留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同光周期下叶面喷施纳米硒对生菜生长和品质的影响

梁祎 郝文琴 石玉 王训军 韩瑞锋 成永三 张毅

梁祎, 郝文琴, 石玉, 王训军, 韩瑞锋, 成永三, 张毅. 不同光周期下叶面喷施纳米硒对生菜生长和品质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 82−91 doi: 10.12357/cjea.20210366
引用本文: 梁祎, 郝文琴, 石玉, 王训军, 韩瑞锋, 成永三, 张毅. 不同光周期下叶面喷施纳米硒对生菜生长和品质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(1): 82−91 doi: 10.12357/cjea.20210366
LIANG Y, HAO W Q, SHI Y, WANG X J, HAN R F, CHENG Y S, ZHANG Y. Effects of nano-Se foliar spraying and photoperiod on lettuce growth and quality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 82−91 doi: 10.12357/cjea.20210366
Citation: LIANG Y, HAO W Q, SHI Y, WANG X J, HAN R F, CHENG Y S, ZHANG Y. Effects of nano-Se foliar spraying and photoperiod on lettuce growth and quality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 82−91 doi: 10.12357/cjea.20210366

不同光周期下叶面喷施纳米硒对生菜生长和品质的影响

doi: 10.12357/cjea.20210366
基金项目: 教育部产学合作协同育人项目(202101331007)、山西农业大学教学改革项目(YB-202116)和山西省重点研发计划重点项目(201703D211001)资助
详细信息
    作者简介:

    梁祎, 研究方向为设施蔬菜栽培生理。E-mail: liangyi1022@126.com

    通讯作者:

    张毅, 研究方向为设施蔬菜栽培生理。E-mail: harmony1228@163.com

  • 中图分类号: S636.2

Effects of nano-Se foliar spraying and photoperiod on lettuce growth and quality

Funds: This study was supported by the Industry-university Cooperative Education Program of the Ministry of Education of China (202101331007), Shanxi Agricultural University Teaching Reform Project (YB-202116) and Key R&D Program of Shanxi Province (201703D211001).
More Information
  • 摘要: 本试验以‘意大利耐抽薹’生菜为试材, 采用水培法, 设置12 h/12 h (对照)、16 h/8 h、20 h/4 h 3个光周期和叶面喷施0 µmol∙L−1、24 µmol∙L−1和48 µmol∙L−1纳米硒, 两者完全随机组合, 共9个处理, 以此探究两者对生菜生长和品质提升的交互作用, 并筛选出适宜生菜生长的最适处理, 为植物工厂在光环境下施加纳米硒提供理论依据和技术参考。结果表明: 1) 16 h/8 h光周期叶面喷施48 µmol∙L−1纳米硒处理对生菜株高、地上部鲜重、地下部鲜重和根系活力的促进效果较佳。2) 20 h/4 h光周期叶面喷施48 µmol∙L−1纳米硒处理对生菜光合色素含量的促进效果最佳。3) 16 h/8 h光周期处理生菜中可溶性糖、K、Na、Fe含量显著增加, 硝酸盐含量显著下降(P<0.05)。20 h/4 h光周期处理有利于提升可溶性蛋白质、还原糖含量, 但较长的光照处理不利于生菜中氨基酸、Ca、Mg、Zn、Fe、Mn含量提高, 甚至出现抑制效果。与对照(12 h/12 h光周期)相比, 16 h/8 h、20 h/4 h光周期处理均有利于生菜品质的提升, 而且叶面喷施纳米硒后进一步提升了生菜品质。此外, 本试验通过对生菜生长指标和部分品质指标采用主成分分析, 并对其综合排序, 结果表明16 h/8 h光周期下叶面喷施48 µmol∙L−1纳米硒对生菜生长和品质的提质效果最佳。
  • 图  1  不同光周期下叶面喷施纳米硒对生菜生长的影响

    处理具体说明见表1。The description of each treatment is shown in the table 1.

