留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施

刘志铭 司雨 姚凡云 郑培峰 兰天娇 吕艳杰 王永军

刘志铭, 司雨, 姚凡云, 郑培峰, 兰天娇, 吕艳杰, 王永军. 提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施[J]. 中国生态农业学报 (中英文), 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405
引用本文: 刘志铭, 司雨, 姚凡云, 郑培峰, 兰天娇, 吕艳杰, 王永军. 提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施[J]. 中国生态农业学报 (中英文), 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405
LIU Z M, SI Y, YAO F Y, ZHENG P F, LAN T J, LYU Y J, WANG Y J. Integrated management improves spring maize yield and resources use efficiency, and reduces the carbon footprint in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405
Citation: LIU Z M, SI Y, YAO F Y, ZHENG P F, LAN T J, LYU Y J, WANG Y J. Integrated management improves spring maize yield and resources use efficiency, and reduces the carbon footprint in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405

提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施

doi: 10.12357/cjea.20210405
基金项目: 吉林省自然科学基金项目(20190201027JC)和吉林省农业科技创新工程项目(CXGC2021ZY001)资助
详细信息
    作者简介:

    刘志铭, 主要研究方向为玉米栽培生理, E-mail: liuzhiming5050@163.com

    司雨, 主要从事作物生理生态研究, E-mail: siyujilin@126.com

    通讯作者:

    吕艳杰, 主要研究方向为玉米栽培生理。E-mail: lvyanjie_1977@163.com

  • 中图分类号: S513

Integrated management improves spring maize yield and resources use efficiency, and reduces the carbon footprint in Northeast China

Funds: This study was supported by the Natural Science Foundation of Jilin Province (20190201027JC) and the Agricultural Science and Technology Innovation Project of Jilin Province (CXGC2021ZY001).
More Information
  • 摘要: 东北是我国最大的玉米产区, 但生产中长期以高产为目标的管理方式, 导致其生产系统成为巨大的温室气体排放源, 在保证产量的基础上采取有效措施提高资源利用效率并降低环境代价已成为产业发展的迫切需求。本研究选择东北平原中部半湿润区和半干旱区, 采用宽窄行(宽行90 cm, 窄行40 cm)和高密度(90 000株∙hm−2)种植, 在玉米15叶期喷施化控剂, 氮肥减施(半湿润区和半干旱区分别减少28.0%和9.1%)的综合管理模式(IM), 其中半干旱区增加了膜下滴灌处理。从玉米产量、温光利用效率、经济效益和碳足迹等方面, 比较分析了东北不同生态类型区IM和农户模式(FM: 65 cm等行距, 种植密度60 000株·hm−2, 不化控)的差异。结果表明, 与FM相比, 半湿润区和半干旱区IM玉米产量分别提高24.2%和25.6%, 主要表现为种植密度增加50%使得收获穗数增加52.8%, 而穗粒数和千粒重仅分别降低8.5%和11.0%; 半湿润区积温生产效率提高21.1%, 光能利用效率提高21.0%, 半干旱区积温生产效率和光能利用效率分别提高20.7%和22.0%; 而且半湿润区和半干旱区IM年净收益分别较FM增加32.9%和24.4%。同时, 半湿润区IM碳排放总量为2860.1 kg(CO2-eq)·hm−2, 较FM降低18.7%; 而半干旱区IM的碳排放总量为 2729.6 kg(CO2-eq)·hm−2, 较FM增加8.9%。半湿润区和半干旱区IM单位玉米产量的碳足迹分别为0.20 kg(CO2-eq)·kg−1和0.22 kg(CO2-eq)·kg−1, 分别较FM降低39.4%和15.4%。综上, 在东北春玉米区采取综合管理措施, 能够实现玉米产量、温光资源利用效率和经济效益协同提升, 且显著降低其碳足迹, 其中半湿润区效果尤为明显, 而半干旱区碳排放虽有所增加, 但其增幅低于产量增幅, 最终显著降低碳足迹。所以, 该综合管理模式可在东北玉米生产中推荐应用。
  • 图  1  不同生态区不同种植模式春玉米积温生产效率和光能利用效率

    IM: 综合管理模式; FM: 农户模式; SH: 半湿润区; SA: 半干旱区。*和**分别表示种植模式间在P<0.05和P<0.01水平差异显著。IM: integrated management mode; FM: farmers’ mode; SH: semi-humid area; SA: semi-arid area. * and ** indicate significant differences between two planting modes at P<0.05 and P<0.01 levels, respectively.

