留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谷子耐盐性研究进展及展望

刘雯雯 乔匀周 杨红 李永鹏 乔文君 董宝娣 刘孟雨

刘雯雯, 乔匀周, 杨红, 李永鹏, 乔文君, 董宝娣, 刘孟雨. 谷子耐盐性研究进展及展望[J]. 中国生态农业学报 (中英文), 2022, 30(5): 787−798 doi: 10.12357/cjea.20210424
引用本文: 刘雯雯, 乔匀周, 杨红, 李永鹏, 乔文君, 董宝娣, 刘孟雨. 谷子耐盐性研究进展及展望[J]. 中国生态农业学报 (中英文), 2022, 30(5): 787−798 doi: 10.12357/cjea.20210424
LIU W W, QIAO Y Z, YANG H, LI Y P, QIAO W J, DONG B D, LIU M Y. Research progress and prospects of foxtail millet salt tolerance[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 787−798 doi: 10.12357/cjea.20210424
Citation: LIU W W, QIAO Y Z, YANG H, LI Y P, QIAO W J, DONG B D, LIU M Y. Research progress and prospects of foxtail millet salt tolerance[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 787−798 doi: 10.12357/cjea.20210424

谷子耐盐性研究进展及展望

doi: 10.12357/cjea.20210424
基金项目: 河北省重点研发计划项目(19226436D, 21327004D)资助
详细信息
    作者简介:

    刘雯雯, 主要研究方向为作物绿色高效用水调控机制。E-mail: liuwenwen19@mails.ucas.ac.cn

    通讯作者:

    董宝娣, 主要研究方向为作物绿色高效用水调控机制, E-mail: dongbaodi@sjziam.ac.cn

    刘孟雨, 主要研究方向为作物高效用水生理生态基础、农业节水调控与技术, E-mail: mengyuliu@sjziam.ac.cn

  • 中图分类号: S515

Research progress and prospects of foxtail millet salt tolerance

Funds: The study was supported by the Hebei Province S&T Project (19226436D, 21327004D).
More Information
  • 摘要: 随着农业种植业结构调整, 谷子作为一种抗旱耐瘠薄作物在干旱盐碱地区的种植越来越受到重视。系统深入梳理谷子的耐盐性及盐胁迫下的生理生态响应特性, 对增加盐碱地区谷子产量、提高农民收入具有重要指导意义。本文从谷子的耐盐性筛选指标及评价、盐胁迫下植株生长发育变化规律和生理生态响应以及谷子耐盐基因发掘等3个方面, 综述了国内外研究进展。目前谷子耐盐鉴选指标单一, 主要依赖于谷子萌发期的发芽率, 而其他生理生态指标未被充分考虑; 因谷子品种和土壤盐分的不同, 谷子植株地上地下农艺性状、光合特征、清除活性氧相关酶类以及激素响应特征存在差异, 建立综合鉴选指标存在困难; 谷子耐盐基因的表达与作用发挥与环境条件, 如高盐、干旱(PEG)和脱落酸(ABA)等相关, 通过特定蛋白来增强抗氧化系统、保护细胞不受损伤以及提高抗渗透胁迫能力等提高谷子的耐盐性。在此基础上, 本文提出了建立谷子耐盐综合鉴选量化标准和平台、深入开展谷子耐盐调控机理研究、进一步研发谷子耐盐栽培技术体系是未来重要的研究方向。
  • 表  1  谷子耐盐性鉴选内容