    Figure  1.  Effects of foliar spraying nano-Se on growth of lettuce under different photoperiods

    图  2  不同光周期下叶面喷施纳米硒对生菜根系活力的影响

    处理具体说明见表1。不同小写字母表示各处理间差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among treatments (P<0.05).

    Figure  2.  Effects of foliar spraying nano-Se on root activity of lettuce under different photoperiods

    图  3  不同光周期下叶面喷施纳米硒对生菜还原糖(A)、可溶性糖(B)和可溶性蛋白质(C)含量的影响

    处理具体说明见表1。不同小写字母表示各处理间差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among treatments (P<0.05).

    Figure  3.  Effects of foliar spraying nano-Se on contents of reducing sugar (A), soluble sugar (B) and soluble protein (C) of lettuce under different photoperiods

    图  4  不同光周期下叶面喷施纳米硒对生菜硝酸盐含量的影响

    处理具体说明见表1。不同小写字母表示各处理间差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among treatments (P<0.05).

    Figure  4.  Effects of foliar spraying nano-Se on nitrate content of lettuce under different photoperiods

    表  1  试验处理名称及措施

    Table  1.   Names and measures of different experiment treatments

    处理
    Treatment
    光周期(光/暗)
    Photoperiod (light/dark)
    叶面喷施纳米硒
    Foliar spraying nano-Se (μmol∙L−1)
    P1N112 h/12 h0 (蒸馏水 Distilled water)
    P1N212 h/12 h24
    P1N312 h/12 h48
    P2N116 h/8 h0 (蒸馏水 Distilled water)
    P2N216 h/8 h24
    P2N316 h/8 h48
    P3N120 h/4 h0 (蒸馏水 Distilled water)
    P3N220 h/4 h24
    P3N320 h/4 h48
    下载: 导出CSV

    表  2  不同光周期下叶面喷施纳米硒对生菜株高和生物量的影响

    Table  2.   Effects of foliar spraying nano-Se on plant height and biomass of lettuce under different photoperiods

    处理
    Treatment
    株高
    Plant height (cm)
    地上部鲜重
    Overground fresh weight (g)
    地下部鲜重
    Underground fresh weight (g)
    P1N119.33±0.33cd25.41±1.65cd3.17±0.05bc
    P1N219.00±0.28d33.27±0.66bcd3.94±0.15bc
    P1N320.33±0.33bc33.42±0.80bcd3.58±0.13bc
    P2N122.16±0.44a50.53±6.16a4.66±0.36ab
    P2N221.50±0.28ab34.69±1.23bc3.66±0.21bc
    P2N321.33±0.44ab52.18±8.19a5.49±0.97a
    P3N120.83±0.16b36.72±3.36bc3.96±0.41bc
    P3N217.66±0.44e22.22±0.76d2.78±0.17c
    P3N320.67±0.67b45.32±0.63ab5.80±0.78a
      处理具体说明见表1。同列数据后不同小写字母表示各处理间差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  3  不同光周期下叶面喷施纳米硒对生菜光合色素含量的影响

    Table  3.   Effects of foliar spraying nano-Se on photosynthetic pigment content of lettuce under different photoperiods µg∙g−1(FW) 

    处理
    Treatment
    叶绿素a
    Chlorophyll a
    叶绿素b
    Chlorophyll b
    类胡萝卜素
    Carotenoid
    总叶绿素
    Total chlorophyll
    叶绿素a/b
    Chlorophyll a/b
    P1N1438.1±12.26d159.8±6.33d89.7±1.76c597.9±18.58d2.74±0.03ef
    P1N2357.2±4.49e134.0±1.49e69.6±1.02d491.2±5.95e2.66±0.01f
    P1N3326.9±1.04e112.2±2.93f67.9±0.35d439.0±3.97e2.91±0.06bc
    P2N1512.2±33.33bc165.2±10.35cd111.6±7.08b677.4±43.55bc3.09±0.03a
    P2N2523.7±9.34b183.1±2.99c107.1±0.37b706.8±12.22b2.86±0.01cde
    P2N3536.1±30.66b178.7±12.07cd111.9±7.19b714.8±42.67b3.01±0.03ab
    P3N1459.0±17.63cd158.9±4.81d99.5±3.66bc617.9±22.43cd2.88±0.02bc
    P3N2596.0±15.94a207.6±3.26b147.5±3.79a803.6±19.11a2.87±0.03cd
    P3N3632.3±17.49a229.3±4.78a147.2±6.38a861.7±21.11a2.75±0.05def
      处理具体说明见表1。同列数据后不同小写字母表示各处理间差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  4  不同光周期下叶面喷施纳米硒对生菜氨基酸含量的影响