    Figure  1.  Accumulated temperature production efficiency and light energy utilization efficiency of spring maize under different planting modes in different ecological areas

    图  2  不同生态区不同种植模式春玉米的单位产量碳足迹

    IM: 综合管理模式; FM: 农户模式; SH: 半湿润区; SA: 半干旱区。**表示种植模式间在P<0.01水平差异显著。IM: integrated management mode; FM: farmers’ mode; SH: semi-humid area; SA: semi-arid area. ** indicates significant difference between two planting modes at P<0.01 level.

    Figure  2.  Carbon footprint per unit yield of of spring maize under different planting modes in different ecological areas

    表  1  春玉米生产过程中生产资料的碳排放参数[33]

    Table  1.   Carbon emission parameters of agricultural materials in spring maize production[33]

    项目
    Item
    碳排放参数
    Carbon emission parameter [kg(CO2)∙kg−1]
    氮肥 Nitrogen fertilizer (N)4.96
    磷肥 Phosphorus fertilizer (P2O5)1.41
    钾肥 Potassium fertilizer (K2O)0.66
    种子 Seed1.22
    柴油 Diesel oil3.32
    农药 Pesticide6.58
    下载: 导出CSV

    表  2  不同生态区不同种植模式的春玉米产量及其构成因素

    Table  2.   Yield and its components of spring maize under different planting modes in different ecological areas

    年份
    Year
    地区
    Area
    耕作模式
    Farming mode
    收获穗数
    Ear number
    穗粒数
    Ear grain number
    千粒重
    1000-kernel weight (g)
    产量
    Yield (kg∙hm−2)
    2019半湿润区
    Semi-humid area
    FM58 140±914b597.3±12.7a306.3±7.6a12 337±430b
    IM87 623±1718a531.7±13.6b270.3±4.2b14 178±369a
    半干旱区
    Semi-arid area
    FM56 847±591b555.3±11.0a328.7±9.6a11 614±589b
    IM85 356±2105a517.3±2.1b285.7±4.0b14 590±566a
    2020半湿润区
    Semi-humid area
    FM56 622±2603b604.7±17.4a293.3±1.7a10 570±332b
    IM82 916±1397a557.0±10.1b267.1±2.1b14 097±146a
    半干旱区
    Semi-arid area
    FM51 500±928b630.7±5.8a280.9±1.6a9829±64.7b
    IM84 374±2252a573.2±7.9b253.1±5.1b12 334±1946a
      IM: 综合管理模式; FM: 农户模式。不同小写字母表示种植模式间差异显著(P<0.05)。IM: integrated management mode; FM: farmers’ mode. Different lowercase letters following data indicate significant differences between two planting modes (P<0.05).
    下载: 导出CSV

    表  3  不同生态区不同种植模式春玉米生产过程中要素投入与产出

    Table  3.   Economic costs and revenue in spring maize under different planting modes in different ecological areas

    年份
    Year
    地区
    Area
    种植
    模式
    Planting mode
    种子
    Seed
    (¥∙hm−2)
    化肥
    Fertilizer
    (¥∙hm−2)
    农药
    Pesticide
    (¥∙hm−2)
    机械作业Mechanical operation
    (¥∙hm−2)
    农膜Agricultural film
    (¥∙hm−2)
    总投入
    Total cost
    (¥∙hm−2)
    总收入
    Gross revenue (¥∙hm−2)
    产投比
    Ratio of income
    to cost
    2019半湿润区
    Semi-humid area
    FM666189033524000529123 4414.4
    IM750175038020000488026 9385.5
    半干旱区
    Semi-arid area
    FM625173034514500415022 0675.3
    IM71016704201600850525027 7215.3
    2020半湿润区
    Semi-humid area
    FM800196735524400556226 4254.8
    IM900182040520300515535 2436.8
    半干旱区
    Semi-arid area
    FM750180035013000420024 5735.9
    IM85017604251500900543530 5855.6
      IM: 综合管理模式; FM: 农户模式。IM: integrated management mode; FM: farmers’ mode.
    下载: 导出CSV

    表  4  不同生态区不同种植模式春玉米的碳排放量及其构成因素

    Table  4.   Carbon emissions and components of spring maize under different planting modes in different ecological areas kg∙hm−2

    地区
    Area
    种植
    模式
    Planting mode
    氮肥
    Nitrogen fertilizer
    磷肥
    Phosphorus fertilizer
    钾肥
    Potassium fertilizer
    农药
    Pesticide
    种子
    Seed
    柴油
    Diesel

