留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物有机肥与化肥配施对稻田氨挥发的影响

张靖 朱潇 沈健林 李勇 王娟 吴金水

张靖, 朱潇, 沈健林, 李勇, 王娟, 吴金水. 生物有机肥与化肥配施对稻田氨挥发的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 15−25 doi: 10.12357/cjea.20210355
引用本文: 张靖, 朱潇, 沈健林, 李勇, 王娟, 吴金水. 生物有机肥与化肥配施对稻田氨挥发的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 15−25 doi: 10.12357/cjea.20210355
ZHANG J, ZHU X, SHEN J L, LI Y, WANG J, WU J S. Effects of combined application of microbial organic fertilizer and chemical fertilizer on ammonia volatilization in a paddy field with double rice cropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 15−25 doi: 10.12357/cjea.20210355
Citation: ZHANG J, ZHU X, SHEN J L, LI Y, WANG J, WU J S. Effects of combined application of microbial organic fertilizer and chemical fertilizer on ammonia volatilization in a paddy field with double rice cropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 15−25 doi: 10.12357/cjea.20210355

生物有机肥与化肥配施对稻田氨挥发的影响

doi: 10.12357/cjea.20210355
基金项目: 国家重点研发计划项目(2018YFC0213302)、国家自然科学基金项目(41771336)和湖南省重点研发项目(2020NK2011)资助
详细信息
    作者简介:

    张靖, 主要研究方向为土壤碳氮循环。E-mail: secr0090@163.com

    通讯作者:

    王娟, 主要研究方向为土壤生态与农业环境。E-mail: wangjuan@isa.ac.cn

  • 中图分类号: S144.1; X171.3

Effects of combined application of microbial organic fertilizer and chemical fertilizer on ammonia volatilization in a paddy field with double rice cropping

Funds: This study was supported by the National Key Research and Development Project of China (2018YFC0213302), the National Natural Science Foundation of China (41771336) and Key Research and Development Project of Hunan Province (2020NK2011).
More Information
  • 摘要: 氨挥发是农田氮素损失的重要途径之一, 氨排放到大气中后与酸性气体反应形成二次气溶胶, 对空气质量有重要影响。本文研究了生物有机肥与化肥配施对稻田氨挥发的效果及主要机制, 旨在探索有效的稻田氨减排措施。本研究选取湖南省长沙县典型双季稻稻田, 开展为期两年4个稻季的田间试验, 设置不施氮肥(CK)、常规氮肥表施(CON)、生物有机肥替代40%氮肥+化肥表施(CB)、氮肥减量30%+生物有机肥替代40%减量氮肥+化肥深施(RBD) 4种施肥处理, 观测不同施肥处理下氨挥发动态及相关影响因素。两年的田间定位试验结果表明, 相同施氮量下, 采用生物有机肥与化肥配施显著降低了氨挥发(P<0.05), 且产量差异不显著。深施减氮结合生物有机肥与化肥配施, 氨挥发较CB处理进一步显著减少(P<0.05); 除2019年晚稻季外, 其余3个稻季CB处理与CON处理间水稻籽粒产量差异不显著。早、晚稻季, CB和RBD氨挥发累积量较CON处理分别降低25.2%~35.6%和63.2%~70.9% (P<0.05)。田面水铵态氮浓度与稻田氨挥发通量在各处理表现一致的变化趋势, 且呈现显著正相关(P<0.05), 表明施用生物有机肥及化学氮肥深施均可有效降低田面水铵态氮浓度, 从而减少氨挥发。综合两年的试验, 生物有机肥替代化肥结合深施减氮可减少稻田氨挥发达60%, 且不降低水稻产量, 可有效实现稻田氮肥减量、氨挥发减排。
  • 图  1  试验期(2019—2020年)研究区平均气温与降雨量

    Figure  1.  Monthly average temperature and precipitation from 2019 to 2020 in the stuey area

    图  2  2019年和2020年不同施肥处理下双季稻稻田氨挥发的动态变化

    2019E、2019L、2020E、2020L分别为2019年早稻季、2019年晚稻季、2020年早稻季和2020年晚稻季; 箭头代表氮肥施用; 各处理说明详见表1。2019E, 2019L, 2020E, 2020L at the upper left corner mean the early-season rice of 2019, the late-season rice of 2019, the early-season rice of 2020, and the late-season rice of 2020, respectively. The arrows denote the N fertilizer application. The description of each treatment is shown in the table 1.