    Table  4.   Effects of foliar spraying nano-Se on amino acid composition and contents of lettuce under different photoperiods µg∙g−1(DW) 

    氨基酸
    Amino acid
    P1N1P1N2P1N3P2N1P2N2P2N3P3N1P3N2P3N3
    天冬氨酸 Aspartic acid4.33±0.37a4.32±0.37a3.65±0.08b2.18±0.10cd1.73±0.20de2.57±0.31c1.58±0.13e4.32±0.58a1.82±0.21de
    苏氨酸 L-Threonine0.75±0.06e0.81±1.34a0.31±0.06e5.99±0.35c6.29±0.72c9.57±1.84b4.10±0.55d8.59±0.26b5.73±0.89c
    丝氨酸 Serine6.31±0.50b7.40±0.51a7.15±1.04ab3.43±0.12de2.48±0.29f4.25±0.50cd2.65±0.15ef7.60±0.22a4.95±0.59c
    谷氨酸 Glutamic acid5.88±0.51c6.99±0.60b5.86±1.26c2.96±0.13d2.58±0.28d5.20±0.76c3.01±0.17d10.06±0.36a5.39±0.61c
    甘氨酸 Glycine4.22±0.31a4.32±0.30a4.47±1.01a1.79±0.03cd1.62±0.18d2.55±0.31b0.89±0.05e2.40±0.07bc1.60±0.16d
    丙氨酸 Alanine42.96±3.67bc46.50±3.76b39.00±1.95c13.09±0.74e12.52±1.46e20.98±3.59d11.35±0.68e58.53±0.84a23.16±2.99d
    缬氨酸 Valine11.13±0.68b12.60±1.05ab12.10±2.49ab4.80±0.23d4.63±0.34d8.00±1.21c3.75±0.29d13.18±0.14a7.35±0.95c
    异亮氨酸 L-Isoleucine6.57±0.44c7.87±0.65ab7.21±1.47bc2.97±0.15e2.72±0.30e4.90±0.73d2.20±0.21e8.72±0.05a4.62±0.56d
    亮氨酸 Leucine16.96±0.88b17.58±1.42b19.55±0.94a9.18±0.44d8.57±1.07d13.45±2.05c8.03±0.41d16.50±0.03b12.77±1.58c
    苯丙氨酸 Phenylalanine9.29±0.56a9.74±0.77a10.03±2.02a3.49±0.16cd4.00±0.48c6.38±0.95b2.24±0.11d7.50±0.14b4.74±0.56c
    赖氨酸 Lysine9.94±0.31a8.40±0.63b9.44±1.03a2.23±0.14d2.56±0.30d3.91±0.41c0.95±0.02e4.51±0.16c2.40±0.25d
    组氨酸 Histidine1.32±0.09b1.53±0.12ab1.52±0.32ab0.76±0.02c0.49±0.06d1.01±0.13c0.45±0.03d1.66±0.09a1.00±0.12c
    精氨酸 Arginine10.22±0.59b9.74±0.78b10.83±0.85b4.88±0.29d3.33±0.39e5.63±0.85d3.52±0.27e13.93±0.24a7.74±1.02c
      处理具体说明见表1。同行数据后不同小写字母表示各处理差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters in the same row indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  5  不同光周期下叶面喷施纳米硒对生菜矿质元素含量的影响

    Table  5.   Effects of foliar spraying nano-Se on contents of mineral elements in lettuce under different photoperiods

