留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料对农田生态系统的影响: 研究现状与展望

吕一涵 周杰 杨亚东 臧华栋 胡跃高 曾昭海

吕一涵, 周杰, 杨亚东, 臧华栋, 胡跃高, 曾昭海. 微塑料对农田生态系统的影响: 研究现状与展望[J]. 中国生态农业学报(中英文), 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442
引用本文: 吕一涵, 周杰, 杨亚东, 臧华栋, 胡跃高, 曾昭海. 微塑料对农田生态系统的影响: 研究现状与展望[J]. 中国生态农业学报(中英文), 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442
LYU Y H, ZHOU J, YANG Y D, ZANG H D, HU Y G, ZENG Z H. Microplastics in agroecosystem: Research status and future challenges[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442
Citation: LYU Y H, ZHOU J, YANG Y D, ZANG H D, HU Y G, ZENG Z H. Microplastics in agroecosystem: Research status and future challenges[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442

微塑料对农田生态系统的影响: 研究现状与展望

doi: 10.12357/cjea.20210442
基金项目: 现代农业产业技术体系建设专项资金(CARS-07-B-5)资助
详细信息
    作者简介:

    吕一涵, 主要研究方向为农田微塑料污染。E-mail: lvyihan98@163.com

    通讯作者:

    臧华栋, 主要研究方向为农田生态与多样化种植。E-mail: zanghuadong@cau.edu.cn

  • 中图分类号: X53

Microplastics in agroecosystem: Research status and future challenges

Funds: This work was supported by the Earmarked Fund for China Agriculture Research System (CARS-07-B-5).
More Information
  • 摘要: 近年来, 微塑料污染成为全球关注的热点问题。在农田生态系统中地膜覆盖、灌溉用水、有机肥施用等措施在提升作物产量的同时, 都会导致塑料残留。因耕作和紫外线辐射, 残留塑料逐步破碎降解, 形成微塑料(直径<5 mm), 进入土壤、作物与食物链系统, 威胁生态系统健康。本文系统总结了农田微塑料的来源、丰度、迁移特点和检测方法, 重点关注了微塑料在农田生态系统中对作物生长发育、微生物活性、土壤养分循环及温室气体排放等方面的影响。微塑料对作物-土壤-微生物系统产生的主要影响为: 1)微塑料含有的毒性添加剂(即增塑剂)与携带的有害物质(如有机污染物、重金属和病原体)随塑料颗粒在土壤中迁移, 可改变土壤理化性质, 并为微生物提供新生态栖息地, 对作物生长、土壤酶和微生物活性造成影响; 2)微塑料含有大量碳(通常约为90%), 影响其他元素(如氮和磷)循环, 进而影响微生物活性。土壤性质改变也间接影响CO2、N2O和CH4形成。由于聚合物类型、大小、形状和浓度的高度可变性, 微塑料对作物生产和土壤生物地球化学过程的影响及其机制有待深入探究。本文还展望了未来农田生态系统微塑料的研究方向和重点。
  • 图  1  农田生态系统中微塑料的来源及其迁移过程

