留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单作物系数法的华北平原典型农业生态系统蒸散规律研究

杨天一 王军 张红梅 李镕基 张玉翠 沈彦俊

杨天一, 王军, 张红梅, 李镕基, 张玉翠, 沈彦俊. 基于单作物系数法的华北平原典型农业生态系统蒸散规律研究[J]. 中国生态农业学报 (中英文), 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336
引用本文: 杨天一, 王军, 张红梅, 李镕基, 张玉翠, 沈彦俊. 基于单作物系数法的华北平原典型农业生态系统蒸散规律研究[J]. 中国生态农业学报 (中英文), 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336
YANG T Y, WANG J, ZHANG H M, LI R J, ZHANG Y C, SHEN Y J. Evapotranspiration of typical agroecosystems in the North China Plain based on single crop coefficient method[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336
Citation: YANG T Y, WANG J, ZHANG H M, LI R J, ZHANG Y C, SHEN Y J. Evapotranspiration of typical agroecosystems in the North China Plain based on single crop coefficient method[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 356−366 doi: 10.12357/cjea.20210336

基于单作物系数法的华北平原典型农业生态系统蒸散规律研究

doi: 10.12357/cjea.20210336
基金项目: 国家自然科学基金项目(41930865, 31870422, 41877169)、中国科学院国际合作局国际伙伴计划项目(153E13KYSB20170010)、河北省自然科学基金项目(D2019503028)和河北省自然科学基金创新研究群体项目(D2021503001)资助
详细信息
    作者简介:

    杨天一, 主要从事农田蒸散研究。E-mail: yangtianyi@sjziam.ac.cn

    通讯作者:

    张玉翠, 主要从事生态水文研究, E-mail: yczhang@sjziam.ac.cn

    沈彦俊, 主要从事农业水文与水资源研究, E-mail: yjshen@sjziam.ac.cn

  • 中图分类号: S181

Evapotranspiration of typical agroecosystems in the North China Plain based on single crop coefficient method

Funds: The study was supported by the National Natural Scientific Foundation of China (41930865, 31870422, 41877169), the International Partnership Program of Chinese Academy of Sciences (153E13KYSB20170010), the Natural Scientific Foundation of Hebei Province (D2019503028), and the Project for Innovative Research Group of the Natural Science Foundation of Hebei Province (D2021503001).
More Information
  • 摘要: 作物系数法可以简单、准确地反映作物不同生育期内实际蒸散量变化规律及特点, 但针对华北平原地区不同类型农业生态系统, 尤其是梨园种植区生育期内作物系数的变化及蒸散规律研究并不充分。本研究针对华北平原典型的冬小麦-夏玉米农田生态系统、棉田生态系统和梨园生态系统, 基于FAO56手册推荐的单作物系数法计算和验证了2016—2017年各农业生态系统初始生长期至生育末期的实际蒸散量, 分析了不同生育阶段蒸散变化规律。不同作物初始生长期、快速发育期、生育中期和生育末期作物系数, 冬小麦分别为0.60、0.88、1.07和0.72, 夏玉米分别为0.46、0.76、1.01和0.80, 棉花分别为0.34、0.71、1.07和0.78, 梨树分别为0.81、0.91、1.02和0.96。冬小麦-夏玉米、棉田和梨园的单作物系数法计算的实际蒸散量分别为694.3 mm、472.2 mm和825.7 mm。3类作物生育期内实际蒸散量计算值比实测值分别低1.0%、低4.9%和高8.1%, 变化趋势一致, 相关系数为0.80~0.91 (P<0.01)。粮、棉和果树生态系统是华北平原农业生态系统的典型代表, 本研究不仅明确了各类作物尤其是研究比较缺乏的梨树的不同生育期内的作物系数, 同时利用涡度相关实测结果进行了同时空尺度的验证, 明确了单作物系数法在华北平原不同农业生态系统的适用性, 为制定合理灌溉计划、实现作物耗水精准管理提供科学依据。
  • 图  1  涡度相关系统及土壤水分传感器布置示意图

    Figure  1.  Schematic diagram of eddy covariance system and soil moisture sensors

    图  2  梨树生育期内土壤水分胁迫系数(Ks)变化

    Figure  2.  Soil water stress coefficients (Ks) during growth period of pear trees