    处理 TreatmentK (g∙kg−1)Na (g·kg−1)Ca (g∙kg−1)Mg (g∙kg−1)Fe (mg∙kg−1)Zn (mg∙kg−1)Mn (mg∙kg−1)Se (μg∙kg−1)
    P1N1 0.30±0.006b 0.26±0.008bc 0.34±0.012a 8.37±0.064a 34.47±2.474ab 248.76±13.212b 62.05±1.084a 33.62±0.178e
    P1N2 0.31±0.017b 0.27±0.04bc 0.33±0.001a 8.07±0.203a 29.57±0.311cd 226.28±10.084b 52.43±1.888b 34.56±0.227d
    P1N3 0.31±0.015b 0.23±0.032c 0.36±0.015a 7.95±0.186a 32.23±1.31bc 341.25±8.7007a 45.88±3.427c 34.86±0.160cd
    P2N1 0.35±0.013a 0.30±0.03abc 0.22±0.024b 5.65±0.114c 27.31±0.793de 234.69±14.004b 21.56±0.483e 35.72±0.200b
    P2N2 0.29±0.01b 0.35±0.035a 0.26±0.015ab 6.21±0.069b 28.73±0.76cde 144.35±4.417c 16.48±0.489fg 35.93±0.291ab
    P2N3 0.32±0.004ab 0.36±0.026a 0.33±0.025a 5.70±0.083c 38.47±1.287a 138.45±2.733c 30.12±0.991d 36.56±0.257a
    P3N1 0.24±0.004c 0.21±0.023c 0.12±0.013c 4.08±0.064e 20.91±0.22f 55.41±2.962d 15.06±0.243g 34.18±0.219de
    P3N2 0.35±0.018a 0.33±0.019ab 0.27±0.019ab 5.85±0.284bc 25.05±2.465e 50.53±3.357d 20.62±1.982ef 34.79±0.103cd
    P3N3 0.32±0.004ab 0.26±0.014bc 0.19±0.081bc 4.83±0.05d 18.75±0.344f 50.96±4.316d 12.62±1.004g 35.40±0.620bc
      处理具体说明见表1。同列数据后不同小写字母表示各处理差异显著(P<0.05)。The description of each treatment is shown in the table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  6  生菜生长和品质主成分分析的各因子载荷矩阵

    Table  6.   Principal component analysis of lettuce growth and quality of each factor load matrix

    主成分
    Principal component
    X1X2X3X4X5X6X7X8X9X10X11X12
    0.5140.6930.7240.5570.8550.7730.7850.8380.4570.5830.1940.699
    0.7640.6560.3970.463−0.490−0.608−0.590−0.5220.5160.7290.099−0.405
    0.047−0.271−0.4740.2460.002−0.0750.049−0.0180.340−0.0180.8430.134
      X1: 株高; X2: 地上部鲜重; X3: 地下部鲜重; X4: 根系活力; X5: 叶绿素a; X6: 叶绿素b; X7: 类胡萝卜素; X8: 总叶绿素; X9: 叶绿素a/b; X10: 可溶性糖; X11: 还原糖; X12: 可溶性蛋白。X1: plant height; X2: fresh weight of aboveground part; X3: fresh weight of underground part; X4: root activity; X5: chlorophyll a; X6: chlorophyll b; X7: carotenoids; X8: total chlorophyll; X9: chlorophyll a/b; X10: soluble sugar; X11: reducing sugar; X12: soluble protein.
    下载: 导出CSV

    表  7  各处理综合因子得分(Y值)及排序

    Table  7.   Comprehensive factor score (Y value) and ranking of each treatment

    处理 TreatmentY1Y2Y3Y排序 Order
    P1N1−2.60−0.76−0.11−1.399
    P1N2−2.880.09−1.21−1.378
    P1N3−2.871.53−0.20−0.836
    P2N11.642.100.301.382
    P2N20.54−0.230.350.215
    P2N32.411.73−0.781.501
    P3N10.440.932.240.704
    P3N20.15−3.910.75−1.037
    P3N33.17−1.47−1.340.833
      处理具体说明见表1。The description of each treatment is shown in the table 1.
    下载: 导出CSV
  • [1] 马英辉, 李利军, 卢美欢, 等. 微生物纳米硒研究进展[J]. 中国酿造, 2020, 39(9): 25−29 doi: 10.11882/j.issn.0254-5071.2020.09.005