    Table  1.   Contents of salt tolerance evaluation of foxtail millet

    处理时期
    Treatment period
    栽培条件
    Cultivation condition
    品种数量
    Varieties number
    盐类型
    Salt type
    鉴选适宜盐浓度
    Suitable salt concentration
    鉴定指标
    Appraisal index
    耐盐性分级
    Salt tolerance classification
    参考文献
    Reference
    萌发期
    Germination period
    培养皿
    Petri dish
    27 NaCl 3 g·kg−1 发芽率及其相对盐害率
    Germination rate, relative salt damage rate of germination
    ‘张杂3号’为耐盐型
    ‘Zhangza 3’ is salt tolerant type.
    [21]
    培养皿
    Petri dish
    63[24], 54[19], 100[28], 260[30] NaCl 1.0%~1.5% 发芽率、发芽势、根长和芽长的相对值及盐害率
    Relative values and salt damage rates of germination rate, germination energy, root length, bud length
    ‘济谷16’和‘汾特11’等20份为高耐盐型, ‘鲁谷1号’和‘豫谷15’等23份为盐敏感型
    20 varieties such as ‘Jigu 16’ and ‘Fente 11’ are high salt tolerant types; 23 varieties such as ‘Lugu 1’ and ‘Yugu 15’ are salt sensitive types.
    [20,24,28,30]
    培养皿
    Petri dish
    100[22], 11[23], 14[26], 25[31], 10[32], 14[33] NaCl 100~250 mmol·L−1 发芽率、发芽势、根长、芽长及其相对值和盐害率、相对活力指数、Na+含量和K+含量
    Germination rate, germination energy, root length, bud length and their relative values and salt damage rates, relative vigor index, Na+ and K+ contents
    ‘晋育红谷’和‘公矮6号’等16份为高耐盐型, ‘龙谷27’和‘龙谷25’等11份为盐高度敏感型
    16 varieties such as ‘Jinyuhonggu’ and ‘Gong’ai 6’ are high salt tolerant types, and 11 varieties such as ‘Longgu 27’ and ‘Longgu 25’ are highly salt sensitive types.
    [22-23,26,31-33]
    培养皿
    Petri dish
    4 Na2CO3 0, 25, 50, 75, 100 mmol·L−1 相对发芽率、相对盐害率
    Relative germination rate, relative salt damage rate
    [34]
    培养皿
    Petri dish
    20 Na2SO4∶ NaCl∶ NaHCO3∶ Na2CO3=
    4∶1∶4∶1
    60~100 mmol·L−1 发芽指数、活力指数、相对根
    长、相对芽长、盐碱害指数
    Germination index, vigor index, relative root length, relative bud length, saline-alkali damage index
    ‘9324-8-3’ ‘坝谷214’和‘晋谷23’为耐盐碱型, ‘大同30’ ‘大白谷’和‘九根齐’为盐碱高敏感型
    ‘9324-8-3’ ‘Bagu 214’ and ‘Jingu 23’ are saline alkali resistant types, and ‘Datong 30’ ‘Dabaigu’ and ‘Jiugenqi’ are highly saline-alkali sensitive types.
    [27]
    培养皿
    Petri dish
    53 NaCl∶
    NaHCO3=
    4∶1
    100 mmol·L−1 相对发芽率、根长盐害率、芽长盐害率、根冠比盐害率
    Relative germination rate, salt damage rate of root length, salt damage rate of bud length, specific salt damage rate of root-shoot ratio
    ‘鲁谷10’和‘济谷22’为强耐盐碱型, ‘豫谷31’ ‘豫谷32’和‘保谷23’为极不耐盐碱型
    ‘Lugu 10’ and ‘Jigu 22’ are strong salt-alkali resistant types, while ‘Yugu 31’ ‘Yugu 32’ and ‘Baogu 23’ are extremely salt-alkali resistant types.
    [25]
    苗期
    Seedling stage
    培养皿
    Petri dish
    14[26], 25[31] NaCl 50, 150 mmol·L−1 根长、芽长及其相对值和盐害率
    Root length, shoot length and their relative values and salt damage rates
    [26,31]
    盆栽
    Pot culture
    3 NaCl 0.5%~1.0% 气孔状态、叶表面变化、相对电导率和叶绿素荧光参数、生物量、超氧化物歧化酶
    Stomatal state, leaf surface changes, relative conductivity and chlorophyll fluorescence parameters, biomass, superoxide dismutase
    [28]
    全生育期
    Whole growth period
    盆栽
    Pot culture
    155 NaCl 100 mmol·L−1 籽粒产量、地上部生物量、收获指数、穗部收获指数
    Grain yield, aboveground biomass, harvest index, spike harvest index
    [35]
    大田
    Field
    8 盐碱地
    Saline soil
    3.20 g·kg−1 穗重、单穗粒重、干物质重、地上部含水量
    Panicle weight, grain weight per panicle, dry matter weight, water content of shoot
    ‘济谷22’和‘济谷21’为耐盐碱型
    ‘Jigu 22’ and ‘Jigu 21’ are salt and alkali resistant types.
    [19]
    下载: 导出CSV

    表  2  盐胁迫影响谷子生理生化指标

    Table  2.   Physiological and biochemical indexes of foxtail millet affected by salt stress

    指标类型
    Index system
    指标
    Index
    表现
    Performance
    参考文献
    Reference
    农艺性状
    Agronomic characters
    根系
    Root system
    混合盐碱胁迫下, 不同品种的根长盐害率均值达77.6%; NaCl胁迫下盐敏感品种根部细胞内pH提高7.28%, 比抗盐品种增加6.15%
    Under the mixed saline-alkali stress, the average root length salt damage rate of different varieties was 77.6%; under NaCl stress, the pH in the root cells of salt sensitive varieties increased by 7.28%, which was 6.15% higher than that of salt resistant varieties.
    [25,40]
    株高
    Plant height
    0.1%~0.3% NaCl胁迫下‘济谷16’较敏感, 株高降低11.69%~16.91%, 在0.5%~0.7% NaCl胁迫下, ‘鲁谷1号’株高降低20.01%~26.17%
    Under 0.1%−0.3% NaCl stress, ‘Jigu 16’ was sensitive, and the plant height decreased by 11.69%−16.91%. Under 0.5%−0.7% NaCl stress, ‘Lugu 1’ was the more sensitive, and the plant height decreased by 20.01%−26.17%.
    [42]
    地上部含水量
    Aboveground water content
    含盐3.2 g·kg−1的大田条件下谷子成熟期的地上部含水量变幅为 35.4%~49.2%
    Under the field condition of salt content of 3.2 g∙kg−1, the aboveground water content of millet at maturity varies from 35.4% to 49.2%.
    [19]
    产量要素
    Yield factors
    穗重、单穗粒重、千粒重
    Ear weight, grain weight of per panicle, 1000-seed weight
    含盐3.2 g·kg−1大田条件下谷子各品种的穗重、单穗粒重、千粒重变异系数分别为13.5%、13.5%和3.1%, 产量盐害率为20.7%~63.4%
    Under the field condition of salt content of 3.2 g∙kg−1, the variation coefficients of panicle weight, grain weight per panicle and 1000-grain weight of millet varieties were 13.5%, 13.5% and 3.1% respectively, and the yield salt damage rate was 20.7%−63.4%.
    [19]
    光合特性
    Photosynthetic characteristics
    叶绿素、气孔导度、蒸腾速率、净光合速率
    Chlorophyll, stomatal conductance, transpiration rate, net photosynthetic rate
    复合盐胁迫(0~0.9%)下净光合速率由于气孔导度和蒸腾速率下降而降低, 0~0.3%时蒸腾速率、气孔导度下降较快, 0.6%~0.9%时下降趋势减缓; 在中性盐NaCl、Na2SO4及碱性盐NaHCO3胁迫下, 叶绿素受NaCl影响最大, 0.2%和0.4%的处理分别比对照下降24.1%和34.0%
    Under compound salt stress (0−0.9%), the net photosynthetic rate decreased due to the decrease of stomatal conductance and transpiration rate. The transpiration rate and stomatal conductance decreased rapidly at 0−0.3%, and the downward trend slowed down at 0.6%−0.9%. Under the stress of neutral salt NaCl, Na2SO4 and alkaline salt NaHCO3, chlorophyll was most affected by NaCl. Under the treatment of 0.2% and 0.4% NaCl, the chlorophyll decreased by 24.1% and 34.0%, respectively, compared with the control.
    [43,45]
    活性氧清除系统
    Active oxygen scavenging system
    超氧化物歧化酶(SOD)、
    过氧化物酶(POD)、过氧化氢酶(CAT)
    Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)
    盐胁迫下SOD、POD和CAT活性均随胁迫天数增加先上升后下降, 且与对照相比均有增强, 变化程度为: SOD>CAT>POD
    Under salt stress, the activities of SOD, POD and CAT increased first and then decreased with the days of stress, and increased compared with the control. The change degree of activity was SOD>CAT>POD.
    [20,22]
    激素
    Hormone
    脱落酸、生长素、赤霉素
    Abscisic acid (ABA), auxin (IAA), gibberellin (GA3)
    ABA可诱导脯氨酸的大量积累, 从而维持细胞膜结构的稳定性, 提高保护酶的活性, IAA和GA3能够缓解盐胁迫对植物的伤害
    ABA can induce a large amount of proline accumulation in plants, so as to maintain the stability of cell membrane structure and improve the activity of protective enzymes. IAA and GA3 can also alleviate the damage of salt stress to plants.
    [54-56]
    下载: 导出CSV