    图  3  不同农业生态系统的作物生育期平均温度(Ini: 初始生长期; Dev: 快速发育期; Mid: 生育中期; End: 生育末期)

    Figure  3.  Average temperature of different crops at different growth stages in different agroecosystems (Ini: initial stage; Dev: developing stage; Mid: mid stage; End: end stage)

    图  4  不同农业生态系统生育期降水量、平均相对湿度和风速变化

    Figure  4.  Changes of precipitation, average relative humidity and wind speed at different growth stages of corps of different agroecosystems

    图  5  不同农业生态系统作物生育期内参考蒸散量(ET0)变化(Ini: 初始生长期; Dev: 快速发育期; Mid: 生育中期; End: 生育末期)

    Figure  5.  Reference evapotranspiration (ET0) variations during growth stages of different agrecosystems (Ini: initial stage; Dev: developing stage; Mid: mid stage; End: end stage)

    图  6  不同农业生态系统作物生育期内实际蒸散量(ETEC)变化(Ini:初始生长期; Dev: 快速发育期; Mid: 生育中期; End: 生育末期)

    Figure  6.  Actual evapotranspiration (ETEC) variations during growth stages of different agrecosystems (Ini: initial stage; Dev: developing stage; Mid: mid stage; End: end stage)

    图  7  不同农业生态系统生育期内作物系数法计算的实际蒸散量(ETa-FAo)变化(Ini: 初始生长期; Dev: 快速发育期; Mid: 生育中期; End: 生育末期)

    Figure  7.  Calculated actural evapotranspiration (ETa-FAO) variations during crop growth stages of different agroecosystems (Ini: initial stage; Dev: developing stage; Mid: mid stage; End: end stage)

    图  8  不同农业生态系统实际蒸散量实测值与计算值相关性验证

    Figure  8.  Verification of correlation between measured (ETEC) and calculated (ETa-FAO) actural evapotranspiration of different agroecosystems

    表  1  不同试验站点(农业生态系统)种植作物和土壤性质

    Table  1.   Detail information of plants and soil property in different experimental sites (agroecosytems)

    试验站点
    Experiment site
    地理坐标
    Geographical coordinate
    作物类型
    Crop type
    土壤性质 Soil property
    田间持水量
    Field capacity
    (%)
    凋萎系数
    Wilting point of
    soil moisture (%)
    碱解氮
    Available nitrogen (mg∙kg−1)
    速效磷
    Available phosphorus (mg∙kg−1)
    速效钾
    Available potassium (mg∙kg−1)
    栾城 Luancheng37°53′N, 114°41′E冬小麦-夏玉米
    Winter wheat-summer maize
    341260~8015~20150~170
    深州 Shenzhou37°47′N, 114°55′E棉花 Cotton28118021180
    赵县 Zhaoxian37°54′N, 115°42′E梨树 Pear35137019257
    下载: 导出CSV

    表  2  不同作物生育阶段(月-日)划分

    Table  2.   Division of growth stages (month-day) of crops of different agroecosystems

    作物 Crop初始生长期 Initial stage快速发育期 Developing stage生育中期 Mid stage生育末期 End stage
    冬小麦 Winter wheat10-06—03-1703-18—05-0205-03—05-2805-29—06-12
    夏玉米 Summer maize06-13—07-1907-20—08-3109-01—09-1809-19—09-27
    棉花 Cotton05-01—06-1506-16—07-1507-16—09-3010-01—10-25
    梨树 Pear03-01—03-3104-01—06-3007-01—08-3109-01—10-31
    下载: 导出CSV

    表  3  不同作物各生育阶段查表所得作物系数(Kc-Tab)取值

    Table  3.   Crop coefficient (Kc-Tab) values of different growth stages of crops

    生育期
    Growth stage
    冬小麦
    Winter wheat
    夏玉米
    Summer maize
    棉花
    Cotton
    梨树
    Pear
    初始生长期 Initial stage0.600.470.350.80
    生育中期 Mid stage1.071.111.151.20
    生育末期 End stage0.700.830.600.85
    下载: 导出CSV

    表  4  不同农业生态系统作物不同生育阶段及总参考作物蒸散量

    Table  4.   Reference evapotranspiration (ET0) of different crops at different growth stages and during whole growth stage of different agroecosystems mm 