    MA Y H, LI L J, LU M H, et al. Research progress of microbial nano-selenium[J]. China Brewing, 2020, 39(9): 25−29 doi: 10.11882/j.issn.0254-5071.2020.09.005
    [2] TAN L C, NANCHARAIAH Y V, VAN HULLEBUSCH E D, et al. Selenium: environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886−907 doi: 10.1016/j.biotechadv.2016.05.005
    [3] 魏艳秋, 景艺卓, 郭笑恒, 等. 外源硒对植物抗盐性的影响研究进展[J]. 作物杂志, 2021, (2): 15−21

    WEI Y Q, JING Y Z, GUO X H, et al. Research progress on the effect of exogenous selenium on salt resistance of plants[J]. Crops, 2021, (2): 15−21
    [4] 袁伟玲, 刘志雄, 吴金平, 等. 硒对生菜生长、品质、养分吸收和硒转化率的影响[J]. 华北农学报, 2020, 35(S1): 189−194 doi: 10.7668/hbnxb.20191595

    YUAN W L, LIU Z X, WU J P, et al. Effects of exogenous selenium on the nutritional quality and mineral element absorption of lettuce[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 189−194 doi: 10.7668/hbnxb.20191595
    [5] 孙崇庆, 马晓春, 高艳明, 等. 硒肥对植物工厂水培生菜生长及品质的影响[J]. 中国瓜菜, 2020, 33(6): 24−29 doi: 10.3969/j.issn.1673-2871.2020.06.005

    SUN C Q, MA X C, GAO Y M, et al. Effect of selenium fertilizers on growth and quality of hydroponic lettuce in plant factory[J]. China Cucurbits and Vegetables, 2020, 33(6): 24−29 doi: 10.3969/j.issn.1673-2871.2020.06.005
    [6] 胡万行, 石玉, 程玉琦, 等. 纳米硒对紫色马铃薯生长及其矿质元素含量和品质特性的影响[J]. 西北植物学报, 2020, 40(2): 296−303

    HU W X, SHI Y, CHENG Y Q, et al. Effects of nano-selenium on the growth and its mineral element contents and quality characteristics of purple potatoes[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(2): 296−303
    [7] LI Y H, LIN Z F, ZHAO M Q, et al. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells[J]. International Journal of Nanomedicine, 2016, 11: 3065−3076 doi: 10.2147/IJN.S109822
    [8] BIAN Z H, LEI B, CHENG R F, et al. Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra[J]. Journal of Integrative Agriculture, 2020, 19(1): 133−144 doi: 10.1016/S2095-3119(19)62775-9
    [9] 孔凡丽, 张恩萍, 曹庆军, 等. 硒的生理功能及在主要作物中的吸收富集[J]. 东北农业科学, 2020, 45(6): 115−118

    KONG F L, ZHANG E P, CAO Q J, et al. Physiological function and absorption enrichment of selenium in staple crops[J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 115−118
    [10] 李列, 仝宇欣, 李锦, 等. 不同光质组合对生菜生长和能量利用效率的影响[J]. 西北农林科技大学学报: 自然科学版, 2020, 48(9): 114−120

    LI L, TONG Y X, LI J, et al. Effect of different combinations of light wavelengths on growth and energy use efficiency of lettuce[J]. Journal of Northwest A & F University: Natural Science Edition, 2020, 48(9): 114−120
    [11] 杜彦修, 季新, 张静, 等. 弱光对水稻生长发育影响研究进展[J]. 中国生态农业学报, 2013, 21(11): 1307−1317 doi: 10.3724/SP.J.1011.2013.01307

