 梁千慧, 等. 6种草本植物对干旱胁迫和CO2浓度升高交互作用的生长响应[J]. 生态学报, 2015, 35(18): 6110−6119

    GAO K M, LIU J C, LIANG Q H, et al. Growth responses to the interaction of elevated CO2 and drought stress in six annual species[J]. Acta Ecologica Sinica, 2015, 35(18): 6110−6119
    [106] DIER M, MEINEN R, ERBS M, et al. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization[J]. Global Change Biology, 2018, 24(1): e40−e54 doi: 10.1111/gcb.13819
    [107] DONG J L, LI X, NAZIM G, et al. Interactive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.)[J]. Journal of Integrative Agriculture, 2018, 17(11): 2438−2446 doi: 10.1016/S2095-3119(18)62005-2
    [108] HALPERN M, BAR-TAL A, LUGASSI N, et al. The role of nitrogen in photosynthetic acclimation to elevated [CO2] in tomatoes[J]. Plant and Soil, 2019, 434(1): 397−411
    [109] HELYES L, LUGASI A, NEMÉNYI A, et al. The simultaneous effect of elevated CO2-level and nitrogen-supply on the fruit components of tomato[J]. Acta Alimentaria, 2012, 41(2): 265−271 doi: 10.1556/AAlim.41.2012.2.13
    [110] ZAGHDOUD C, CARVAJAL M, MORENO D A, et al. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments[J]. Journal of the Science of Food and Agriculture, 2016, 96(2): 392−403 doi: 10.1002/jsfa.7102
    [111] PIÑERO M C, OTÁLORA G, PORRAS M E, et al. The form in which nitrogen is supplied affects the polyamines, amino acids, and mineral composition of sweet pepper fruit under an elevated CO2 concentration[J]. Journal of Agricultural and Food Chemistry, 2017, 65(4): 711−717 doi: 10.1021/acs.jafc.6b04118
    [112] FARNETI B, SCHOUTEN R E, QIAN T, et al. Greenhouse climate control affects postharvest tomato quality[J]. Postharvest Biology and Technology, 2013, 86: 354−361 doi: 10.1016/j.postharvbio.2013.07.004
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  99
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 录用日期:  2021-08-30
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2021-12-07

目录

    /

    返回文章
    返回