    Electricity
    间接碳排放
    Indirect carbon emission
    直接碳排放
    Direct carbon emission
    碳排放总量
    Total carbon emission
    SHFM1240.0114.066.036.224.4332.001812.61706.33518.94
    IM892.8114.066.038.228.1332.001471.11389.02860.1
    SAFM1091.293.569.332.125.6398.401710.1796.62506.7
    IM992.093.569.333.430.5398.482.81699.91029.82729.6
      IM: 综合管理模式; FM: 农户模式; SH: 半湿润区; SA: 半干旱区。IM: integrated management mode; FM: farmers’ mode; SH: semi-humid area; SA: semi-arid area.
    下载: 导出CSV
  • [1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021

    National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021
    [2] 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序[J]. 中国农业科学, 2010, 43(6): 1136−1146 doi: 10.3864/j.issn.0578-1752.2010.06.005

    WANG C T, LI S K. Assessment of limiting factors and techniques prioritization for maize production in China[J]. Scientia Agricultura Sinica, 2010, 43(6): 1136−1146 doi: 10.3864/j.issn.0578-1752.2010.06.005
    [3] 杨哲, 于胜男, 高聚林, 等. 主要栽培措施对北方春玉米产量贡献的定量评估[J]. 中国农业科学, 2020, 53(15): 3024−3035 doi: 10.3864/j.issn.0578-1752.2020.15.004

    YANG Z, YU S N, GAO J L, et al. Quantitative evaluation of the contribution of main management factors to grain yield of spring maize in North China[J]. Scientia Agricultura Sinica, 2020, 53(15): 3024−3035 doi: 10.3864/j.issn.0578-1752.2020.15.004
    [4] 张玉芹, 杨恒山, 李从锋, 等. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902−913 doi: 10.3724/SP.J.1006.2020.93053

    ZHANG Y Q, YANG H S, LI C F, et al. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe Plain[J]. Acta Agronomica Sinica, 2020, 46(6): 902−913 doi: 10.3724/SP.J.1006.2020.93053
    [5] 勾玲, 黄建军, 张宾, 等. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688−1695 doi: 10.3321/j.issn:0496-3490.2007.10.019

    GOU L, HUANG J J, ZHANG B, et al. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize[J]. Acta Agronomica Sinica, 2007, 33(10): 1688−1695 doi: 10.3321/j.issn:0496-3490.2007.10.019
    [6] 张帅, 宁芳芳, 黄收兵, 等. 化控处理时期对玉米植株-根系形态及产量的影响[J]. 中国农业大学学报, 2020, 25(2): 1−11 doi: 10.11841/j.issn.1007-4333.2020.02.01

    ZHANG S, NING F F, HUANG S B, et al. Effects of chemical regulation on timing on maize plant-root morphology and yield[J]. Journal of China Agricultural University, 2020, 25(2): 1−11 doi: 10.11841/j.issn.1007-4333.2020.02.01
    [7] 刘志铭, 盖旭东, 李宝玉, 等. 化控对高密度春玉米抗倒伏能力及产量的影响[J]. 东北农业科学, 2019, 44(6): 1−5

    LIU Z M, GAI X D, LI B Y, et al. Effect of chemical regulators on lodging resistance and yield of spring maize under high density conditions[J]. Journal of Northeast Agricultural Sciences, 2019, 44(6): 1−5
    [8] WANG R, CHENG T, HU L Y. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China[J]. Field Crops Research, 2015, 172: 42−52 doi: 10.1016/j.fcr.2014.12.005
    [9] HOU P, LIU Y, LIU W, et al. How to increase maize production without extra nitrogen input[J]. Resources, Conservation & Recycling, 2020, 160: 104913
    [10] 姚凡云, 刘志铭, 曹玉军, 等. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680−3690 doi: 10.3864/j.issn.0578-1752.2021.17.010

    YAO F Y, LIU Z M, CAO Y J, et al. Diurnal variation of N2O and CO2 emissions in spring maize fields in Northeast China under different nitrogen fertilizers[J]. Scientia Agricultura Sinica, 2021, 54(17): 3680−3690 doi: 10.3864/j.issn.0578-1752.2021.17.010
    [11] 王永军, 吕艳杰, 刘慧涛, 等. 东北春玉米高产与养分高效综合管理[J]. 中国农业科学, 2019, 52(20): 3533−3535 doi: 10.3864/j.issn.0578-1752.2019.20.004

