留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机氮和土著AMF对辣椒||菜豆生长及竞争力的影响

周洪印 张仕颖 赵乾旭 李秉轩 包立 岳献荣 夏运生

周洪印, 张仕颖, 赵乾旭, 李秉轩, 包立, 岳献荣, 夏运生. 有机氮和土著AMF对辣椒||菜豆生长及竞争力的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 194−202 doi: 10.12357/cjea.20210425
引用本文: 周洪印, 张仕颖, 赵乾旭, 李秉轩, 包立, 岳献荣, 夏运生. 有机氮和土著AMF对辣椒||菜豆生长及竞争力的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 194−202 doi: 10.12357/cjea.20210425
ZHOU H Y, ZHANG S Y, ZHAO Q X, LI B X, BAO L, YUE X R, XIA Y S. Effects of organic nitrogen and indigenous AMF on growth and competitiveness of pepper-common bean intercropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 194−202 doi: 10.12357/cjea.20210425
Citation: ZHOU H Y, ZHANG S Y, ZHAO Q X, LI B X, BAO L, YUE X R, XIA Y S. Effects of organic nitrogen and indigenous AMF on growth and competitiveness of pepper-common bean intercropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 194−202 doi: 10.12357/cjea.20210425

有机氮和土著AMF对辣椒||菜豆生长及竞争力的影响

doi: 10.12357/cjea.20210425
基金项目: 云南省重大科技专项计划项目(202002AE320005)和国家自然科学基金项目(41561057)资助
详细信息
    作者简介:

    周洪印, 主要研究方向为设施农业土壤改良。E-mail: 1605202632@qq.com

    通讯作者:

    夏运生, 主要研究方向为菌根生理及污染控制研究。E-mail: yshengxia@163.com

  • 中图分类号: S344.2; S641.3; S643.1

Effects of organic nitrogen and indigenous AMF on growth and competitiveness of pepper-common bean intercropping

Funds: This study was supported by the Major Science and Technology Project of Yunnan Province (202002AE320005) and the National Natural Science Foundation of China (41561057).
More Information
  • 摘要: 丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能促进植物的养分吸收及生长发育。为探明AMF在不同施氮水平下对辣椒||菜豆间作体系植株生长与种间互补和养分竞争的关系, 采用盆栽试验, 设置3种种植模式(辣椒||菜豆间作、辣椒单作、菜豆单作)、2种土著AMF处理[不接种土著AMF(NM)、接种土著AMF(AMF)]和2种氮处理[不施氮(N0)、施有机氮120 mg(N)∙kg−1 (N120)], 探讨设施条件下接种土著AMF、施有机氮与间作对辣椒和菜豆植株生长及种间竞争能力的影响。结果表明, 接种土著AMF均能侵染上述两种蔬菜, 施氮可促进间作植株的AMF侵染; 接种土著AMF也能促进两种寄主植物菜豆和辣椒的生长, 与NM相比, 接种土著AMF使辣椒、菜豆植株地上生物量和株高均明显增加, 并能提高两种蔬菜氮素吸收效率。NM条件下辣椒对资源的竞争能力强于菜豆, 辣椒相对菜豆的种间竞争能力为0.60, 辣椒处于优势地位; 在AMF条件下辣椒对资源的竞争能力低于菜豆, 辣椒相对菜豆的种间竞争能力为−0.37, 辣椒处于劣势地位; 且两者在N120处理下更明显, 分别较N0显著增加125%和降低19%。可见, 不同氮处理下辣椒和菜豆种间竞争能力有所不同。所有复合处理中, 接种土著AMF和施一定量的有机氮处理能显著促进辣椒和菜豆的生长, 也能显著改变辣椒相对菜豆的种间竞争能力。
  • 图  1  不同施氮量对辣椒||菜豆间作系统土著AMF菌根侵染率的影响

    N0和N120分别指不添加有机氮和添加有机氮120 mg (N)·kg−1处理。不同小写字母表示不同施氮量下不同种植模式间在P<0.05水平差异显著。N0 and N120 refer to the application rates of organic N of 0 and 120 mg (N)·kg−1, respectively. Different lowercase letters show significant differences at P<0.05 level among different planting patterns under different N application rates.

    Figure  1.  Effects of N application rates on infection rate of indigenous arbuscular mycorrhizal fungi (AFM) in pepper-common bean intercropping system

    图  2  土著AMF与施氮量对辣椒||菜豆间作系统土壤pH的影响

    N0和N120分别指不添加有机氮和添加有机氮120 mg (N)·kg−1处理。NM和AMF指不接种和接种土著AMF。不同小写字母表示不同种植模式在不同施氮量和接种与不接种AFM下在P<0.05水平差异显著。N0 and N120 refer to the application rates of organic N of 0 and 120 mg(N)·kg−1, respectively. NM and AMF refer to no-inoculation and inoculation of AMF. Different lowercase letters show significant differences at P<0.05 level among different planting patterns under different N application rates with and without AMF inoculation.