    Figure  2.  Dynamics of NH3 fluxes under different fertilizer treatments from the double rice paddy field in 2019 and 2020

    图  3  2019年和2020年不同施肥处理下双季稻稻田氨挥发累积排放量(A)及其占施氮量的比例(B)

    同一稻季不同小写字母表示处理间差异显著(P<0.05)。2019E、2019L、2020E和2020L分别指2019年早稻季、2019年晚稻季、2020年早稻季和2020年晚稻季。各处理说明详见表1。Different lowercase letters for the same rice season indicate significant differences among treatments at P<0.05 level according to Duncan’s multiple range test. 2019E, 2019L, 2020E and 2020L mean the early-rice season of 2019, the late-rice season of 2019, the early-rice season of 2020, and the late-rice season of 2020, respectively. The description of each treatment is shown in the table 1.

    Figure  3.  Cumulative ammonia volatilization (A) and percentage of applied nitrogen (B) under different fertilizer treatments in the double rice paddy fields in 2019 and 2020

    图  4  2019年和2020年不同施肥处理双季稻稻田田面水铵态氮浓度的动态变化

    2019E、2019L、2020E、2020L分别为2019年早稻季、2019年晚稻季、2020年早稻季和2020年晚稻季; 箭头代表氮肥施用; 各处理说明详见表1。2019E, 2019L, 2020E, 2020L at the upper left corner mean the early-season rice of 2019, the late-season rice of 2019, the early-season rice of 2020, and the late-season rice of 2020, respectively. The arrows denote the N fertilizer application. The description of each treatment is shown in the table 1.

    Figure  4.  Dynamics of NH4+-N concentration in surface water under different fertilizer treatments of the double rice paddy fields in 2019 and 2020

    图  5  2019年和2020年不同施肥处理水稻籽粒产量(A)及氮肥偏生产力(B)

    同一稻季不同小写字母表示处理间差异显著(P<0.05)。2019E、2019L、2020E和2020L分别指2019年早稻季、2019年晚稻季、2020年早稻季和2020年晚稻季。各处理说明详见表1。Different lowercase letters for the same rice season indicate significant differences among treatments at P<0.05 level according to Duncan’s multiple range test. 2019E, 2019L, 2020E and 2020L mean the early-rice season of 2019, the late-rice season of 2019, the early-rice season of 2020, and the late-rice season of 2020, respectively. The description of each treatment is shown in the table 1.

    Figure  5.  Grain yields (A) and partial factor productivities from applied nitrogen (B) under different fertilizer treatments in 2019 and 2020

    表  1  各处理的生物有机肥和化肥氮肥的施用情况

    Table  1.   Application rates and methods of microbial organic fertilizer and chemical fertilier of each treatment kg(N)∙hm−2 

    稻季
    Rice season
    处理
    Treatment
    基肥
    Basal fertilization
    化肥追肥
    Topdressing of chemical fertilizer
    施肥次数
    Times of fertilization
    化肥施用方法
    Application method of chemical fertilizer
    基追比
    Base to top ratio
    化肥
    Chemical fertilizer
    生物有机肥
    Microbial organic fertilizer
    早稻
    Early-season rice
    CK0000
    0
    CON112.5037.52表施
    Surface application
    3∶1
    CB4560452表施
    Surface application
    1∶1
    RBD634201深施
    Deep application
    1∶0
    晚稻
    Late-season rice
    CK0000
    0
    CON1350452表施
    Surface application
    3∶1
    CB5472542表施
    Surface application
    1∶1
    RBD75.650.401深施
    Deep application
    1∶0
      CK、CON、CB、RBD 分别表示不施氮肥、常规施肥、40% 生物有机肥与化肥配施、深施减氮结合 40% 生物有机肥配施化肥。 CK, CON, CB, RBD are treatments of no nitrogen application, conventional chemical nitrogen fertilizer (urea) top dressing, conventional chemical nitrogen ferilizer with 40% microbial fertilizer replacement top dressing, conventional with 30% reduction and 40% microbial fertilizer replacement and chemical nitrogen fertilizer deep dressing.
    下载: 导出CSV