    作物
    Crop
    初始生长期
    Initial stage
    快速发育期
    Developing stage
    生育中期
    Mid stage
    生育末期
    End stage
    总计
    Total
    冬小麦
    Winter wheat
    187.2140.6127.874.8530.4
    夏玉米
    Summer maize
    190.4141.551.026.0408.6
    棉花 Cotton248.2158.5232.234.2673.1
    梨树 Pear78.8426.5246.5128.7880.5
    下载: 导出CSV

    表  5  不同农业生态系统作物不同生育阶段及总实际蒸散量

    Table  5.   Actural evapotranspiration of different crops at different growth stages and during whole growth stage of different agroecosystems mm 

    作物
    Crop
    初始生长期
    Initial stage
    快速发育期
    Developing stage
    生育中期
    Mid stage
    生育末期
    End stage
    总计
    Total
    冬小麦
    Winter wheat
    125.1123.4110.843.2402.5
    夏玉米
    Summer maize
    92.5134.452.819.2298.9
    棉花 Cotton86.7149.6236.024.2496.5
    梨树 Pear33.9355.3263.7110.6763.5
    下载: 导出CSV

    表  6  不同农业生态系统作物不同生育阶段平均作物系数

    Table  6.   Average crop coefficient (Kc) in different growth stages of crops in different agroecosystems

    作物
    Crop
    初始生长期
    Initial stage
    快速发育期
    Developing stage
    生育中期
    Mid stage
    生育末期
    End stage
    冬小麦
    Winter wheat
    0.600.881.070.72
    夏玉米
    Summer maize
    0.460.761.010.80
    棉花 Cotton0.340.711.070.78
    梨树 Pear0.810.911.020.96
    下载: 导出CSV
  • [1] SUN H Y, SHEN Y J, YU Q, et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain[J]. Agricultural Water Management, 2010, 97(8): 1139−1145 doi: 10.1016/j.agwat.2009.06.004
    [2] ZHANG Y C, LEI H M, ZHAO W G, et al. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain[J]. Agricultural Water Management, 2018, 198: 53−64 doi: 10.1016/j.agwat.2017.12.027
    [3] 张雅芳, 郭英, 沈彦俊, 等. 华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 8−16

    ZHANG Y F, GUO Y, SHEN Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 8−16
    [4] 康绍忠. 旱区水-土-作物关系及其最优调控原理[M]. 北京: 中国农业出版社, 1998

    KANG S Z. Water-Soil-Crop Relation and Its Optimum Regulation in Arid and Semiarid Areas[M]. Beijing: Chinese Agriculture Press, 1998
    [5] 王振龙, 刘竹梅, 吕海深, 等. 基于修正遗传算法的夏玉米作物系数及蒸散发估算[J]. 生态环境学报, 2021, 30(1): 108−116

    WANG Z L, LIU Z M, LYU H S, et al. Estimation of summer maize crop coefficient and evapotranspiration based on modified genetic algorithm[J]. Ecology and Environmental Sciences, 2021, 30(1): 108−116
    [6] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: Guidelines for computing crop requirements[J]. Irrigation and Drainage Paper No 56, FAO, 1998: 56
    [7] GUO H, LI S E, KANG S Z, et al. Crop coefficient for spring maize under plastic mulch based on 12-year eddy covariance observation in the arid region of Northwest China[J]. Journal of Hydrology, 2020, 588: 125108 doi: 10.1016/j.jhydrol.2020.125108
    [8] YANG P J, HU H C, TIAN F Q, et al. Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of Northwestern China[J]. Agricultural Water Management, 2016, 171: 21−30 doi: 10.1016/j.agwat.2016.03.007
    [9] 牛建龙, 王家强, 彭杰, 等. 荒漠-绿洲区潜在蒸散量变化特征及其影响因素[J]. 干旱区研究, 2016, 33(4): 766−772