    Figure  1.  Source and migration process of microplastics in agroecosystems

    表  1  微塑料污染对作物生长的影响

    Table  1.   The impact of microplastics pollution on crop growth

    微塑料 Microplastics作物
    Crop
    指标
    Index
    效应
    Effect
    地点
    Location
    参考文献
    Reference
    种类
    Type
    形状
    Shape
    大小
    Size
    浓度
    Concentration
    PE/125 μm1%, 5%, 10%, 20% (w/w)小麦
    Wheat
    微塑料剂量依赖性
    Dose-dependent impact of microplastics
    英国威尔士格温内思郡
    Gwynedd, Wales, England
    [65]
    HDPE颗粒 Pellets<2 mm0.1%, 0.25%, 0.5%, 1% (w/w)小麦
    Wheat
    种子萌发、生物量
    Seedling emergence, biomass
    =澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
    颗粒 Pellets102.6 μm0.1% (w/w)多年生黑麦草
    Perennial ryegrass
    地上部生物量(干重)、叶绿素a和
    叶绿素b含量
    Shoot biomass (dry weight),
    chlorophyll a and b contents
    =北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    颗粒 Pellets102.6 μm0.1% (w/w)多年生黑麦草
    Perennial ryegrass
    根系生物量、叶绿素a与叶绿素b
    含量的比值
    Dry biomass of roots, chlorophyll a/b
    +北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    PVC/125 μm1%, 5%, 10%, 20% (w/w)小麦
    Wheat
    微塑料剂量依赖性
    Dose-dependent impact of microplastics
    英国威尔士格温内思郡
    Gwynedd, Wales, England
    [65]
    颗粒 Pellets<2 mm0.01%, 0.1%, 0.25%, 0.5%, 1% (w/w)小麦
    Wheat
    种子萌发、生物量
    Seedling emergence, biomass
    =澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
    薄膜 FilmsL: 0.5 mm;
    W: 0.5 mm;
    T: 0.008 mm
    /水稻
    Rice
    生物量、分蘖数
    Biomass, tillers number
    中国海南省海口市
    Haikou City, Hainan, China
    [67]
    PS颗粒 Pellets
    87 nm10 mg∙L−1小麦
    Wheat
    叶片Cd和丙二醛含量、超氧化物歧化酶活性
    Cd and malondialdehyde contents, and superoxide dismutase activity in leaves
    /[68]
    颗粒 Pellets87 nm10 mg∙L−1小麦
    Wheat
    过氧化氢酶和过氧化物酶活性
    Catalase and peroxidase activies
    =/[68]
    颗粒 Pellets87 nm10 mg∙L−1小麦
    Wheat
    Cd胁迫下叶片中长寿自由基的形
    成、碳水化合物和氨基酸代谢、种
    子萌发
    Formation of long-lived radicals in leaves after exposure to Cd, carbohydrate and amino acid
    metabolisms, seedling emergence
    +/[68]
    PLA颗粒 Pellets65.6 μm0.1% (w/w)多年生黑麦草
    Perennial ryegrass
    发芽率、株高
    Germination percentage, plant height
    北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    颗粒 Pellets65.6 μm0.1% (w/w)多年生黑麦草
    Perennial ryegrass
    地上部生物量(干重)、叶绿素a和叶绿素b含量
    Shoot biomass (dry weight), contents of chlorophyll a and b
    =北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    颗粒 Pellets65.6 μm0.1% (w/w)多年生黑麦草
    Perennial ryegrass
    叶绿素a与叶绿素b含量的比值
    Chlorophyll a/b
    +北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    颗粒 Pellets100~154 μm0, 0.1%, 1%, 10% (w/w)玉米
    Maize
    生物量、叶片叶绿素含量
    Biomass, chlorophyll content of leaves
    中国青岛即墨区
    Jimo District, Qingdao, China
    [69]
    PET颗粒 Pellets<2 mm0.1%, 0.25%, 0.5%, 1% (w/w)小麦
    Wheat
    种子萌发、生物量
    Seedling emergence, biomass
    =澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
      “+”表示添加微塑料具有正效应; “−”表示添加微塑料具有负效应; “=”表示添加微塑料无效应; “/”表示文献中无该栏信息。“L”表示长度; “W”表示宽度; “T”表示厚度; 未标字母为粒径。PE: 聚乙烯; HDPE: 高密度聚乙烯; PVC: 聚氯乙烯; PS: 聚苯乙烯; PLA: 聚乳酸; PET: 聚对苯二甲酸乙二醇酯。“+” “−” and “=” mean microplastics addition has a positive, negative, and no effect, respectively. “/” means no information in the literature. “L”: length; “W”: width; “T”: thickness; unmarked letters mean particle size. PE: polyethylene; HDPE: high-density polyethylene; PVC: polyvinyl chloride; PS: polystyrene; PLA: polylactic acid; PET: polyethylene terephthalate.
    下载: 导出CSV