    WANG Y J, LÜ Y J, LIU H T, et al. Integrated management of high-yielding and high nutrient efficient spring maize in Northeast China[J]. Scientia Agricultura Sinica, 2019, 52(20): 3533−3535 doi: 10.3864/j.issn.0578-1752.2019.20.004
    [12] 孙磊, 王丽华, 高中超, 等. 减氮配合增效剂和缓释肥对玉米田土壤温室气体排放和产量的影响[J]. 土壤通报, 2020, 51(1): 185−194

    SUN L, WANG L H, GAO Z C, et al. Effects of reduction of nitrogen fertilizer combined with synergist and slow release fertilizer on greenhouse gas emissions and yield in corn field[J]. Chinese Journal of Soil Science, 2020, 51(1): 185−194
    [13] 靳立斌, 张吉旺, 李波, 等. 高产高效夏玉米的冠层结构及其光合特性[J]. 中国农业科学, 2013, 46(12): 2430−2439 doi: 10.3864/j.issn.0578-1752.2013.12.004

    JIN L B, ZHANG J W, LI B, et al. Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize[J]. Scientia Agricultura Sinica, 2013, 46(12): 2430−2439 doi: 10.3864/j.issn.0578-1752.2013.12.004
    [14] HOLKA M, BIEŃKOWSKI J. Carbon footprint and life-cycle costs of maize production in conventional and non-inversion tillage systems[J]. Agronomy, 2020, 10(12): 1877 doi: 10.3390/agronomy10121877
    [15] 姚凡云, 王立春, 多馨曲, 等. 不同氮肥对东北春玉米农田温室气体周年排放的影响[J]. 应用生态学报, 2019, 30(4): 1303−1311

    YAO F Y, WANG L C, DUO X Q, et al. Effects of different nitrogen fertilizers on annual emissions of greenhouse gas from maize field in Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1303−1311
    [16] LU X L, LU X N. Tillage and crop residue effects on the energy consumption, input-output costs and greenhouse gas emissions of maize crops[J]. Nutrient Cycling in Agroecosystems, 2017, 108(3): 323−337 doi: 10.1007/s10705-017-9859-5
    [17] 朱晓晴, 安晶, 马玲, 等. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010

    ZHU X Q, AN J, MA L, et al. Effects of different straw returning depths on soil greenhouse gas emission and maize yield[J]. Scientia Agricultura Sinica, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010
    [18] 王上, 李康利, 聂江文, 等. 华北平原春绿豆-夏玉米种植模式经济效益和碳足迹评价[J]. 中国生态农业学报(中英文), 2020, 28(6): 910−919

    WANG S, LI K L, NIE J W, et al. Economic benefits and carbon footprint of a spring mung bean-summer maize cropping system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 910−919
    [19] CAMPANHA M M, DE OLIVEIRA A D, MARRIEL I E, et al. Effect of soil tillage and N fertilization on N2O mitigation in maize in the Brazilian Cerrado[J]. Science of the Total Environment, 2019, 692: 1165−1174 doi: 10.1016/j.scitotenv.2019.07.315
    [20] LEE J G, CHO S R, JEONG S T, et al. Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil[J]. Science of the Total Environment, 2019, 696: 133827 doi: 10.1016/j.scitotenv.2019.133827
    [21] CUELLO J P, HWANG H Y, GUTIERREZ J, et al. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation[J]. Applied Soil Ecology, 2015, 91: 48−57 doi: 10.1016/j.apsoil.2015.02.007
    [22] 俞祥群, 姜振辉, 王江怀, 等. 减氮施肥对春玉米-晚稻生产系统碳足迹的影响[J]. 应用生态学报, 2019, 30(4): 1397−1403

    YU X Q, JIANG Z H, WANG J H, et al. Effect of reduced nitrogen fertilization on carbon footprint in spring maize-late rice production system[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1397−1403
    [23] 李春喜, 骆婷婷, 闫广轩, 等. 河南省不同生态区小麦-玉米两熟制农田碳足迹分析[J]. 生态环境学报, 2020, 29(5): 918−925