    DU Y X, JI X, ZHANG J, et al. Research progress on the impacts of low light intensity on rice growth and development[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1307−1317 doi: 10.3724/SP.J.1011.2013.01307
    [12] 傅国海, 杨其长, 刘文科. LED补光和根区加温对日光温室起垄内嵌式基质栽培甜椒生长及产量的影响[J]. 中国生态农业学报, 2017, 25(2): 230−238

    FU G H, YANG Q C, LIU W K. Effect of LED supplemental lighting and root zone heating on growth and yield of soil ridged substrate-embedded sweet pepper in solar greenhouses in China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 230−238
    [13] SONG J L, HUANG H, SONG S W, et al. Effects of photoperiod interacted with nutrient solution concentration on nutritional quality and antioxidant and mineral content in lettuce[J]. Agronomy, 2020, 10(7): 920 doi: 10.3390/agronomy10070920
    [14] 吉家曾, 李聪聪, 丁慧霞, 等. 光强及光周期对红叶生菜生长及品质的影响[J]. 照明工程学报, 2019, 30(6): 163−166

    JI J Z, LI C C, DING H X, et al. Effects of light intensity and photoperiod on growth and quality of red leaf lettuce[J]. China Illuminating Engineering Journal, 2019, 30(6): 163−166
    [15] KELLY N, CHOE D, MENG Q W, et al. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod[J]. Scientia Horticulturae, 2020, 272: 109565 doi: 10.1016/j.scienta.2020.109565
    [16] 刘杰, 胡笑涛, 王文娥, 等. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响[J]. 西南农业学报, 2019, 32(8): 1784−1790

    LIU J, HU X T, WANG W E, et al. Effects of light intensity and photoperiod on photosynthetic characteristics and chlorophyll fluorescence of hydroponic lettuce[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1784−1790
    [17] 查凌雁, 刘文科. LED红蓝光连续光照对五种生菜生长、光合和叶绿素荧光特性的影响[J]. 植物生理学报, 2017, 53(9): 1735−1741

    ZHA L Y, LIU W K. Effect of continuous light with red and blue LED lamps on growth and characteristics of photosynthesis and chlorophyll fluorescence of five lettuce cultivars[J]. Plant Physiology Journal, 2017, 53(9): 1735−1741
    [18] SAMUOLIENĖ G, VIRŠILĖ A, MILIAUSKIENĖ J, et al. The physiological response of lettuce to red and blue light dynamics over different photoperiods[J]. Frontiers in Plant Science, 2021, 11: 610174 doi: 10.3389/fpls.2020.610174
    [19] 佟静, 吴萍, 季延海, 等. 叶用莴苣(生菜)单粒播种、一次成苗穴盘育苗技术[J]. 中国蔬菜, 2019, (9): 99−100

    TONG J, WU P, JI Y H, et al. The technique of single seed sowing and one time seedling raising of lettuce[J]. China Vegetables, 2019, (9): 99−100
    [20] 翟克清, 张昕昱, 周念念, 等. 光学干涉膜下生菜的生理指标变化及品质分析[J]. 浙江农业学报, 2019, 31(9): 1493−1501 doi: 10.3969/j.issn.1004-1524.2019.09.13

    ZHAI K Q, ZHANG X Y, ZHOU N N, et al. Changes of physiological indexes and quality analysis of lettuce under optical interference film[J]. Acta Agriculturae Zhejiangensis, 2019, 31(9): 1493−1501 doi: 10.3969/j.issn.1004-1524.2019.09.13
    [21] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006

    LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2006
    [22] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Plant Physiology Experimental Guidance[M]. Beijing: Higher Education Press, 2006
    [23] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248−254
    [24] 林海明, 张文霖. 主成分分析与因子分析的异同和SPSS软件−兼与刘玉玫、卢纹岱等同志商榷[J]. 统计研究, 2005, 22(3): 65−69 doi: 10.3969/j.issn.1002-4565.2005.03.015