    表  2  微塑料污染对土壤微生物的影响

    Table  2.   The impact of microplastics pollution on soil microorganisms

    微塑料 Microplastics微生物
    Microorganisms
    指标
    Index
    效应
    Effect
    地点
    Location
    参考文献
    Reference
    种类
    Type
    形状
    Shape
    大小
    Size
    浓度
    Concentration
    PE / 125 μm 1%, 5%, 10%, 20% (w/w) 微生物
    Microbial
    生物量、碳利用效率
    Biomass, carbon utilization efficiency
    + 英国威尔士格温内思郡
    Gwynedd, Wales, England
    [65]
    颗粒 Pellets 678 μm 1%, 5% (w/w) 细菌
    Bacteria
    丰富度、多样性
    Richness, diversity
    中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    颗粒 Pellets 0.15~0.20 mm 2.12 g∙kg−1 (2000分子量)
    2.12 g∙kg−1(2000 molecular weight)
    细菌、真菌
    Bacteria, fungi
    丰富度
    Richness
    / [78]
    颗粒 Pellets 0.15~0.20 mm 2.12 g∙kg−1 (>100 000分子量) 2.12 g∙kg−1 (> 100 000 molecular weight) 细菌、真菌
    Bacteria, fungi
    丰富度
    Richness
    + / [78]
    LDPE 薄膜 Films L: 2 mm
    W: 2 mm
    T: 0.01 mm
    0.076 g∙kg−1 细菌
    Bacteria
    群落α多样性
    Community alpha diversity
    = 中国北京大学
    Peking University, China
    [76]
    薄膜 Films L: 2 mm
    W: 2 mm
    T: 0.01 mm
    0.076 g∙kg−1 细菌
    Bacteria
    相似性
    Similarity
    中国北京大学
    Peking University, China
    [81]
    薄膜 Films L: 2 mm
    W: 2 mm
    T: 0.01 mm
    0.076 g∙kg−1 细菌
    Bacteria
    群落周转率(群落演替)
    Turnover rate of bacterial community (community succession)
    + 中国北京大学
    Peking University, China
    [81]
    颗粒 Pellets 200~630 μm 1% (w/w) 微生物
    Microbial
    活性、群落组成、微生物量氮
    Activity, community
    composition, microbial biomass nitrogen
    = 德国克莱夫
    Kleve, Germany
    [80]
    颗粒 Pellets 200~630 μm 1% (w/w) 微生物
    Microbial
    微生物量碳
    Microbial biomass carbon
    德国克莱夫
    Kleve, Germany
    [80]
    颗粒 Pellets 678 μm 1%, 5% ( (w/w) 细菌
    Bacteria
    固氮
    Nitrogen fixation
    + 中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    HDPE 颗粒 Pellets <2 mm 0.1%, 0.25%, 0.5%, 1% (w/w) 微生物
    Microbial
    群落多样性
    Community diversity
    = 澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
    PVC 颗粒 Pellets 18 μm 5% (w/w) 细菌
    Bacteria
    丰富度、多样性
    Richness, diversity
    中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    颗粒 Pellets 18 μm 1% (w/w) 细菌
    Bacteria
    丰富度、多样性
    Richness, diversity
    = 中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    颗粒 Pellets <2 mm 0.01%, 0.1%, 0.25%, 0.5%, 1% (w/w) 微生物
    Microbial
    群落多样性
    Community diversity
    = 澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
    / 125 μm 1%, 5%, 10%, 20% (w/w) 微生物
    Microbial
    生物量、碳利用效率
    Biomass, carbon utilization efficiency
    + 英国威尔士格温内思郡
    Gwynedd, Wales, England
    [65]
    颗粒 Pellets 18 μm 1%, 5% (w/w) 细菌
    Bacteria
    固氮
    Nitrogen fixation
    + 中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    PP 颗粒 Pellets 200~630 μm 1% (w/w) 微生物
    Microbial
    活性、群落组成
    Activity, community
    composition
    = 德国克莱夫
    Kleve, Germany
    [80]
    颗粒 Pellets 200~630 μm 1% (w/w) 微生物
    Microbial
    生物量、微生物量碳、微生物量氮
    Biomass, microbial biomass carbon, microbial biomass nitrogen
    德国克莱夫
    Kleve, Germany
    [80]
    颗粒 Pellets <250 μm 28% (w/w) 微生物
    Microbial
    呼吸
    Respiration
    + 中国陕西省安塞县
    Ansai, Shaanxi, China
    [82]
    PLA 颗粒 Pellets 20~50 μm 2% (w/w) 细菌
    Bacteria
    群落多样性和组成以及相关生态系统功能和过程
    Community diversity and composition, and related ecosystem functions and processes
    = 中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
    颗粒 Pellets 20~50 μm 2% (w/w) 厚壁菌
    Firmicutes
    生物量
    Biomass
    中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
    PET 颗粒 Pellets <2 mm 0.1%, 0.25%, 0.5%, 1% (w/w) 微生物
    Microbial
    群落多样性
    Community diversity
    = 澳大利亚新南威尔士州
    New South Wales, Australia
    [50]
      “+”表示添加微塑料具有正效应; “−”表示添加微塑料具有负效应; “=”表示添加微塑料无效应; “/”表示文献中无该栏信息。“L”表示长度; “W”表示宽度; “T”表示厚度; 未标字母为粒径。PE: 聚乙烯; LDPE: 低密度聚乙烯; HDPE: 高密度聚乙烯; PVC: 聚氯乙烯; PP: 聚丙烯; PLA: 聚乳酸; PET: 聚对苯二甲酸乙二醇酯。“+” “−” and “=” means microplastics addition has a positive, negative, and no effect, respectively. “/” means there is no information in the literature. “L”: length; “W”: width; “T”: thickness; unmarked letters mean particle size. PE: polyethylene; LDPE: low-density polyethylene; HDPE: high-density polyethylene; PVC: polyvinyl chloride; PP: polypropylene; PLA: polylactic acid; PET: polyethylene terephthalate.
    下载: 导出CSV