    Figure  2.  Effects of inoculation of indigenous arbuscular mycorrhizal fungi (AFM) and N application rate on soil pH of pepper||common bean intercropping system

    图  3  土著AMF与施氮量对辣椒||菜豆间作系统氮素吸收效率的影响

    N0和N120分别指不添加有机氮和添加有机氮120 mg (N)·kg−1处理。NM和AMF指不接种和接种土著AMF。不同小写字母表示不同种植模式在不同施氮量和接种与不接种AFM下在P<0.05水平差异显著。N0 and N120 refer to the application rates of organic N of 0 and 120 mg (N)·kg−1, respectively. NM and AMF refer to no-inoculation and inoculation of AMF. Different lowercase letters show significant differences at P<0.05 level among different planting patterns under different N application rates with and without AMF inoculation.

    Figure  3.  Effects of inoculation of indigenous arbuscular mycorrhizal fungi (AFM) and N application rate on N absorption efficiency of pepper||common bean intercropping system

    图  4  土著AMF与施氮量对辣椒相对菜豆的种间竞争能力的影响

    N0和N120分别指不添加有机氮和添加有机氮120 mg(N)·kg−1处理。NM和AMF 指不接种和接种土著 AMF。不同小写字母表示不同施氮量在接种和不接种AFM下在P<0.05水平差异显著。N0 and N120 refer to the application rates of organic N of 0 and 120 mg(N)·kg−1, respectively. NM and AMF refer to no-inoculation and inoculation of AMF. Different lowercase letters show significant differences at P<0.05 level among different N application rate and no-inoculation and inoculation of AMF.

    Figure  4.  Effects of inoculation of indigenous arbuscular mycorrhizal fungi (AFM) and N application rate on interspecific competitiveness of pepper relative to common bean

    图  5  种植模式与施氮量对辣椒||菜豆间作系统菌根依赖性的影响

    N0和N120分别指不添加有机氮和添加有机氮120 mg(N)·kg−1处理。不同小写字母表示不同种植模式在不同施氮量下在P<0.05水平差异显著。N0 and N120 refer to the application rates of organic N of 0 and 120 mg(N)·kg−1, respectively. Different lowercase letters show significant differences at P<0.05 level among different planting patterns under different N application rates.

    Figure  5.  Effects of planting pattern and N application rate on mycorrhizal dependence of pepper||common bean intercropping system

    表  1  接种土著AMF、施氮量和种植模式对辣椒和菜豆株高、根长、生物量及根冠比的影响

    Table  1.   Effects of inoculation of indigenous arbuscular mycorrhizal fungi (AFM), N application rates and planting patterns on plant height, root length, biomass and root/shoot ratio of intercropped pepper and kidney bean

    菌根处理
    AMF treatment
    施氮处理
    N
    treatment
    种植方式
    Planting pattern
    株高
    Plant height
    (cm)
    根长
    Root length
    (cm)
    地上生物量
    Aboveground biomass (g∙plant−1)
    根系生物量
    Root biomass
    (g∙plant−1)
    根冠比
    Root/shoot
    ratio
    NMN0单作辣椒 Pepper monocropping29.71±2.10c8.29±8.91ab0.35±0.10g0.11±0.02ef0.31±0.03a
    单作菜豆 Common bean monocropping34.50±5.07bcd5.47±0.82ab1.21±0.13def0.23±0.14bc0.19±0.12bcd
    间作辣椒 Intercropping pepper34.97±3.16bcd12.45±11.81a0.50±0.01g0.11±0.04ef0.22±0.08abc
    间作菜豆 Intercropping common bean28.83±1.04d3.69±6.40b1.32±0.44de0.17±0.02d0.14±0.05cd
    N120单作辣椒 Pepper monocropping31.37±3.79cd4.59±0.25ab0.38±0.11g0.10±0.04f0.26±0.04ab
    单作菜豆 Common bean monocropping46.38±5.24a9.14±3.25ab1.90±0.27bc0.36±0.08a0.19±0.06bcd
    间作辣椒 Intercropping pepper33.19±8.79bcd13.86±11.34a0.60±0.35g0.12±0.06ef0.22±0.06abc
    间作菜豆 Intercropping common bean32.22±1.54cd6.83±0.13ab1.48±0.61cd0.17±0.10d0.14±0.11cd
    AMFN0单作辣椒 Pepper monocropping38.16±32.87abc12.44±2.16a0.69±0.05fg0.11±0.01ef0.17±0.02bcd
    单作菜豆 Common bean monocropping40.22±6.18abc6.89±5.25ab2.12±0.25b0.21±0.03c0.10±0.01d
    间作辣椒 Intercropping pepper34.08±5.51bcd12.32±2.98a0.73±0.10fg0.14±0.05de0.19±0.06bcd
    间作菜豆 Intercropping common bean38.89±3.15abc8.07±1.11ab2.68±0.33a0.24±0.03bc0.09±0.02d
    N120单作辣椒 Pepper monocropping39.33±0.68ab11.31±1.78a0.81±0.07efg0.13±0.01ef0.17±0.03bcd
    单作菜豆 Common bean monocropping36.50±1.48bcd5.80±2.92ab2.17±0.11b0.23±0.03bc0.11±0.02d
    间作辣椒 Intercropping pepper31.75±10.64cd13.16±2.65a0.87±0.40efg0.10±0.03f0.13±0.05cd
    间作菜豆 Intercropping common bean36.33±1.45bcd12.43±3.42a2.72±0.45a0.26±0.07b0.10±0.02d
      NM和AMF指不接种和接种土著AMF。N0和N120分别指不添加有机氮和添加有机氮120 mg (N)·kg−1处理。不同小写字母表示不同施氮量下不同种植模式间在P<0.05水平差异显著。NM and AMF refer to no-inoculation and inoculation of AMF. N0 and N120 refer to the application rates of organic N of 0 and 120 mg (N)·kg−1, respectively. Different lowercase letters show significant differences at P<0.05 level among different planting patterns under different N application rates.
    下载: 导出CSV
  • [1] 王琦. 菜豆和辣椒的病毒病病原检测[D]. 太谷: 山西农业大学, 2014