    LIN H M, ZHANG W L. The relationship between principal component analysis and factor analysis and SPSS software — to discuss with Liu Yumei, Lu Wendai etc[J]. Statistical Research, 2005, 22(3): 65−69 doi: 10.3969/j.issn.1002-4565.2005.03.015
    [25] 张玉彬, 刘文科, 杨其长, 等. 采收前LED红蓝光连续照射对水培生菜品质的提升作用[J]. 中国农业气象, 2020, 41(7): 436−445 doi: 10.3969/j.issn.1000-6362.2020.07.004

    ZHANG Y B, LIU W K, YANG Q C, et al. Improvement effects of red and blue LED continuous lighting before harvest on quality of hydroponic lettuce[J]. Chinese Journal of Agrometeorology, 2020, 41(7): 436−445 doi: 10.3969/j.issn.1000-6362.2020.07.004
    [26] CRAIG D S, RUNKLE E S. An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-day plants[J]. Environmental and Experimental Botany, 2016, 121: 132−138 doi: 10.1016/j.envexpbot.2015.04.004
    [27] 任旭妍, 张婵, 张亚, 等. 不同红蓝LED光照强度对紫叶生菜生长及营养品质的影响[J]. 华北农学报, 2019, 34(6): 89−96 doi: 10.7668/hbnxb.20190484

    REN X Y, ZHANG C, ZHANG Y, et al. Effects of different red and blue LED light intensities on the growth and nutritional quality of purple leaf lettuce[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(6): 89−96 doi: 10.7668/hbnxb.20190484
    [28] YAN Z N, HE D X, NIU G H, et al. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage[J]. Scientia Horticulturae, 2019, 248: 138−144 doi: 10.1016/j.scienta.2019.01.002
    [29] 林魁, 黄枝, 金心怡, 等. 植物生长光调控应用研究进展[J]. 热带作物学报, 2017, 38(6): 1163−1170 doi: 10.3969/j.issn.1000-2561.2017.06.029

    LIN K, HUANG Z, JIN X Y, et al. Progress of research in light regulation for plants[J]. Chinese Journal of Tropical Crops, 2017, 38(6): 1163−1170 doi: 10.3969/j.issn.1000-2561.2017.06.029
    [30] WANG C R, CHENG T T, LIU H T, et al. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils[J]. Journal of Environmental Sciences, 2021, 103: 336−346 doi: 10.1016/j.jes.2020.11.005
    [31] 何久兴, 赵解春, 白文波, 等. 叶面喷施寡糖对生菜生长和品质的调节作用[J]. 中国农业气象, 2019, 40(12): 783−792 doi: 10.3969/j.issn.1000-6362.2019.12.005

    HE J X, ZHAO J C, BAI W B, et al. Effect of different oligosaccharides by spraying on plant growth and quality in lettuce[J]. Chinese Journal of Agrometeorology, 2019, 40(12): 783−792 doi: 10.3969/j.issn.1000-6362.2019.12.005
    [32] VIRŠILĖ A, BRAZAITYTĖ A, VAŠTAKAITĖ-KAIRIENĖ V, et al. Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce[J]. Journal of the Science of Food and Agriculture, 2019, 99(14): 6608−6619 doi: 10.1002/jsfa.9948
    [33] 高勇, 李清明, 刘彬彬, 等. 不同光质配比对紫叶生菜光合特性和品质的影响[J]. 应用生态学报, 2018, 29(11): 3649−3657

    GAO Y, LI Q M, LIU B B, et al. Effects of light quality ratio on photosynthetic characteristics and quality of purple lettuce[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3649−3657
    [34] ATIF M J, AMIN B, GHANI M I, et al. Variation in morphological and quality parameters in garlic (Allium sativum L.) bulb influenced by different photoperiod, temperature, sowing and harvesting time[J]. Plants, 2020, 9(2): 155 doi: 10.3390/plants9020155
    [35] LEI B, BIAN Z H, YANG Q C, et al. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.)[J]. Journal of Integrative Agriculture, 2018, 17(4): 837−846 doi: 10.1016/S2095-3119(17)61759-3
    [36] 周晚来, 刘文科, 闻婧, 等. 短期连续光照下水培生菜品质指标变化及其关联性分析[J]. 中国生态农业学报, 2011, 19(6): 1319−1323