    表  3  微塑料污染对土壤酶活性的影响

    Table  3.   The impact of microplastics pollution on soil enzyme activities

    微塑料 Microplastics土壤
    Soil
    指标
    Index
    效应
    Effect
    地点
    Location
    参考文献
    Reference
    种类
    Type
    形状
    Shape
    大小
    Size
    浓度
    Concentration
    PE颗粒 Pellets678 μm1%, 5% (w/w)壤土
    Loamy soil
    URE, ACP+中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    颗粒 Pellets678 μm1%, 5% (w/w)壤土
    Loamy soil
    FDAse中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    LDPE薄膜 FilmsL: 2 mm
    W: 2 mm
    T: 0.01 mm
    0.076 g∙kg−1褐土
    Cinnamon soil
    URE, CAT+中国北京大学
    Peking University, China
    [76]
    薄膜 FilmsL: 2 mm
    W: 2 mm
    T: 0.01 mm
    0.076 g∙kg−1褐土
    Cinnamon soil
    Invertase=中国北京大学
    Peking University, China
    [76]
    PVC颗粒 Pellets678 μm1%, 5% (w/w)壤土
    Loamy soil
    URE, ACP+中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    颗粒 Pellets678 μm1%, 5% (w/w)壤土
    Loamy soil
    FDAse中国浙江省临安市
    Lin’an, Zhejiang, China
    [74]
    PP颗粒 Pellets<250 μm28% (w/w)黄土
    Loess
    URE=中国陕西省安塞县
    Ansai, Shaanxi, China
    [82]
    颗粒 Pellets<250 μm7%, 28% (w/w)黄土
    Loess
    AP+中国陕西省安塞县
    Ansai, Shaanxi, China
    [82]
    颗粒 Pellets<250 μm28% (w/w)黄土
    Loess
    GLU+中国陕西省安塞县
    Ansai, Shaanxi, China
    [82]
    颗粒 Pellets<180 μm7%, 28% (w/w)黄土
    Loess
    PO中国陕西省安塞县
    Ansai, Shaanxi, China
    [86]
    颗粒 Pellets<180 μm7%, 28% (w/w)黄土
    Loess
    FDAse+中国陕西省安塞县
    Ansai, Shaanxi, China
    [86]
    PLA颗粒 Pellets20~50 μm2% (w/w)/URE, CAT, GLU=中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
      “+”表示添加微塑料具有正效应; “−”表示添加微塑料具有负效应; “=”表示添加微塑料无效应; “/”表示文献中无该栏信息。“L”表示长度; “W”表示宽度; “T”表示厚度; 未标字母为粒径。PE: 聚乙烯; LDPE: 低密度聚乙烯; PVC: 聚氯乙烯; PP: 聚丙烯; PLA: 聚乳酸。URE: 脲酶; ACP: 酸性磷酸酶; FDAse: 荧光素二乙酸酯水解酶; CAT: 过氧化氢酶; Invertase: 转化酶(蔗糖酶); AP: 磷酸酶; GLU: β-葡萄糖苷酶; PO: 酚氧化酶。“+” “−” and “=” mean microplastics addition has a positive, negative, and no effect, respectively. “/” means there is no information in the literature. “L”: length; “W”: width; “T”: thickness; unmarked letters mean particle size. PE: polyethylene; LDPE: low-density polyethylene; PVC: polyvinyl chloride; PP: polypropylene; PLA: polylactic acid. URE: urease; ACP: acid phosphatase; FDAse: fluorescein diacetate hydrolase; CAT: catalase; Invertase: invertase (sucrase); AP: phosphatase; GLU: β-glucosidase; PO: phenol oxidase.
    下载: 导出CSV