    表  2  不同施肥处理的双季稻稻田氨挥发通量与田面水铵态氮浓度的相关系数

    Table  2.   Correlation coefficients between NH3 flux and NH4+-N concentration in surface water of double rice paddy fields under different fertilizer treatments in 2019 and 2020 (n=35)

    处理
    Treatment
    2019早稻季
    Early-season rice of 2019
    2019晚稻季
    Late-season rice of 2019
    2020早稻季
    Early-season rice of 2020
    2020晚稻季
    Late-season rice of 2020
    CON0.895**0.878**0.942**0.919**
    CB0.806**0.897**0.803**0.904**
    RBD0.828**0.907**0.953**0.936**
      **表示在P<0.01水平上差异显著。各处理说明详见表1。** means significant difference at P<0.01 level. The description of each treatment is shown in the table 1.
    下载: 导出CSV
  • [1] 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[R]. 国家统计局. [2021-02-28]. http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html

    National Bureau of Statistics. Statistical Bulletin of the People’s Republic of China on National Economic and Social Development in 2020[R]. National Bureau of Statistics. [2021-02-28]. http://www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html
    [2] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311−1324

    YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311−1324
    [3] XING G X, ZHU Z L. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67−73 doi: 10.1023/A:1009717603427
    [4] CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486−489 doi: 10.1038/nature13609
    [5] FU J, WU Y L, WANG Q H, et al. Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff[J]. Agricultural Water Management, 2019, 213: 627−635 doi: 10.1016/j.agwat.2018.11.005
    [6] 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028

    YU Y L, XUE L H, YANG L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028
    [7] ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: how deep to incorporate urea?[J]. Journal of Environmental Quality, 2013, 42(6): 1635−1642 doi: 10.2134/jeq2013.05.0192
    [8] CHUONG T, PLANT R, LINQUIST B A. Fertilizer source and placement influence ammonia volatilization losses from water-seeded rice systems[J]. Soil Science Society of America Journal, 2020, 84(3): 784−797 doi: 10.1002/saj2.20074
    [9] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80−90 doi: 10.1016/j.fcr.2015.09.011
    [10] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [11] 杨明达. 缓控释肥种类及施肥方式对氨挥发和温室气体排放的影响[D]. 南京: 南京农业大学, 2019

    YANG M D. Effects of slow and controll-released fertilizer types and fertilization modes on ammonia volatilization and greenhouse gas emission[D]. Nanjing: Nanjing Agricultural University, 2019
    [12] ZHONG X, ZHOU X, FEI J, et al. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in southern China[J]. Agriculture Ecosystems & Environment, 2021, 306: 107183
    [13] 陈慧妍, 沙之敏, 吴富钧, 等. 稻蛙共作对水稻-紫云英轮作系统氨挥发的影响[J]. 中国生态农业学报(中英文), 2021, 29(5): 792−801

    CHEN H Y, SHA Z M, WU F J, et al. Effect of rice-frog cultivation on ammonia volatilization in rice-Chinese milk vetch rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 792−801
    [14] CHEN A Q, LEI B K, HU W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 139−152 doi: 10.1007/s10705-014-9660-7
    [15] 邢月, 沙之敏, 卑志钢, 等. 不同施肥方式对稻田氨挥发特征的影响[J]. 江苏农业科学, 2019, 47(17): 313−318

    XING Y, SHA Z M, BEI Z G, et al. Effects of different fertilization methods on ammonia volatilization characteristics in paddy fields[J]. Jiangsu Agricultural Sciences, 2019, 47(17): 313−318
    [16] 张怡彬, 李俊改, 王震, 等. 有机替代下华北平原旱地农田氨挥发的年际减排特征[J]. 植物营养与肥料学报, 2021, 27(1): 1−11 doi: 10.11674/zwyf.20242