    ZHOU W L, LIU W K, WEN J, et al. Changes in and correlation analysis of quality indices of hydroponic lettuce under short-term continuous light[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1319−1323
    [37] 吕兵兵, 姚攀锋, 王官凤, 等. 光周期对苦荞芽菜生长与品质的影响[J]. 西北植物学报, 2019, 39(10): 1785−1794

    LÜ B B, YAO P F, WANG G F, et al. Effect of photoperiod on growth and quality of Tartary buckwheat sprouts[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(10): 1785−1794
    [38] 黄小兰, 何旭峰, 杨勤, 等. 不同产地地参中17种氨基酸的测定与分析[J]. 食品科学, 2021, 42(2): 255−261 doi: 10.7506/spkx1002-6630-20200108-090

    HUANG X L, HE X F, YANG Q, et al. Determination of 17 amino acids in the dried rhizome of Lycopus lucidus Turcz. var. hirtus Regel from different habitats[J]. Food Science, 2021, 42(2): 255−261 doi: 10.7506/spkx1002-6630-20200108-090
    [39] 宋奇超, 曹凤秋, 巩元勇, 等. 高等植物氨基酸吸收与转运及生物学功能的研究进展[J]. 植物营养与肥料学报, 2012, 18(6): 1507−1517

    SONG Q C, CAO F Q, GONG Y Y, et al. Current research progresses of amino acids uptake, transport and their biological roles in higher plants[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1507−1517
    [40] 崔剑波, 尹昭汉. 外源Se对农作物籽实中Se的化学形态及其品质的影响[J]. 应用生态学报, 1993, 4(3): 303−307 doi: 10.3321/j.issn:1001-9332.1993.03.017

    CUI J B, YIN Z H. Influence of supplemented selenium on chemical forms of selenium in crop seeds and their quality[J]. Chinese Journal of Applied Ecology, 1993, 4(3): 303−307 doi: 10.3321/j.issn:1001-9332.1993.03.017
    [41] 苏苑君, 胡笑涛, 王文娥, 等. 磷对水培生菜生长及矿质元素动态吸收的影响[J]. 中国生态农业学报, 2015, 23(10): 1244−1252

    SU Y J, HU X T, WANG W E, et al. Effect of phosphorus on dynamic growth and nutrient absorption of hydroponic lettuce[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1244−1252
    [42] 刘文科, 张玉彬, 查凌雁, 等. 采收前连续光照光质对三种供氮水平的水培生菜营养元素含量的影响[J]. 光谱学与光谱分析, 2020, 40(12): 3884−3889

    LIU W K, ZHANG Y B, ZHA L Y, et al. Effects of continuous light before harvest on nutrient element contents of hydroponic lettuce cultivated supplied with three nitrogen levels and two LED red and blue light qualities[J]. Spectroscopy and Spectral Analysis, 2020, 40(12): 3884−3889
    [43] 查凌雁, 张玉彬, 李宗耕, 等. LED红蓝光连续光照及其光强对生菜生长及矿质元素吸收的影响[J]. 光谱学与光谱分析, 2019, 39(8): 2474−2480

    ZHA L Y, ZHANG Y B, LI Z G, et al. Effect of continuous red/blue LED light and its light intensity on growth and mineral elements absorption of lettuce[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2474−2480
    [44] 李海云, 刘焕红. 夜间补光对黄瓜幼苗激素含量及养分吸收的影响[J]. 中国农学通报, 2013, 29(16): 74−78 doi: 10.11924/j.issn.1000-6850.2012-3699

    LI H Y, LIU H H. Effects of supplementary illumination at night on hormones content and nutrient absorption of cucumber seedlings[J]. Chinese Agricultural Science Bulletin, 2013, 29(16): 74−78 doi: 10.11924/j.issn.1000-6850.2012-3699
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  84
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 录用日期:  2021-09-03
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回