    表  4  微塑料污染对土壤养分循环的影响

    Table  4.   The impact of microplastics pollution on soil nutrient cycling

    微塑料 Microplastics土壤
    Soil
    指标
    Index
    效应
    Effect
    地点
    Location
    参考文献
    Reference
    种类
    Type
    形状
    Shape
    大小
    Size
    浓度
    Concentration
    PE 地膜
    Mulching film
    <13 μm, <150 μm 5% (w/w) 黏土
    Clay
    DOC = 中国天津市北辰区
    Beichen District, Tianjin, China
    [73]
    地膜
    Mulching film
    <13 μm, <150 μm 5% (w/w) 黏土
    Clay
    有机化合物
    Organic compound
    + 中国天津市北辰区
    Beichen District, Tianjin, China
    [73]
    地膜
    Mulching film
    <150 μm 5% (w/w) 黏土
    Clay
    CO2日通量
    Daily flux of CO2
    + 中国天津市北辰区
    Beichen District, Tianjin, China
    [73]
    地膜
    Mulching film
    <150 μm 5% (w/w) 黏土
    Clay
    CH4累积吸收
    Cumulative uptake of CH4
    中国天津市北辰区
    Beichen District, Tianjin, China
    [73]
    地膜
    Mulching film
    <13 μm, <150 μm 5% (w/w) 黏土
    Clay
    GHGs, N2O 中国天津市北辰区
    Beichen District, Tianjin, China
    [73]
    LDPE 颗粒
    Pellets
    200~630 μm 1% (w/w) 砂质黏壤土
    Sandy clay loam
    DOC, DON, Nmin = 德国克莱夫
    Kleve, Germany
    [80]
    颗粒
    Pellets
    25.3±8.4 μm 3% (w/w) 人工土壤(石英砂75%、
    高岭石黏土20%、泥炭藓5%)
    Artificial soil (quartz sand 75%,
    kaolinite clay 20%, sphagnum peat 5%)
    CO2日通量
    Daily flux of CO2
    + / [99]
    颗粒
    Pellets
    25.3±8.4 μm 0.2%, 3% (w/w) 人工土壤(石英砂75%、
    高岭石黏土20%、泥炭藓5%)
    Artificial soil (quartz sand 75%,
    kaolinite clay 20%, sphagnum peat 5%)
    CH4,N2O = / [99]
    HDPE 颗粒
    Pellets
    102.6 μm 0.1% (w/w) 砂质黏壤土
    Sandy clay loam
    SOM = 北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    PVC 薄膜
    Films
    L: 0.5 mm; W: 0.5 mm; T: 0.008 mm / 红壤土
    Laterite soil
    SOC, TOC, SOM 中国海南省海口市
    Haikou, Hainan, China
    [67]
    PP 颗粒
    Pellets
    <180 μm 7%, 28% (w/w) 黄土
    Loess
    DOM, TDN, DON, TDP, DOP + 中国陕西省安塞县
    Ansai, Shaanxi, China
    [95]
    颗粒
    Pellets
    200~630 μm 1% (w/w) 砂质黏壤土
    Sandy clay loam
    DOC, DON, Nmin = 德国克莱夫
    Kleve, Germany
    [80]
    颗粒
    Pellets
    <180 μm 28% (w/w) 黄土 Loess DOC + 中国陕西省安塞县
    Ansai, Shaanxi, China
    [95]
    颗粒
    Pellets
    <180 μm 7% (w/w) 黄土 Loess DOC = 中国陕西省安塞县
    Ansai, Shaanxi, China
    [95]
    颗粒
    Pellets
    <180 μm 7%, 28% (w/w) 黄土
    Loess
    NH4+, NO3, PO43− = 中国陕西省安塞县
    Ansai, Shaanxi, China
    [95]
    PLA 颗粒
    Pellets
    65.6 μm 0.1% (w/w) 砂质黏壤土
    Sandy clay loam
    SOM = 北爱尔兰韦斯特兰
    Westland, Northern Ireland
    [66]
    颗粒
    Pellets
    20~50 μm 2% (w/w) / DOC, TDN, NH4+, NO3, NO2, IP = 中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
    颗粒
    Pellets
    20~50 μm 2% (w/w)+水稻秸秆 Rice straw (2%) / DOC 中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
    颗粒
    Pellets
    2~50 μm 2% (w/w)+水稻秸秆 Rice straw (2%)
    / TDN, NH4+, NO3, NO2, IP = 中国江苏省南京市
    Nanjing, Jiangsu, China
    [79]
    PET 颗粒
    Pellets
    56.3±12.8 μm 0.2%, 0.4% (w/w) 人工土壤(石英砂75%、
    高岭石黏土20%、泥炭藓5%)
    Artificial soil (quartz sand 75%,
    kaolinite clay 20%, sphagnum peat 5%)
    CH4, N2O = / [99]
      “+”表示添加微塑料具有正效应; “−”表示添加微塑料具有负效应; “=”表示添加微塑料无效应; “/”表示文献中无该栏信息。“L”表示长度; “W”表示宽度; “T”表示厚度; 未标字母为粒径。PE: 聚乙烯; LDPE: 低密度聚乙烯; HDPE: 高密度聚乙烯; PVC: 聚氯乙烯; PP: 聚丙烯; PLA: 聚乳酸; PET: 聚对苯二甲酸乙二醇酯。DOC: 可溶性有机碳; GHGs: 温室气体; DON: 可溶性有机氮; Nmin: 无机氮; SOM: 土壤有机质; SOC: 土壤有机碳; TOC: 总有机碳; DOM: 可溶性有机质; TDN: 总可溶性氮; TDP: 总可溶性磷; DOP: 可溶性有机磷; IP: 无机磷。“+” “−” and “=” mean microplastics addition has a positive, negative, and no effect, respectively. “/” means no information in the literature. “L”: length; “W”: width; “T”: thickness; unmarked letters mean particle size. PE: polyethylene; LDPE: low-density polyethylene; HDPE: high-density polyethylene; PVC: polyvinyl chloride; PP: polypropylene; PLA: polylactic acid; PET: polyethylene terephthalate. DOC: dissolved organic carbon; GHGs: greenhouse gases; DON: dissolved organic nitrogen; Nmin: inorganic nitrogen; SOM: soil organic matter; SOC: soil organic carbon; TOC: total organic carbon; DOM: dissolved organic matter; TDN: total dissolved nitrogen; TDP: total dissolved phosphorus; DOP: dissolved organic phosphorus; IP: inorganic phosphorus.
    下载: 导出CSV
  • [1] 雷晓婷, 雷金银, 周丽娜, 等. 微塑料对农田土壤质量的影响研究现状与分析[J]. 宁夏农林科技, 2020, 61(2): 26−28 doi: 10.3969/j.issn.1002-204x.2020.02.010

    LEI X T, LEI J Y, ZHOU L N, et al. Status and analysis of study on effects of microplastics on farmland soil quality[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(2): 26−28 doi: 10.3969/j.issn.1002-204x.2020.02.010
    [2] 季梦如, 马旖旎, 季荣. 微塑料圈: 环境微塑料对微生物的载体作用[J]. 环境保护, 2020, 48(23): 19−27

    JI M R, MA Y N, JI R. Plastisphere: The vector effects of microplastics on microbial communities[J]. Environmental Protection, 2020, 48(23): 19−27
    [3] 徐湘博, 孙明星, 张林秀, 等. 土壤微塑料污染研究进展与展望[J]. 农业资源与环境学报, 2021, 38(1): 1−9

    XU X B, SUN M X, ZHANG L X, et al. Research progress and prospect of soil microplastic pollution[J]. Journal of Agricultural Resources and Environment, 2021, 38(1): 1−9
    [4] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021−1030

    LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021−1030
    [5] 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100−1111 doi: 10.7524/j.issn.0254-6108.2020083102

    HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil[J]. Environmental Chemistry, 2021, 40(4): 1100−1111 doi: 10.7524/j.issn.0254-6108.2020083102
    [6] 杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281−298

    YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281−298
    [7] 王志超, 孟青, 于玲红, 等. 内蒙古河套灌区农田土壤中微塑料的赋存特征[J]. 农业工程学报, 2020, 36(3): 204−209 doi: 10.11975/j.issn.1002-6819.2020.03.025