    ZHANG Y B, LI J G, WANG Z, et al. Substitution of chemical fertilizer with organic manure reduces ammonia volatilization in maize farmland in North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 1−11 doi: 10.11674/zwyf.20242
    [17] 武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221−230

    WU Q M, ZHANG J M, LI Y Y, et al. Recent advances on the mechanism of beneficial microbial fertilizers in crops[J]. Biotechnology Bulletin, 2021, 37(5): 221−230
    [18] 白雪原, 红梅, 刘向东, 等. 施肥对河套灌区农田氨挥发损失的影响[C]//中国土壤学会. 中国土壤学会第十三次全国会员代表大会暨第十一届海峡两岸土壤肥料学术交流研讨会论文集. 西安, 2016: 183–190

    BAI X Y, HONG M, LIU X D, et al. Effects of fertilization on ammonia volatilization from farmland in Hetao Irrigation District[C]. Soil Science Society of China. Proceedings of the 13th National Congress of the Soil Science Society of China and the 11th Cross-strait Academic Exchange Seminar on Soil and Fertilizer. Xi’an, 2016: 183−190
    [19] SUN H J, ZHANG Y, YANG Y T, et al. Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil[J]. Environmental Pollution, 2021, 275: 116640 doi: 10.1016/j.envpol.2021.116640
    [20] WANG X, XU S J, WU S H, et al. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China[J]. Journal of Environmental Sciences, 2018, 66: 199−207 doi: 10.1016/j.jes.2017.05.016
    [21] SUN B, GU L K, BAO L J, et al. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil[J]. Soil Biology and Biochemistry, 2020, 148: 107911 doi: 10.1016/j.soilbio.2020.107911
    [22] NAHER U A, BISWAS J C, MANIRUZZAMAN M, et al. Bio-organic fertilizer: a green technology to reduce synthetic N and P fertilizer for rice production[J]. Frontiers in Plant Science, 2021, 12: 602052 doi: 10.3389/fpls.2021.602052
    [23] HOU H, ZHOU S, HOSOMI M, et al. Ammonia emissions from anaerobically-digested slurry and chemical fertilizer applied to flooded forage rice[J]. Water, Air, and Soil Pollution, 2007, 183(1/2/3/4): 37−48
    [24] 朱坚, 石丽红, 田发祥, 等. 湖南典型双季稻田氨挥发对施氮量的响应研究[J]. 植物营养与肥料学报, 2013, 19(5): 1129−1138 doi: 10.11674/zwyf.2013.0512

    ZHU J, SHI L H, TIAN F X, et al. Responses of ammonia volatilization to nitrogen application amount in typical double cropping paddy fields in Hunan Province[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1129−1138 doi: 10.11674/zwyf.2013.0512
    [25] 徐伟. 利用vensim动态模拟软件模拟水稻田氮素迁移动态过程[D]. 杭州: 浙江大学, 2007: 20

    XU W. Using vensim to simulate the dynamic course of nitrogen in paddy field[D]. Hangzhou: Zhejiang University, 2007: 20
    [26] 白雪原. 施肥对河套灌区农田系统温室气体排放及氨挥发损失的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2017: 23–24

    BAI X Y. Study on fertilization on farmland system of greenhouse gas emissions and ammonia volatilization in Hetao Irrigation District[D]. Hohhot: Inner Mongolia Agricultural University, 2017: 23– 24
    [27] 武星魁, 姜振萃, 陆志新, 等. 有机肥部分替代化肥氮对叶菜产量和环境效应的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 349−356

    WU X K, JIANG Z C, LU Z X, et al. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 349−356
    [28] SUN B, BAI Z H, BAO L J, et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes[J]. Environment International, 2020, 144: 105989 doi: 10.1016/j.envint.2020.105989
    [29] FISHER K A, YARWOOD S A, JAMES B R. Soil urease activity and bacterial ureC gene copy numbers: Effect of pH[J]. Geoderma, 2017, 285: 1−8 doi: 10.1016/j.geoderma.2016.09.012
    [30] 杨亚红, 薛莉霞, 孙波, 等. 解淀粉芽孢杆菌生物有机肥防控土壤氨挥发[J]. 环境科学, 2020, 41(10): 4711−4718