    LI C X, LUO T T, YAN G X, et al. Carbon footprint analysis of wheat-maize double cropping system in different ecological regions of Henan Province[J]. Ecology and Environmental Sciences, 2020, 29(5): 918−925
    [24] SHEN Y W, SUI P, HUANG J X, et al. Greenhouse gas emissions from soil under maize-soybean intercrop in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2018, 110(3): 451−465 doi: 10.1007/s10705-018-9908-8
    [25] JAT S L, PARIHAR C M, SINGH A K, et al. Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options[J]. Science of the Total Environment, 2019, 664: 659−668 doi: 10.1016/j.scitotenv.2019.01.425
    [26] JIANG Z H, ZHONG Y M, YANG J P, et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production[J]. Science of the Total Environment, 2019, 670: 210−217 doi: 10.1016/j.scitotenv.2019.03.188
    [27] FENG Y P, ZHANG Y Y, LI S, et al. Sustainable options for reducing carbon inputs and improving the eco-efficiency of smallholder wheat-maize cropping systems in the Huanghuaihai Farming Region of China[J]. Journal of Cleaner Production, 2020, 244: 118887 doi: 10.1016/j.jclepro.2019.118887
    [28] GONG H R, LI J, SUN M X, et al. Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage[J]. Journal of Cleaner Production, 2020, 268: 122255 doi: 10.1016/j.jclepro.2020.122255
    [29] 吕艳杰, 于海燕, 姚凡云, 等. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响[J]. 中国生态农业学报, 2016, 24(11): 1456−1463

    LYU Y J, YU H Y, YAO F Y, et al. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1456−1463
    [30] LI S, HU M J, SHI J L, et al. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China[J]. Science of the Total Environment, 2021, 767: 145347 doi: 10.1016/j.scitotenv.2021.145347
    [31] 徐勇, 齐文虎, 谢高地, 等. 农业自然资源利用效率的因子-能量评价模型及其应用[J]. 资源科学, 2002, 24(3): 86−91 doi: 10.3321/j.issn:1007-7588.2002.03.015

    XU Y, QI W H, XIE G D, et al. The factor-energy evaluation model of agricultural natural resources utilization efficiency and its application[J]. Resources Science, 2002, 24(3): 86−91 doi: 10.3321/j.issn:1007-7588.2002.03.015
    [32] 周宝元, 王志敏, 岳阳, 等. 冬小麦–夏玉米与双季玉米种植模式产量及光温资源利用特征比较[J]. 作物学报, 2015, 41(9): 1393−1405 doi: 10.3724/SP.J.1006.2015.01393

    ZHOU B Y, WANG Z M, YUE Y, et al. Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems[J]. Acta Agronomica Sinica, 2015, 41(9): 1393−1405 doi: 10.3724/SP.J.1006.2015.01393
    [33] 刘巽浩, 徐文修, 李增嘉, 等. 农田生态系统碳足迹法: 误区、改进与应用−兼析中国集约农作碳效率[J]. 中国农业资源与区划, 2013, 34(6): 1−11 doi: 10.7621/cjarrp.1005-9121.20130601

    LIU X H, XU W X, LI Z J, et al. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6): 1−11 doi: 10.7621/cjarrp.1005-9121.20130601
    [34] 杨粉团, 孔凡丽, 张兆琴, 等. 化控后移对不同密度玉米产量构成和籽粒灌浆特性的影响[J]. 东北农业科学, 2020, 45(6): 14−18

    YANG F T, KONG F L, ZHANG Z Q, et al. Effect of postponing chemical regulation on yield components and grain filling characteristics under different densities of maize[J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 14−18
    [35] LIU S Q, JIAN S L, LI X N, et al. Wide-narrow row planting pattern increases root lodging resistance by adjusting root architecture and root physiological activity in maize (Zea mays L.) in Northeast China[J]. Agriculture, 2021, 11(6): 517 doi: 10.3390/agriculture11060517
    [36] WANG C, ZHAO J C, FENG Y P, et al. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat-maize cropping systems[J]. Agricultural Water Management, 2021, 248: 106762 doi: 10.1016/j.agwat.2021.106762
    [37] GAO J, YAN Y, HOU X F, et al. Vertical distribution and seasonal variation of soil moisture after drip-irrigation affects greenhouse gas emissions and maize production during the growth season[J]. Science of the Total Environment, 2021, 763: 142965 doi: 10.1016/j.scitotenv.2020.142965
    [38] LIU Q Y, XU C T, HAN S W, et al. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheat-maize cropping system[J]. Science of the Total Environment, 2021, 798: 149220 doi: 10.1016/j.scitotenv.2021.149220
    [39] MIKSA O, CHEN X L, BALEŽENTIENĖ L, et al. Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: a case from Lithuania[J]. Science of the Total Environment, 2020, 714: 136850 doi: 10.1016/j.scitotenv.2020.136850
    [40] DACHRAOUI M, SOMBRERO A. Effect of tillage systems and different rates of nitrogen fertilisation on the carbon footprint of irrigated maize in a semiarid area of Castile and Leon, Spain[J]. Soil and Tillage Research, 2020, 196: 104472 doi: 10.1016/j.still.2019.104472
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  55
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-27
  • 录用日期:  2021-10-27
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回