    WANG Z C, MENG Q, YU L H, et al. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 204−209 doi: 10.11975/j.issn.1002-6819.2020.03.025
    [8] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127−141 doi: 10.1016/j.scitotenv.2017.01.190
    [9] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12−20 doi: 10.1016/j.scitotenv.2018.06.004
    [10] LWANGA E H, VEGA J M, QUEJ V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 14071 doi: 10.1038/s41598-017-14588-2
    [11] SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591−3598
    [12] QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048−1056 doi: 10.1016/j.scitotenv.2018.07.229
    [13] RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12): 6453−6454
    [14] 蒲生彦, 张颖, 吕雪. 微塑料在土壤-地下水中的环境行为及其生态毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 44−55 doi: 10.7524/AJE.1673-5897.20190923002

    PU S Y, ZHANG Y, LYU X. Review on the environmental behavior and ecotoxicity of microplastics in soil-groundwater[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 44−55 doi: 10.7524/AJE.1673-5897.20190923002
    [15] ZHANG L S, XIE Y S, LIU J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248−4255
    [16] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20): 10777−10779
    [17] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: a source of microplastics? — Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38−45 doi: 10.1016/j.watres.2019.04.060
    [18] 冯雪莹, 孙玉焕, 张书武, 等. 微塑料对土壤-植物系统的生态效应[J]. 土壤学报, 2021, 58(2): 299−313

    FENG X Y, SUN Y H, ZHANG S W, et al. Ecological effects of microplastics on soil-plant systems[J]. Acta Pedologica Sinica, 2021, 58(2): 299−313
    [19] WEITHMANN N, MÖLLER J N, LÖDER M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4(4): eaap8060 doi: 10.1126/sciadv.aap8060
    [20] BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422−435 doi: 10.1016/j.scitotenv.2017.08.086
    [21] 张佳佳, 陈延华, 王学霞, 等. 土壤环境中微塑料的研究进展[J]. 中国生态农业学报(中英文), 2021, 29(6): 937−952

    ZHANG J J, CHEN Y H, WANG X X, et al. A review of microplastics in the soil environment[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 937−952
    [22] KADER M A, SENGE M, MOJID M A, et al. Effects of plastic-hole mulching on effective rainfall and readily available soil moisture under soybean (Glycine max) cultivation[J]. Paddy and Water Environment, 2017, 15(3): 659−668 doi: 10.1007/s10333-017-0585-z
    [23] MA D D, CHEN L, QU H C, et al. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: a meta-analysis[J]. Agricultural Water Management, 2018, 202: 166−173 doi: 10.1016/j.agwat.2018.02.001
    [24] QIN W, HU C S, OENEMA O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis[J]. Scientific Reports, 2015, 5: 16210 doi: 10.1038/srep16210
    [25] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报, 2017, 48(6): 1−14 doi: 10.6041/j.issn.1000-1298.2017.06.001

    ZHAO Y, CHEN X G, WEN H J, et al. Research status and prospect of control technology for residual plastic film pollution in farmland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 1−14 doi: 10.6041/j.issn.1000-1298.2017.06.001
    [26] 邓炜航, 屈茂会. 我国废旧塑料的废物再利用现状以及未来趋势[J]. 中国资源综合利用, 2018, 36(4): 75−77 doi: 10.3969/j.issn.1008-9500.2018.04.028

    DENG W H, QU M H. Waste waste recycling status and future trends in China[J]. China Resources Comprehensive Utilization, 2018, 36(4): 75−77 doi: 10.3969/j.issn.1008-9500.2018.04.028
    [27] ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814 doi: 10.1016/j.jhazmat.2019.121814
    [28] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096 doi: 10.1016/j.envpol.2020.114096
    [29] ZHANG D, LIU H B, HU W L, et al. The status and distribution characteristics of residual mulching film in Xinjiang, China[J]. Journal of Integrative Agriculture, 2016, 15(11): 2639−2646 doi: 10.1016/S2095-3119(15)61240-0
    [30] LI W F, WUFUER R, DUO J, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region[J]. Science of the Total Environment, 2020, 749: 141420 doi: 10.1016/j.scitotenv.2020.141420
    [31] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: a case study in Greater Paris[J]. Environmental Chemistry, 2015, 12(5): 592 doi: 10.1071/EN14167
    [32] FU D D, CHEN C M, QI H Y, et al. Occurrences and distribution of microplastic pollution and the control measures in China[J]. Marine Pollution Bulletin, 2020, 153: 110963 doi: 10.1016/j.marpolbul.2020.110963
    [33] 刘沙沙, 付建平, 郭楚玲, 等. 微塑料的环境行为及其生态毒性研究进展[J]. 农业环境科学学报, 2019, 38(5): 957−969

    LIU S S, FU J P, GUO C L, et al. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 2019, 38(5): 957−969
    [34] RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1): 1362 doi: 10.1038/s41598-017-01594-7
    [35] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928−934 doi: 10.1360/N972018-00845

    LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928−934 doi: 10.1360/N972018-00845
    [36] 李佳仪, 赖嘉怡, 古嘉基, 等. 微塑料对人体健康影响的研究进展[J]. 公共卫生与预防医学, 2020, 31(4): 111−115 doi: 10.3969/j.issn.1006-2483.2020.04.027

    LI J Y, LAI J Y, GU J J, et al. Research progress on the effect of microplastics on human health[J]. Journal of Public Health and Preventive Medicine, 2020, 31(4): 111−115 doi: 10.3969/j.issn.1006-2483.2020.04.027
    [37] NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161−169 doi: 10.1016/j.envpol.2013.07.027
    [38] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments[J]. Limnology and Oceanography: Methods, 2012, 10(7): 524−537 doi: 10.4319/lom.2012.10.524
    [39] YANG J, LI R J, ZHOU Q, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure[J]. Environmental Pollution, 2021, 272: 116028 doi: 10.1016/j.envpol.2020.116028
    [40] BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: a case study from the intensive vegetable farming in Southeast Spain[J]. Science of the Total Environment, 2021, 755: 142653 doi: 10.1016/j.scitotenv.2020.142653
    [41] FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments — A case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213: 648−657 doi: 10.1016/j.envpol.2016.03.012
    [42] BALDWIN A K, CORSI S R, MASON S A. Plastic debris in 29 great lakes tributaries: relations to watershed attributes and hydrology[J]. Environmental Science & Technology, 2016, 50(19): 10377−10385
    [43] KIM S K, KIM J S, LEE H, et al. Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate[J]. Journal of Hazardous Materials, 2021, 403: 123997 doi: 10.1016/j.jhazmat.2020.123997
    [44] BIRCH Q T, POTTER P M, PINTO P X, et al. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization[J]. Talanta, 2021, 224: 121743 doi: 10.1016/j.talanta.2020.121743
    [45] HE D F, ZHANG X T, HU J N. Methods for separating microplastics from complex solid matrices: Comparative analysis[J]. Journal of Hazardous Materials, 2021, 409: 124640 doi: 10.1016/j.jhazmat.2020.124640
    [46] SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: a review[J]. Analytical Methods, 2017, 9(9): 1384−1391 doi: 10.1039/C6AY02558G
    [47] 刘东生, 邹国元, 陈延华, 等. 分析技术在土壤微塑料研究中的应用现状[J]. 中国生态农业学报(中英文), 2021, 29(6): 953−960

    LIU D S, ZOU G Y, CHEN Y H, et al. Analytical techniques for studying soil microplastics[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 953−960
    [48] CHAE Y, AN Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review[J]. Environmental Pollution, 2018, 240: 387−395 doi: 10.1016/j.envpol.2018.05.008
    [49] 连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737−745

    LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4): 737−745
    [50] JUDY J D, WILLIAMS M, GREGG A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota[J]. Environmental Pollution, 2019, 252: 522−531 doi: 10.1016/j.envpol.2019.05.027
    [51] HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179−199 doi: 10.1016/j.jhazmat.2017.10.014
    [52] YIN R, LIN X G, WANG S G, et al. Effect of DBP/DEHP in vegetable planted soil on the quality of capsicum fruit[J]. Chemosphere, 2003, 50(6): 801−805 doi: 10.1016/S0045-6535(02)00222-9
    [53] LIAO C S, YEN J H, WANG Y S. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate[J]. Journal of Hazardous Materials, 2009, 163(2/3): 625−631
    [54] KONG S F, JI Y Q, LIU L L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012, 170: 161−168 doi: 10.1016/j.envpol.2012.06.017
    [55] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
    [56] VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. Science of the Total Environment, 2019, 654: 1040−1047 doi: 10.1016/j.scitotenv.2018.11.183
    [57] JIANG X J, LIU W J, WANG E H, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China[J]. Soil and Tillage Research, 2017, 166: 100−107 doi: 10.1016/j.still.2016.10.011
    [58] ZHANG K, SHI H H, PENG J P, et al. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 2018, 630: 1641−1653 doi: 10.1016/j.scitotenv.2018.02.300
    [59] ZHANG M, JIA H, WENG Y X, et al. Biodegradable PLA/PBAT mulch on microbial community structure in different soils[J]. International Biodeterioration & Biodegradation, 2019, 145: 104817
    [60] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576−582 doi: 10.1016/j.scitotenv.2018.11.123
    [61] DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656−9665
    [62] RILLIG M C, LEHMANN A, DE SOUZA MACHADO A A, et al. Microplastic effects on plants[J]. New Phytologist, 2019, 223(3): 1066−1070 doi: 10.1111/nph.15794
    [63] DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044−6052
    [64] RUBOL S, MANZONI S, BELLIN A, et al. Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)[J]. Advances in Water Resources, 2013, 62: 106−124 doi: 10.1016/j.advwatres.2013.09.016
    [65] ZANG H D, ZHOU J, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148: 107926 doi: 10.1016/j.soilbio.2020.107926
    [66] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496−11506
    [67] LIU Y, HUANG Q, HU W, et al. Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions[J]. Chemosphere, 2021, 267: 128901 doi: 10.1016/j.chemosphere.2020.128901
    [68] LIAN J P, WU J N, ZEB A, et al. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)?[J]. Environmental Pollution, 2020, 263: 114498 doi: 10.1016/j.envpol.2020.114498
    [69] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791 doi: 10.1016/j.chemosphere.2020.126791
    [70] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234 doi: 10.1016/j.soilbio.2012.11.009
    [71] ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137−7146
    [72] HARRISON J P, SCHRATZBERGER M, SAPP M, et al. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms[J]. BMC Microbiology, 2014, 14(1): 1−15 doi: 10.1186/1471-2180-14-1
    [73] REN X W, TANG J C, LIU X M, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution, 2020, 256: 113347 doi: 10.1016/j.envpol.2019.113347
    [74] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634 doi: 10.1016/j.scitotenv.2019.135634
    [75] SHEN M C, ZHANG Y X, ZHU Y, et al. Recent advances in toxicological research of nanoplastics in the environment: a review[J]. Environmental Pollution, 2019, 252: 511−521 doi: 10.1016/j.envpol.2019.05.102
    [76] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983 doi: 10.1016/j.envpol.2019.112983
    [77] ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211 doi: 10.1016/j.soilbio.2021.108211
    [78] 丁峰, 赖金龙, 季晓晖, 等. 聚乙烯微塑料对玉米根际土壤微生物群落结构的影响[J]. 中国生态农业学报(中英文), 2021, 29(6): 970−978