    表  3  谷子耐盐相关基因克隆与功能分析

    Table  3.   Cloning and functional analysis of salt tolerance related genes in foxtail millet

    基因名称
    Gene name
    转基因受体与亚细胞定位
    Transgenic receptor and subcellular localization
    诱导因素及基因功能
    Inducing factors and gene function
    依赖途径
    Dependent approach
    参考文献
    Reference
    SiPHGPX 无细胞定位, 基于宏阵列的胁迫
    特异性基因表达分析
    No cell localization. Macroarray-based
    stress-specific gene expression analysis
    受NaCl诱导, PHGPX基因产物在抗盐诱导的氧化损伤的防御反应中起着重要作用
    Induced by NaCl, the PHGPX gene product plays an important role in the defense response against salt-induced oxidative damage.
    [53]
    SiALDHs 谷子和水稻同源区
    Homologous region of rice and
    foxtail millet
    渗透胁迫、低温、过氧化氢和植物激素脱落酸(ABA)诱导基因表达量增加, 对蛋白质损伤、细胞膜破坏和细胞凋亡有保护功能, 提高耐盐性
    Osmotic stress, low temperature, hydrogen peroxide and plant hormone abscisic acid (ABA) induce increased gene expression, which has protective functions against protein damage, cell membrane destruction and cell apoptosis, and improves salt tolerance.
    ABA依赖, 编码NAD(P)依赖性酶
    ABA independent pathway, encoding NAD(P)-dependent enzyme
    [61]
    SiLEA14 细胞质
    Cytoplasm
    受渗透胁迫、NaCl和外源脱落酸诱导, 提高谷子萌发期的抗渗透胁迫能力, 提高耐盐性和耐旱性
    Induced by osmotic stress, NaCl and exogenous abscisic acid, it improves the resistance to osmotic stress during the germination of millet, and improves salt and drought tolerance.
    ABA依赖
    ABA dependent pathway
    [62]
    SibZIPs 细胞核
    Nucleus
    受高盐、干旱(PEG)和ABA胁迫诱导, 可通过与具有调控作用的蛋白(如蛋白激酶、NPR1相关蛋白)互作而介导调控谷子抵御胁迫反应
    Induced by high salt, drought (PEG) and ABA stress, it can mediate and regulate millet to resist stress response by interacting with regulatory proteins (such as protein kinases, NPR1 related proteins).
    ABA依赖与非依赖途径
    ABA dependent and independent pathways
    [71-72]
    SiARDPs 细胞核
    Nucleus
    提高谷子耐旱耐盐性
    Improve drought tolerance and salt tolerance of millet.
    ABA依赖
    ABA dependent pathway
    [76]
    SiNF-Ys 细胞质、细胞核
    Cytoplasm, nucleus
    受干旱、盐、甘露醇和氧化胁迫诱导, SiNF-YA1SiNF-YB8通过增强抗氧化系统来增强胁迫耐受性
    Induced by drought, salt, mannitol and oxidative stress, SiNF-YA1 or SiNF-YB8 enhances stress tolerance by enhancing the antioxidant system.
    SiNF-YA5 ABA非依赖,
    SiNF-YA1SiNF-YA8 ABA依赖
    SiNF-YA5 through ABA independent pathway, SiNF-YA1 and SiNF-YA8 through ABA dependent pathway
    [77-78]
    SiVHA-E 液泡膜
    Vacuole membrane
    被高盐、茉莉酸甲酯(MeJA)、水杨酸(SA)和ABA胁迫诱导表达, 提高植物耐盐性
    Induced expression by high salt, methyl jasmonate (MeJA), salicylic acid (SA) and ABA stress to improve plant salt tolerance.
    ABA依赖
    ABA dependent pathway
    [79]
    SiASR4 细胞核、细胞质和细胞膜
    Nucleus, cytoplasm and cytomembrane
    受ABA、NaCl和PEG诱导, 提高谷子对干旱和盐胁迫的耐受性
    Induced by ABA, NaCl and PEG, the tolerance of millet to drought and salt stress was improved.
    ABA依赖
    ABA dependent pathway
    [80]
    SiLTPs 表皮细胞[烟草(Nicotiana tobacum L.)叶]、细胞质(玉米原生质体)
    Epidermal cells (tobacco leaves),
    cytoplasm (maize protoplasts)
    脱落酸(ABA)诱导基因表达量增加, 提高谷子耐盐性和耐旱性
    Abscisic acid (ABA) increased gene expression and improved salt tolerance and drought tolerance of foxtail millet.
    ABA依赖
    ABA dependent pathway
    [81]
    SiNAC110 细胞核
    Nucleus
    被干旱、高盐等非生物胁迫诱导, 提高谷子对干旱和高盐胁迫的耐受性
    It was induced by abiotic stress such as drought and high salt to improve the tolerance of millet to drought and high salt stress.
    ABA非依赖
    ABA independent pathway
    [82]
    SiRLK35 质膜
    Plasma membrane
    受NaCl、PEG、ABA、GA、MeJA胁迫诱导, 其中明显响应盐胁迫, 显示其对作物耐旱、抗盐及抗胁迫等方面具有重要调控作用
    It was induced by NaCl, PEG, ABA, GA, MeJA stresses, and responded significantly to salt stress, indicating that it plays an important role in regulating drought tolerance, salt tolerance and stress resistance of crops.
    可能ABA依赖
    It may be ABA dependent pathway.
    [73]
    SiCBL4 细胞膜、细胞质
    Cytomembrane, cytoplasm
    受盐、ABA、甲基紫精醇(MV)、热休克和冷胁迫因素诱导, CBL-CIPK通路可被调控以提高植物耐盐性
    Induced by salt, ABA, methyl viologen (MV), heat shock and cold stress, the CBL-CIPK pathway can be regulated to improve plant salt tolerance.
    可能ABA依赖
    It may be ABA dependent pathway.
    [75,83]
    SiCIPK24 细胞质
    Cytoplasm
    受盐、ABA、MV、热休克和冷胁迫因素诱导, CBL-CIPK通路可被调控以提高植物耐盐性
    Induced by salt, ABA, MV, heat shock and cold stress, CBL-CIPK pathway can be regulated to improve plant salt tolerance.
    可能ABA依赖
    It may be ABA dependent pathway.
    [83]
    SiNADP-ME 叶绿体、线粒体和细胞质
    Chloroplast, mitochondria and cytoplasm
    被ABA、低温、PEG、NaCl胁迫诱导表达, 广泛参与谷子苗期非生物逆境胁迫应答
    It was induced by ABA, low temperature, PEG and NaCl stress and widely participated in abiotic stress response of millet seedling.
    可能ABA依赖
    It may be ABA dependent pathway.
    [84]
    SiPEPCs 细胞质、细胞核和线粒体
    Cytoplasm, nucleus and mitochondria
    受ABA、低温、PEG、高盐胁迫诱导表达, 参与谷子对非生物逆境的应答, 可能在干旱和其他逆境胁迫信号途径中起关键作用
    Induced by ABA, low temperature, PEG and high salt stress, it participates in the response of millet to abiotic stress, and may play a key role in drought and other stress signaling pathways.
    可能ABA依赖
    It may be ABA dependent pathway.
    [74]
    下载: 导出CSV
  • [1] 潘懋. 环境地质学[M]. 北京: 地震出版社, 1997