    YANG Y H, XUE L X, SUN B, et al. Bacillus amyloliquefaciens biofertilizer mitigating soil ammonia volatilization[J]. Environmental Science, 2020, 41(10): 4711−4718
    [31] 汪霞. 微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D]. 合肥: 中国科学技术大学, 2017: 1–15

    WANG X. The effects and mechanism of biofertilizer on mitigation the ammonia volatilization from the alkaline soil[D]. Hefei: University of Science and Technology of China, 2017: 1–15
    [32] 薛莉霞. 生物有机肥防控农田土壤氨挥发及其生态效应[D]. 兰州: 兰州理工大学, 2020: 1–2

    XUE L X. Biofertilizer mitigating soil ammonia volatilization and its ecological efficiency[D]. Lanzhou: Lanzhou University of Technology, 2020: 1–2
    [33] 朱影, 庄国强, 吴尚华, 等. 农田土壤氨挥发的过程和控制技术研究[J]. 环境保护科学, 2020, 46(6): 88−96

    ZHU Y, ZHUANG G Q, WU S H, et al. Ammonia volatilization process and control technology of farmland soil[J]. Environmental Protection Science, 2020, 46(6): 88−96
    [34] MA B L, WU T Y, TREMBLAY N, et al. On-farm assessment of the amount and timing of nitrogen fertilizer on ammonia volatilization[J]. Agronomy Journal, 2010, 102(1): 134−144 doi: 10.2134/agronj2009.0021
    [35] ZHANG M, YAO Y L, ZHAO M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field[J]. Agriculture, Ecosystems & Environment, 2017, 247: 236−245
    [36] PAN B B, LAM S K, MOSIER A, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 232: 283−289
    [37] 周丽平. 不同氮肥缓释化处理及施肥方式对夏玉米田间氨挥发和氮素利用的影响[D]. 北京: 中国农业科学院, 2016: 52

    ZHOU L P. Effects of slow-released nitrogen fertilizers and urea placement on soil ammonia volatilization and nitrogen utilization of summer maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 52
    [38] 周平遥, 张震, 王华, 等. 不同深施肥方式对稻田氨挥发及水稻产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441

    ZHOU P Y, ZHANG Z, WANG H, et al. Effects of deep fertilization methods on ammonia volatilization and rice yield in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441
    [39] 胡瞒瞒, 董文旭, 王文岩, 等. 华北平原氮肥周年深施对冬小麦-夏玉米轮作体系土壤氨挥发的影响[J]. 中国生态农业学报(中英文), 2020, 28(12): 1880−1889

    HU M M, DONG W X, WANG W Y, et al. The effects of deep application of nitrogen fertilization on ammonia volatilization in a winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1880−1889
    [40] WANG C, SUN H F, ZHANG J N, et al. Effects of different fertilization methods on ammonia volatilization from rice paddies[J]. Journal of Cleaner Production, 2021, 295: 126299 doi: 10.1016/j.jclepro.2021.126299
    [41] 刘兆辉, 吴小宾, 谭德水, 等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学, 2018, 51(20): 3827−3839 doi: 10.3864/j.issn.0578-1752.2018.20.002

    LIU Z H, WU X B, TAN D S, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51(20): 3827−3839 doi: 10.3864/j.issn.0578-1752.2018.20.002
    [42] MIN J, SUN H J, WANG Y, et al. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio[J]. Journal of Cleaner Production, 2021, 316: 128370 doi: 10.1016/j.jclepro.2021.128370
    [43] PAN S G, WEN X C, WANG Z M, et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China[J]. Field Crops Research, 2017, 203: 139−149 doi: 10.1016/j.fcr.2016.12.011
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  128
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 录用日期:  2021-10-15
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回