    DING F, LAI J L, JI X H, et al. Effects of polyethylene microplastics on the microbial community structure of maize rhizosphere soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 970−978
    [79] CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271 doi: 10.1016/j.chemosphere.2019.125271
    [80] BLÖCKER L, WATSON C, WICHERN F. Living in the plastic age— Different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy[J]. Environmental Pollution, 2020, 267: 115468 doi: 10.1016/j.envpol.2020.115468
    [81] WANG J, HUANG M K, WANG Q, et al. LDPE microplastics significantly alter the temporal turnover of soil microbial communities[J]. Science of the Total Environment, 2020, 726: 138682 doi: 10.1016/j.scitotenv.2020.138682
    [82] YANG X M, BENTO C P M, CHEN H, et al. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil[J]. Environmental Pollution, 2018, 242: 338−347 doi: 10.1016/j.envpol.2018.07.006
    [83] DICK R P, SANDOR J A, EASH N S. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru[J]. Agriculture, Ecosystems & Environment, 1994, 50(2): 123−131
    [84] ALLISON S D, JASTROW J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245−3256 doi: 10.1016/j.soilbio.2006.04.011
    [85] TRASAR-CEPEDA C, LEIRÓS M C, GIL-SOTRES F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality[J]. Soil Biology and Biochemistry, 2008, 40(9): 2146−2155 doi: 10.1016/j.soilbio.2008.03.015
    [86] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907−917 doi: 10.1016/j.chemosphere.2017.07.064
    [87] LI X M, CHEN Q L, HE C, et al. Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities[J]. Environmental Science & Technology, 2019, 53(1): 50−59
    [88] ZHOU J, WEN Y, MARSHALL M R, et al. Microplastics as an emerging threat to plant and soil health in agroecosystems[J]. Science of the Total Environment, 2021, 787: 147444 doi: 10.1016/j.scitotenv.2021.147444
    [89] BETTAS ARDISSON G, TOSIN M, BARBALE M, et al. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach[J]. Frontiers in Microbiology, 2014, 5: 710
    [90] WANG L, JIANG G B, CAI Y Q, et al. Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples[J]. Journal of Environmental Sciences: China, 2007, 19(7): 874−878 doi: 10.1016/S1001-0742(07)60145-4
    [91] WANG J, LYU S, ZHANG M Y, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils[J]. Chemosphere, 2016, 151: 171−177 doi: 10.1016/j.chemosphere.2016.02.076
    [92] WANG P, LOMBI E, ZHAO F J, et al. Nanotechnology: a new opportunity in plant sciences[J]. Trends in Plant Science, 2016, 21(8): 699−712 doi: 10.1016/j.tplants.2016.04.005
    [93] ZHOU Q H, WU Z B, CHENG S P, et al. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation[J]. Soil Biology and Biochemistry, 2005, 37(8): 1454−1459 doi: 10.1016/j.soilbio.2005.01.003
    [94] XIE H J, SHI Y J, ZHANG J, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(8): 1108−1116
    [95] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1): 11 doi: 10.1186/s12302-018-0140-6
    [96] BANDOPADHYAY S, SINTIM H Y, DEBRUYN J M. Structural and functional responses of soil microbial communities to biodegradable plastic film mulching in two agroecosystems[J]. bioRxiv, 2019, DOI: 10.1101/650317
    [97] GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208: 426−434 doi: 10.1016/j.envpol.2015.10.010
    [98] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota — A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812−1836 doi: 10.1016/j.soilbio.2011.04.022
    [99] NG E L, LIN S Y, DUNGAN A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606 doi: 10.1016/j.jhazmat.2020.124606
    [100] JIANG T, MA X G, TANG Q, et al. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting[J]. Bioresource Technology, 2016, 217: 210−218 doi: 10.1016/j.biortech.2016.01.089
    [101] WEI W, HUANG Q S, SUN J, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509−2517
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  38
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回