    PAN M. Environmental Geology[M]. Beijing: Seismological Press, 1997
    [2] 蔡阿兴, 陈章英, 蒋正琦, 等. 我国不同盐渍地区盐分含量与电导率的关系[J]. 土壤, 1997, 29(1): 54–57

    CAI A X, CHEN Z Y, JIANG Z Q, et al. Relationship between salt content and electrical conductivity in different saline areas in China[J]. Soils, 1997, 29(1): 54–57
    [3] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4): 125−130

    YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agricultural Sciences, 2015, 47(4): 125−130
    [4] 王宝山, 赵可夫, 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学通报, 1997, 32(S1): 26−31

    WANG B S, ZHAO K F, ZOU Q. Advances in mechanism of crop salt tolerance and strategies for raising crop salt tolerance[J]. Chinese Bulletin of Botany, 1997, 32(S1): 26−31
    [5] WANG W X, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14 doi: 10.1007/s00425-003-1105-5
    [6] DOGAN M, TIPIRDAMAZ R, DEMIR Y. Salt resistance of tomato species grown in sand culture[J]. Plant, Soil and Environment, 2010, 56(11): 499−507 doi: 10.17221/24/2010-PSE
    [7] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741−2746

    QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741−2746
    [8] 匡朴. 盐胁迫对不同耐盐性玉米品种萌发、苗期生长及产量的影响[D]. 泰安: 山东农业大学, 2018

    KUANG P. Effects of salt stress on seed germination, seedling growth and yield of maize varieties with different salt tolerance[D]. Tai’an: Shandong Agricultural University, 2018
    [9] 刘杰安, 王小慧, 吴尧, 等. 近30年我国谷子生产时空变化与区域优势研究[J]. 中国农业科学, 2019, 52(11): 1883−1894 doi: 10.3864/j.issn.0578-1752.2019.11.004

    LIU J A, WANG X H, WU Y, et al. Spatiotemporal variation and regional advantages of foxtail millet production in recent 30 years in China[J]. Scientia Agricultura Sinica, 2019, 52(11): 1883−1894 doi: 10.3864/j.issn.0578-1752.2019.11.004
    [10] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展[J]. 中国农业科学, 2019, 52(22): 3943−3949 doi: 10.3864/j.issn.0578-1752.2019.22.001