    WANG Q. Identification of viral pathogens infecting Phaseolus vulgaris L. and Capsicum annuvm L.[D]. Taigu: Shanxi Agricultural University, 2014
    [2] 王利立, 朱永永, 赵彦华, 等. 施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应[J]. 中国生态农业学报, 2017, 25(2): 200−210

    WANG L L, ZHU Y Y, ZHAO Y H, et al. Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 200−210
    [3] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415

    LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
    [4] 任家兵, 张梦瑶, 肖靖秀, 等. 小麦||蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文), 2020, 28(12): 1890−1900

    REN J B, ZHANG M Y, XIAO J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890−1900
    [5] HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853): 297−299 doi: 10.1038/35095041
    [6] 肖同建, 杨庆松, 冉炜, 等. 接种菌根真菌的旱作水稻-绿豆间作系统养分利用研究[J]. 中国农业科学, 2010, 43(4): 753−760 doi: 10.3864/j.issn.0578-1752.2010.04.012

    XIAO T J, YANG Q S, RAN W, et al. Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system[J]. Scientia Agricultura Sinica, 2010, 43(4): 753−760 doi: 10.3864/j.issn.0578-1752.2010.04.012
    [7] 赵乾旭, 史静, 夏运生, 等. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响[J]. 中国农业科学, 2017, 50(14): 2696−2705 doi: 10.3864/j.issn.0578-1752.2017.14.006

    ZHAO Q X, SHI J, XIA Y S, et al. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil[J]. Scientia Agricultura Sinica, 2017, 50(14): 2696−2705 doi: 10.3864/j.issn.0578-1752.2017.14.006
    [8] BEVER J D, DICKIE I A, FACELLI E, et al. Rooting theories of plant community ecology in microbial interactions[J]. Trends in Ecology & Evolution, 2010, 25(8): 468−478
    [9] VAN DER HEIJDEN M G A, WIEMKEN A, SANDERS I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant[J]. New Phytologist, 2003, 157(3): 569−578 doi: 10.1046/j.1469-8137.2003.00688.x
    [10] GROSS N, LE BAGOUSSE-PINGUET Y, LIANCOURT P, et al. Trait-mediated effect of arbuscular mycorrhiza on the competitive effect and response of a monopolistic species[J]. Functional Ecology, 2010, 24(5): 1122−1132 doi: 10.1111/j.1365-2435.2010.01713.x
    [11] 赵乾旭, 史静, 张仕颖, 等. 土著从枝菌根真菌(AMF)与不同形态氮对紫色土间作大豆生长及氮利用的影响[J]. 菌物学报, 2017, 36(7): 983−995

    ZHAO Q X, SHI J, ZHANG S Y, et al. Effects of indigenous arbuscular mycorrhizal fungi (AMF) and different forms of nitrogen on the growth and nitrogen utilization of soybean intercropped in purple soil[J]. Mycosystema, 2017, 36(7): 983−995
    [12] 刘圆圆, 张丽, 王硕, 等. 氮和土著AMF对黄瓜间作土壤酶活性及氮利用的影响[J]. 菌物学报, 2019, 38(11): 1965−1975