    NIU J L, WANG J Q, PENG J, et al. Change of potential evapotranspiration and its affecting factors in desert-oasis zone[J]. Arid Zone Research, 2016, 33(4): 766−772
    [10] KANG S Z, GU B J, DU T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239−254 doi: 10.1016/S0378-3774(02)00150-6
    [11] WANG Y F, CAI H J, YU L Y, et al. Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime[J]. Agricultural Water Management, 2020, 236: 106164 doi: 10.1016/j.agwat.2020.106164
    [12] GONG X W, QIU R J, SUN J S, et al. Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation[J]. Agricultural Water Management, 2020, 235: 106154 doi: 10.1016/j.agwat.2020.106154
    [13] WANG S T, ZHU G F, XIA D S, et al. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China[J]. Agricultural Water Management, 2019, 212: 388−398 doi: 10.1016/j.agwat.2018.09.023
    [14] XU G P, XUE X Z, WANG P, et al. A lysimeter study for the effects of different canopy sizes on evapotranspiration and crop coefficient of summer maize[J]. Agricultural Water Management, 2018, 208: 1−6 doi: 10.1016/j.agwat.2018.04.040
    [15] WANG J D, ZHANG Y Q, GONG S H, et al. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain[J]. Field Crops Research, 2018, 217: 218−228 doi: 10.1016/j.fcr.2017.05.010
    [16] 宿梅双, 李久生, 饶敏杰. 基于称重式蒸渗仪的喷灌条件下冬小麦和糯玉米作物系数估算方法[J]. 农业工程学报, 2005, 21(8): 25−29 doi: 10.3321/j.issn:1002-6819.2005.08.006

    SU M S, LI J S, RAO M J. Estimation of crop coefficients for sprinkler-irrigated winter wheat and sweet corn using a weighing lysimeter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(8): 25−29 doi: 10.3321/j.issn:1002-6819.2005.08.006
    [17] 韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030

    HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030
    [18] 张喜英, 陈素英, 裴冬, 等. 秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化[J]. 地理科学进展, 2002, 21(6): 583−592 doi: 10.3969/j.issn.1007-6301.2002.06.008

    ZHANG X Y, CHEN S Y, PEI D, et al. Evapotranspiration, yield and crop coefficient of irrigated maize under straw mulch conditions[J]. Progress in Geography, 2002, 21(6): 583−592 doi: 10.3969/j.issn.1007-6301.2002.06.008
    [19] 李艳梅, 廖上强, 杨俊刚, 等. 温室芹菜需水强度与作物系数研究[J]. 节水灌溉, 2016(12): 54–58, 63

    LI Y M, LIAO S Q, YANG J G, et al. Analysis of water requirement rate and crop coefficient for greenhouse celery under well-irrigated condition[J]. Water Saving Irrigation, 2016(12): 54–58, 63
    [20] 苗文芳, 刘秀位, 邵立威, 等. 金丝小枣蒸散和作物系数变化规律研究[J]. 灌溉排水学报, 2013, 32(1): 77−81

    MIAO W F, LIU X W, SHAO L W, et al. Daily transpiration, evaporation and crop coefficient of Ziziphus jujube[J]. Journal of Irrigation and Drainage, 2013, 32(1): 77−81
    [21] 李春, 何洪林, 刘敏, 等. ChinaFLUX CO2通量数据处理系统与应用[J]. 地球信息科学, 2008, 10(5): 557−565

    LI C, HE H L, LIU M, et al. The design and application of CO2 flux data processing system at ChinaFLUX[J]. Geo-Information Science, 2008, 10(5): 557−565
    [22] 张玉翠, 姜寒冰, 张传伟, 等. 2007—2013年华北平原典型灌溉农田生态系统日通量数据集−以栾城站为例[J]. 中国科学数据, 2020, 5(2): 40−50

    ZHANG Y C, JIANG H B, ZHANG C W, et al. Daily fluxes dataset of the typical irrigated agro-ecosystem in the North China Plain: a case study of Luancheng Station (2007−2013)[J]. China Scientific Data, 2020, 5(2): 40−50
    [23] SHEN Y J, ZHANG Y C, SCANLON B R, et al. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain[J]. Agricultural & Forest Meteorology, 2013, 181: 133−142
    [24] 段爱旺. 北方地区主要农作物灌溉用水定额[M]. 北京: 中国农业科学技术出版社, 2004

    DUAN A W. Irrigation Water Quota for Major Crops in the Northern Region[M]. Beijing: China Agricultural Science and Technology Press, 2004
    [25] LI S E, KANG S Z, LI F S, et al. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China[J]. Agricultural Water Management, 2008, 95(11): 1214−1222 doi: 10.1016/j.agwat.2008.04.014
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  60
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 录用日期:  2021-10-27
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回