    DIAO X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China[J]. Scientia Agricultura Sinica, 2019, 52(22): 3943−3949 doi: 10.3864/j.issn.0578-1752.2019.22.001
    [11] 岳安良. 谷子的抗旱性及其在旱作中的地位[J]. 河南农业科学, 1987, 16(5): 3–4YUE A L. Drought resistance of foxtail millet and its position in dry farming[J]. Journal of Henan Agricultural Sciences, 1987, 16(5): 3–4
    [12] 李晓宇, 王昆鹏, 刘迎春, 等. 谷子主要农艺性状分析[J]. 内蒙古农业大学学报: 自然科学版, 2015, 36(2): 26−30

    LI X Y, WANG K P, LIU Y C, et al. Analysis on the agronomic traits of millet[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2015, 36(2): 26−30
    [13] 张海金. 谷子在旱作农业中的地位和作用[J]. 安徽农学通报, 2007, 13(10): 169−170 doi: 10.3969/j.issn.1007-7731.2007.10.085

    ZHANG H J. Position and function of foxtail millet in dry farming[J]. Anhui Agricultural Science Bulletin, 2007, 13(10): 169−170 doi: 10.3969/j.issn.1007-7731.2007.10.085
    [14] DONG B D, LIU M Y, JIANG J W, et al. Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields[J]. Agricultural Water Management, 2014, 143: 93−101 doi: 10.1016/j.agwat.2014.06.011
    [15] 李玉欣, 师长海, 乔匀周, 等. 不同水分条件下作物蒸腾效率的比较研究[J]. 干旱地区农业研究, 2010, 28(6): 40−46

    LI Y X, SHI C H, QIAO Y Z, et al. Crop transpiration efficiency under different soil water conditions[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 40−46
    [16] 董宝娣, 刘会灵, 王亚凯, 等. 作物高效用水生理生态调控机制研究[J]. 中国生态农业学报, 2018, 26(10): 1465−1475

    DONG B D, LIU H L, WANG Y K, et al. Physio-ecological regulating mechanisms for highly efficient water use of crops[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1465−1475
    [17] NADEEM F, AHMAD Z, UL HASSAN M, et al. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: a special perspective of responses to nitrogen and phosphate limitations[J]. Frontiers in Plant Science, 2020, 11: 187 doi: 10.3389/fpls.2020.00187
    [18] 李顺国, 刘斐, 刘猛, 等. 中国谷子产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 459−470 doi: 10.3864/j.issn.0578-1752.2021.03.001

    LI S G, LIU F, LIU M, et al. Current status and future prospective of foxtail millet production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 459−470 doi: 10.3864/j.issn.0578-1752.2021.03.001
    [19] 陈二影, 秦岭, 杨延兵, 等. 生产条件下谷子品种盐碱耐性的差异及综合评价[J]. 中国农业科学, 2019, 52(22): 4050−4065 doi: 10.3864/j.issn.0578-1752.2019.22.010

    CHEN E Y, QIN L, YANG Y B, et al. Variation and comprehensive evaluation of salt and alkali tolerance of different foxtail millet cultivars under production conditions[J]. Scientia Agricultura Sinica, 2019, 52(22): 4050−4065 doi: 10.3864/j.issn.0578-1752.2019.22.010
    [20] 秦岭, 张艳亭, 陈二影, 等. 谷子萌发期耐盐种质筛选及其保护酶系统对盐胁迫的响应[J]. 中国农业科学, 2019, 52(22): 4027−4040 doi: 10.3864/j.issn.0578-1752.2019.22.008

    QIN L, ZHANG Y T, CHEN E Y, et al. Screening for germplasms tolerant to salt at germination stage and response of protective enzymes to salt stress in foxtail millet[J]. Scientia Agricultura Sinica, 2019, 52(22): 4027−4040 doi: 10.3864/j.issn.0578-1752.2019.22.008
    [21] 邱风仓, 冯小磊, 张海颖, 等. 谷子杂交种和常规种耐盐性筛选[J]. 中国农学通报, 2019, 35(29): 47−51 doi: 10.11924/j.issn.1000-6850.casb18080020

    QIU F C, FENG X L, ZHANG H Y, et al. Screening of salt-tolerant hybrid and conventional foxtail millet[J]. Chinese Agricultural Science Bulletin, 2019, 35(29): 47−51 doi: 10.11924/j.issn.1000-6850.casb18080020
    [22] 张笛, 苗兴芬, 王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019(6): 43−49

    ZHANG D, MIAO X F, WANG Y T. Evaluation and screening of salt tolerance in 100 foxtail millet at germination stage[J]. Crops, 2019(6): 43−49
    [23] 田伯红, 王素英, 李雅静, 等. 谷子地方品种发芽期和苗期对NaCl胁迫的反应和耐盐品种筛选[J]. 作物学报, 2008, 34(12): 2218−2222

    TIAN B H, WANG S Y, LI Y J, et al. Response to sodium chloride stress at germination and seedling and identification of salinity tolerant genotypes in foxtail millet landraces originated from China[J]. Acta Agronomica Sinica, 2008, 34(12): 2218−2222
    [24] 韩飞, 诸葛玉平, 娄燕宏, 等. 63份谷子种质的耐盐综合评价及耐盐品种筛选[J]. 植物遗传资源学报, 2018, 19(4): 685−693

    HAN F, ZHUGE Y P, LOU Y H, et al. Evaluation of salt tolerance and screening for salt tolerant accessions of 63 foxtail millet germplasm[J]. Journal of Plant Genetic Resources, 2018, 19(4): 685−693
    [25] 陈二影, 王润丰, 秦岭, 等. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591−1604

    CHEN E Y, WANG R F, QIN L, et al. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination[J]. Acta Agronomica Sinica, 2020, 46(10): 1591−1604
    [26] 崔兴国, 时丽冉. 衡水地区14份夏谷品种种子萌发期耐盐性研究[J]. 作物杂志, 2011(4): 117−119 doi: 10.3969/j.issn.1001-7283.2011.04.035