    LIU Y Y, ZHANG L, WANG S, et al. Effects of nitrogen and indigenous AMF on enzyme activity and nitrogen utilization in Cucumber intercropping soil[J]. Mycosystema, 2019, 38(11): 1965−1975
    [13] 刘圆圆, 赵乾旭, 邓曦, 等. 土著AMF与氮形态对辣椒||菜豆间作系统植株氮利用及其影响因素研究[J]. 中国生态农业学报(中英文), 2020, 28(2): 245−254

    LIU Y Y, ZHAO Q X, DENG X, et al. Effects of indigenous arbuscular mycorrhizal fungi and nitrogen forms on plant nitrogen utilization and the influencing factors in a pepper-common bean intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 245−254
    [14] ANITHA S, GEETHAKUMARI V L, PILLAI G R. Effect of intercrops on nutrient uptake and productivity of chilli-based cropping system[J]. Journal of Tropical Agriculture, 2001, 39(1): 60−61
    [15] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158−IN18 doi: 10.1016/S0007-1536(70)80110-3
    [16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000
    [17] WEDIN D, TILMAN D. Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition[J]. Ecological Monographs, 1993, 63(2): 199−229 doi: 10.2307/2937180
    [18] GOUGH L, OSENBERG C W, GROSS K L, et al. Fertilization effects on species density and primary productivity in herbaceous plant communities[J]. Oikos, 2000, 89(3): 428−439 doi: 10.1034/j.1600-0706.2000.890302.x
    [19] GOUGH L, GROSS K L, CLELAND E E, et al. Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition[J]. Oecologia, 2012, 169(4): 1053−1062 doi: 10.1007/s00442-012-2264-5
    [20] 肖焱波, 段宗颜, 金航, 等. 小麦/蚕豆间作体系中的氮节约效应及产量优势[J]. 植物营养与肥料学报, 2007, 13(2): 267−271 doi: 10.3321/j.issn:1008-505X.2007.02.014

    XIAO Y B, DUAN Z Y, JIN H, et al. Spared N response and yields advantage of intercropped wheat and fababean[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 267−271 doi: 10.3321/j.issn:1008-505X.2007.02.014
    [21] XIAO Y B, LI L, ZHANG F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques[J]. Plant and Soil, 2004, 262(1/2): 45−54 doi: 10.1023/B:PLSO.0000037019.34719.0d
    [22] 褚贵新, 沈其荣, 王树起. 不同供氮水平对水稻/花生间作系统中氮素行为的影响[J]. 土壤学报, 2004, 41(5): 789−794

    CHU G X, SHEN Q R, WANG S Q. Effects of N levels on biological N fixation and N transfer in intercropping system of groundnut with rice cultivated in aerobic soil[J]. Acta Pedologica Sinica, 2004, 41(5): 789−794
    [23] FANG Y, XUN F, BAI W M, et al. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe[J]. PLoS One, 2012, 7(10): e47369 doi: 10.1371/journal.pone.0047369
    [24] 雍太文, 杨文钰, 向达兵, 等. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定[J]. 草业学报, 2012, 21(1): 50−58 doi: 10.11686/cyxb20120107

    YONG T W, YANG W Y, XIANG D B, et al. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition[J]. Acta Prataculturae Sinica, 2012, 21(1): 50−58 doi: 10.11686/cyxb20120107
    [25] KLIRONOMOS J N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi[J]. Ecology, 2003, 84(9): 2292−2301 doi: 10.1890/02-0413
    [26] VAN DER HEIJDEN M G A, BOLLER T, WIEMKEN A, et al. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure[J]. Ecology, 1998, 79(6): 2082−2091 doi: 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2
    [27] ORTAS, DEMIRBAS A, AKPINAR C, et al. Under sterilized and non-sterilized soil conditions, mycorrhizal dependency in Citrus plants depends on phosphorus fertilization rather than zinc application[J]. European Journal of Horticultural Science, 2018, 83(2): 81−87 doi: 10.17660/eJHS.2018/83.2.3
    [28] KOIDE R T. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic[J]. Oecologia, 1991, 85(3): 389−395 doi: 10.1007/BF00320615
    [29] WATKINSON A R, FRECKLETON R P. Quantifying the impact of arbuscular mycorrhiza on plant competition[J]. The Journal of Ecology, 1997, 85(4): 541 doi: 10.2307/2960576
    [30] TURRINI A, BEDINI A, LOOR M B, et al. Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species[J]. Biology and Fertility of Soils, 2018, 54(2): 203−217 doi: 10.1007/s00374-017-1254-5
    [31] BENNETT J A, CAHILL J F Jr. Fungal effects on plant-plant interactions contribute to grassland plant abundances: evidence from the field[J]. Journal of Ecology, 2016, 104(3): 755−764 doi: 10.1111/1365-2745.12558
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2228
  • HTML全文浏览量:  83
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04
  • 录用日期:  2021-09-23
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-02-08

目录

    /

    返回文章
    返回