    CUI X G, SHI L R. Evaluation of salt tolerance of 14 foxtail millet summer varieties in Hengshui[J]. Crops, 2011(4): 117−119 doi: 10.3969/j.issn.1001-7283.2011.04.035
    [27] 郭瑞锋, 张永福, 任月梅, 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选[J]. 作物杂志, 2017(4): 63−66

    GUO R F, ZHANG Y F, REN Y M, et al. Effects of saline-alkali stress on millet germination and shoots growth and saline-alkali tolerance variety screening[J]. Crops, 2017(4): 63−66
    [28] 袁雨豪, 杨清华, 党科, 等. 糜子资源耐盐性评价与盐胁迫生理响应[J]. 中国农业科学, 2019, 52(22): 4066−4090 doi: 10.3864/j.issn.0578-1752.2019.22.011

    YUAN Y H, YANG Q H, DANG K, et al. Salt-tolerance evaluation and physiological response of salt stress of broomcorn millet (Panicum miliaceum L.)[J]. Scientia Agricultura Sinica, 2019, 52(22): 4066−4090 doi: 10.3864/j.issn.0578-1752.2019.22.011
    [29] 朱建峰, 杨秀艳, 武海雯, 等. 植物种子萌发期耐盐碱性提高技术研究进展[J]. 生物技术通报, 2020, 36(2): 158−168

    ZHU J F, YANG X Y, WU H W, et al. Research advances in salt and alkali tolerance improvement technology at the seed germination stage[J]. Biotechnology Bulletin, 2020, 36(2): 158−168
    [30] 智慧, 刁现民, 吕芃, 等. 人工盐胁迫法鉴定谷子及狗尾草物种耐盐基因型[J]. 河北农业科学, 2004, 8(4): 15−18 doi: 10.3969/j.issn.1088-1631.2004.04.003

    ZHI H, DIAO X M, LU P, et al. Methodology analysis on screening of salt tolerant genotypes from foxtail millet and other Setaria species[J]. Journal of Hebei Agricultural Sciences, 2004, 8(4): 15−18 doi: 10.3969/j.issn.1088-1631.2004.04.003
    [31] 田伯红, 王建广, 李雅静, 等. 谷子发芽期和幼苗前期耐盐性鉴定指标的研究[J]. 河北农业科学, 2008, 12(7): 4−6 doi: 10.3969/j.issn.1088-1631.2008.07.002

    TIAN B H, WANG J G, LI Y J, et al. Studies on screening indexes for salt tolerance of millet during germination period and early seedling stage[J]. Journal of Hebei Agricultural Sciences, 2008, 12(7): 4−6 doi: 10.3969/j.issn.1088-1631.2008.07.002
    [32] ARDIE S W, KHUMAIDA N, NUR A, et al. Early identification of salt tolerant foxtail millet (Setaria italica L. Beauv)[J]. Procedia Food Science, 2015, 3: 303−312 doi: 10.1016/j.profoo.2015.01.033
    [33] PAN J W, LI Z, DAI S J, et al. Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity[J]. Scientific Reports, 2020, 10: 13660 doi: 10.1038/s41598-020-70520-1
    [34] 张永芳, 宋喜娥, 王润梅, 等. Na2CO3胁迫对谷子种子萌发的影响[J]. 种子, 2015, 34(11): 94−97

    ZHANG Y F, SONG X E, WANG R M, et al. Effect of Na2CO3 stress on different seed germination of millet[J]. Seed, 2015, 34(11): 94−97
    [35] KRISHNAMURTHY L, UPADHYAYA H D, GOWDA C L L, et al. Large variation for salinity tolerance in the core collection of foxtail millet (Setaria italica [L.] P. Beauv.) germplasm[J]. Crop and Pasture Science, 2014, 65(4): 353 doi: 10.1071/CP13282
    [36] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 463−499 doi: 10.1146/annurev.arplant.51.1.463
    [37] AHMADI N, NEGRÃO S, KATSANTONIS D, et al. Targeted association analysis identified Japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra[J]. Theoretical and Applied Genetics, 2011, 123(6): 881−895 doi: 10.1007/s00122-011-1634-4
    [38] CHINNUSAMY V, JAGENDORF A, ZHU J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45(2): 437−448 doi: 10.2135/cropsci2005.0437
    [39] XIE J H, ZAPATA-ARIAS F J, SHEN M, et al. Salinity tolerant performance and genetic diversity of four rice varieties[J]. Euphytica, 2000, 116(2): 105−110 doi: 10.1023/A:1004041900101
    [40] 李小波, 潘教文, 丁国华, 等. 盐胁迫下谷子根部细胞内pH值测定[J]. 山东农业科学, 2019, 51(2): 40−44

    LI X B, PAN J W, DING G H, et al. Determination of pH value in root cells of foxtail millet under salt stress[J]. Shandong Agricultural Sciences, 2019, 51(2): 40−44
    [41] REN Z H, GAO J P, LI L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141−1146 doi: 10.1038/ng1643
    [42] 张艳亭. 谷子种质资源耐盐性鉴定和耐盐机理的研究[D]. 曲阜: 曲阜师范大学, 2018

    ZHANG Y T. Study on salt tolerance identification and mechanism of millet germplasm resources[D]. Qufu: Qufu Normal University, 2018
    [43] 徐心志, 代小冬, 杨育峰, 等. 盐胁迫对谷子幼苗生长及光合特性的影响[J]. 河南农业科学, 2016, 45(10): 24−28

    XU X Z, DAI X D, YANG Y F, et al. Effect of salt stress on growth and photosynthetic characteristics of foxtail millet seedlings[J]. Journal of Henan Agricultural Sciences, 2016, 45(10): 24−28
    [44] 张笛. 谷子耐盐种质资源筛选及生长发育与农艺性状的鉴定[D]. 大庆: 黑龙江八一农垦大学, 2020

    ZHANG D. Selection of salt tolerant germplasm resources and identification of growth, development and agronomic traits of millet[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020
    [45] 高昆, 崔妮妮. 复合盐胁迫对豫谷18幼苗生理指标的影响[J]. 山西大同大学学报: 自然科学版, 2018, 34(6): 54−57

    GAO K, CUI N N. Effects of composite salt stress on physiological indices of seedlings of Yugu 18[J]. Journal of Shanxi Datong University: Natural Science Edition, 2018, 34(6): 54−57
    [46] BOSE J, MUNNS R, SHABALA S, et al. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes[J]. Journal of Experimental Botany, 2017, 68(12): 3129−3143 doi: 10.1093/jxb/erx142
    [47] CHEESEMAN J M. The integration of activity in saline environments: problems and perspectives[J]. Functional Plant Biology, 2013, 40(9): 759−774 doi: 10.1071/FP12285
    [48] 张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展[J]. 草业学报, 2015, 24(12): 220−236 doi: 10.11686/cyxb2015233

    ZHANG J L, LI H R, GUO S Y, et al. Research advances in higher plant adaptation to salt stress[J]. Acta Prataculturae Sinica, 2015, 24(12): 220−236 doi: 10.11686/cyxb2015233
    [49] NOCTOR G, FOYER C H. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249−279 doi: 10.1146/annurev.arplant.49.1.249
    [50] WANG S M, ZHANG J L, FLOWERS T J. Low-affinity Na+ uptake in the halophyte Suaeda maritima[J]. Plant Physiology, 2007, 145(2): 559−571 doi: 10.1104/pp.107.104315
    [51] 鞠淼. 盐及盐碱混合条件对燕麦胁迫作用的比较[D]. 长春: 东北师范大学, 2008

    JU M. Comparative stress effects of salt and salt-alkaline mixed conditions on Avena sativa[D]. Changchun: Northeast Normal University, 2008
    [52] 李长有. 盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机制[D]. 长春: 东北师范大学, 2009

    LI C Y. Mixing effects and stress mechanisms of four major harmful salts in salt-alkaline soil on Chloris virgata[D]. Changchun: Northeast Normal University, 2009
    [53] SREENIVASULU N, MIRANDA M, PRAKASH H S, et al. Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of aPHGPX gene specifically up-regulated by NaCl in a salt-tolerant line[J]. Journal of Plant Physiology, 2004, 161(4): 467−477 doi: 10.1078/0176-1617-01112
    [54] 胡涛, 张鸽香, 郑福超, 等. 植物盐胁迫响应的研究进展[J]. 分子植物育种, 2018, 16(9): 3006−3015

    HU T, ZHANG G X, ZHENG F C, et al. Research progress in plant salt stress response[J]. Molecular Plant Breeding, 2018, 16(9): 3006−3015
    [55] 魏爱丽, 陈云昭. IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响[J]. 西北植物学报, 2000, 20(3): 410−414 doi: 10.3321/j.issn:1000-4025.2000.03.016

    WEI A L, CHEN Y Z. Effect of IAA on soybean seedling’s membrance injury and salt resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(3): 410−414 doi: 10.3321/j.issn:1000-4025.2000.03.016
    [56] SAEIDI-SAR S, ABBASPOUR H, AFSHARI H, et al. Effects of ascorbic acid and gibberellin A_3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(3): 667−677 doi: 10.1007/s11738-012-1107-7
    [57] OZTURK Z N, TALAMÉ V, DEYHOLOS M, et al. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley[J]. Plant Molecular Biology, 2002, 48(5/6): 551−573 doi: 10.1023/A:1014875215580
    [58] BEEOR-TZAHAR T, BEN-HAYYIM G, HOLLAND D, et al. A stress-associated Citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase[J]. FEBS Letters, 1995, 366(2/3): 151−155
    [59] CHURIN Y, SCHILLING S, BÖRNER T. A gene family encoding glutathione peroxidase homologues in Hordeum vulgare (barley)[J]. FEBS Letters, 1999, 459(1): 33−38 doi: 10.1016/S0014-5793(99)01208-9
    [60] HERNÁNDEZ J A, JIMÉNEZ A, MULLINEAUX P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences[J]. Plant, Cell & Environment, 2000, 23(8): 853−862
    [61] CHEN Z, CHEN M, XU Z S, et al. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.)[J]. PLoS One, 2014, 9(7): e101136 doi: 10.1371/journal.pone.0101136
    [62] WANG M Z, LI P, LI C, et al. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet[J]. BMC Plant Biology, 2014, 14: 290 doi: 10.1186/s12870-014-0290-7
    [63] GUILTINAN M J, MARCOTTE W R, QUATRANO R S. A plant leucine zipper protein that recognizes an abscisic acid response element[J]. Science, 1990, 250(4978): 267−271 doi: 10.1126/science.2145628
    [64] CHOI H I, HONG J H, HA J O, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723−1730 doi: 10.1074/jbc.275.3.1723
    [65] UNO Y, FURIHATA T, ABE H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. PNAS, 2000, 97(21): 11632−11637 doi: 10.1073/pnas.190309197
    [66] YOSHIDA R, HOBO T, ICHIMURA K, et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant and Cell Physiology, 2002, 43(12): 1473−1483 doi: 10.1093/pcp/pcf188
    [67] YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2): 253−266 doi: 10.1007/s00425-011-1496-7
    [68] ZHANG G Y, LIU X, QUAN Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30(6): 549−554 doi: 10.1038/nbt.2195
    [69] LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15: 281 doi: 10.1186/1471-2164-15-281
    [70] 朱芸晔, 薛冰, 王安全, 等. 番茄bZIP转录因子家族的生物信息学分析[J]. 应用与环境生物学报, 2014, 20(5): 767−774

    ZHU Y Y, XUE B, WANG A Q, et al. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(5): 767−774
    [71] 秦玉海, 张小红, 冯露, 等. 谷子转录因子基因SibZIP42在拟南芥中对高盐和ABA的响应[J]. 中国农业科学, 2016, 49(17): 3276−3286, 3473 doi: 10.3864/j.issn.0578-1752.2016.17.003

    QIN Y H, ZHANG X H, FENG L, et al. Response of millet transcription factor geneSibZIP42 to high salt and ABA treatment in transgenic Arabidopsis[J]. Scientia Agricultura Sinica, 2016, 49(17): 3276−3286, 3473 doi: 10.3864/j.issn.0578-1752.2016.17.003
    [72] 刘宝玲, 张莉, 孙岩, 等. 谷子bZIP转录因子的全基因组鉴定及其在干旱和盐胁迫下的表达分析[J]. 植物学报, 2016, 51(4): 473−487 doi: 10.11983/CBB15148

    LIU B L, ZHANG L, SUN Y, et al. Genome-wide characterization of bZIP transcription factors in foxtail millet and their expression profiles in response to drought and salt stresses[J]. Chinese Bulletin of Botany, 2016, 51(4): 473−487 doi: 10.11983/CBB15148
    [73] 王一帆, 李臻, 潘教文, 等. 谷子SiRLK35基因克隆及功能分析[J]. 遗传, 2017, 39(5): 413−422

    WANG Y F, LI Z, PAN J W, et al. Cloning and functional analysis of the SiRLK35 gene in Setariaitalic L[J]. Hereditas, 2017, 39(5): 413−422
    [74] 赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应[J]. 华北农学报, 2019, 34(4): 67−74 doi: 10.7668/hbnxb.201751614

    ZHAO J F, WANG G H, DU Y W, et al. Response of phosphoenolpyruvate carboxylase (PEPC) gene to abiotic stresses in foxtail millet[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 67−74 doi: 10.7668/hbnxb.201751614
    [75] 赵晋锋, 余爱丽, 田岗, 等. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析[J]. 作物学报, 2013, 39(2): 360−367 doi: 10.3724/SP.J.1006.2013.00360

    ZHAO J F, YU A L, TIAN G, et al. Identification of CBL genes from foxtail millet (Setaria italica [L.] beauv.) and its expression under drought and salt stresses[J]. Acta Agronomica Sinica, 2013, 39(2): 360−367 doi: 10.3724/SP.J.1006.2013.00360
    [76] LI C, YUE J, WU X W, et al. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress[J]. Journal of Experimental Botany, 2014, 65(18): 5415−5427 doi: 10.1093/jxb/eru302
    [77] FENG Z J, HE G H, ZHENG W J, et al. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses[J]. Frontiers in Plant Science, 2015, 6: 1142
    [78] 黄锁, 胡利芹, 徐东北, 等. 谷子转录因子SiNF-YA5通过ABA非依赖途径提高转基因拟南芥耐盐性[J]. 作物学报, 2016, 42(12): 1787−1797 doi: 10.3724/SP.J.1006.2016.01787

    HUANG S, HU L Q, XU D B, et al. Transcription factor Si NF-YA5 from foxtail millet (Setaria italica) conferred tolerance to high-salt stress through ABA-independent pathway in transgenic Arabidopsis[J]. Acta Agronomica Sinica, 2016, 42(12): 1787−1797 doi: 10.3724/SP.J.1006.2016.01787
    [79] 冯露, 钟理, 陈丹丹, 等. 过表达谷子液泡H+-ATPase E亚基基因在拟南芥中的耐盐性[J]. 作物学报, 2015, 41(11): 1682−1691 doi: 10.3724/SP.J.1006.2015.01682

    FENG L, ZHONG L, CHEN D D, et al. Overexpression of vacuole H+-ATPase E subunit gene Si VHA-E from foxtail millet enhances salt resistance in transgenic Arabidopsis thaliana[J]. Acta Agronomica Sinica, 2015, 41(11): 1682−1691 doi: 10.3724/SP.J.1006.2015.01682
    [80] LI J R, DONG Y, LI C, et al. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants[J]. Frontiers in Plant Science, 2016, 7: 2053
    [81] PAN Y L, LI J R, JIAO L C, et al. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress[J]. Frontiers in Plant Science, 2016, 7: 1752
    [82] XIE L N, CHEN M, MIN D H, et al. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway[J]. Journal of Integrative Agriculture, 2017, 16(3): 559−571 doi: 10.1016/S2095-3119(16)61429-6
    [83] ZHANG Y M, LINGHU J J, WANG D, et al. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance[J]. Plant Molecular Biology Reporter, 2017, 35(6): 634−646 doi: 10.1007/s11105-017-1051-1
    [84] 赵晋锋, 杜艳伟, 王高鸿, 等. 谷子NADP-ME的鉴定及其对逆境胁迫的响应[J]. 中国农业科学, 2019, 52(22): 3950−3963 doi: 10.3864/j.issn.0578-1752.2019.22.002

    ZHAO J F, DU Y W, WANG G H, et al. Identification NADP-ME gene of foxtail millet and its response to stress[J]. Scientia Agricultura Sinica, 2019, 52(22): 3950−3963 doi: 10.3864/j.issn.0578-1752.2019.22.002
  • 加载中
表(3)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  105
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-03
  • 录用日期:  2021-11-22
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回