留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征

吕汉强 胡发龙 于爱忠 苏向向 王玉珑 殷文 柴强

吕汉强, 胡发龙, 于爱忠, 苏向向, 王玉珑, 殷文, 柴强. 荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征[J]. 中国生态农业学报 (中英文), 2022, 30(6): 952−964 doi: 10.12357/cjea.20210467
引用本文: 吕汉强, 胡发龙, 于爱忠, 苏向向, 王玉珑, 殷文, 柴强. 荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征[J]. 中国生态农业学报 (中英文), 2022, 30(6): 952−964 doi: 10.12357/cjea.20210467
LYU H Q, HU F L, YU A Z, SU X X, WANG Y L, YIN W, CHAI Q. Microstructure characteristics of soil aggregates of maize farmland under different utilization patterns of green manure in a desert oasis area[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 952−964 doi: 10.12357/cjea.20210467
Citation: LYU H Q, HU F L, YU A Z, SU X X, WANG Y L, YIN W, CHAI Q. Microstructure characteristics of soil aggregates of maize farmland under different utilization patterns of green manure in a desert oasis area[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 952−964 doi: 10.12357/cjea.20210467

荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征

doi: 10.12357/cjea.20210467
基金项目: 国家自然科学基金项目 (32160524)、甘肃省教育厅产业支撑项目(2021CYZC-54)、甘肃省科技计划项目(20JR5RA037)和甘肃农业大学伏羲杰出人才培育计划项目(GAUfx-04J01)资助
详细信息
    作者简介:

    吕汉强, 研究方向为旱地与绿洲农作制度, E-mail: 1131021518@qq.com

    胡发龙, 研究方向为多熟种植和养分高效利用, E-mail: hufl@gsau.edu.cn

    通讯作者:

    于爱忠, 主要研究方向为循环农业和保护性耕作等。 E-mail: yuaizh@gsau.edu.cn

  • 中图分类号: S344

Microstructure characteristics of soil aggregates of maize farmland under different utilization patterns of green manure in a desert oasis area

Funds: This study was supported by the National Natural Science Foundation of China (32160524), the Industrial Support Project of Educational Committee of Gansu Province (2021CYZC-54), the Science and Technology Plan of Gansu Province (20JR5RA037), and the Fuxi Outstanding Talent Cultivation Program of Gansu Agricultural University (GAUfx-04J01)
More Information
  • 摘要: 传统土壤团聚体评价方法不能描述团聚体微观结构特征, 且对<0.25 mm粒径团聚体细化分析不足。利用现代显微技术, 准确定量农艺措施对土壤团聚体结构特征的影响对于采取科学的土壤管理方法具有重要意义。本试验开始于2016年, 为长期定位试验。在河西走廊石羊河流域荒漠绿洲区, 通过田间试验探究麦后复种绿肥不同还田方式[全量翻压(TG)、地表覆盖免耕(NTG)、地上部收获后根茬翻压(T)、地上部收获后根茬免耕(NT)]和不复种绿肥翻耕休闲(CT)对轮作玉米农田土壤团聚体微结构特征的影响。在2019—2020年, 利用扫描电镜(SEM)获得玉米抽雄吐丝期农田0~30 cm土壤超微观图像, 定性揭示其表观特征, 并运用Nano Measurer图像处理软件定量分析土壤颗粒粒径特征和团聚体特征。研究表明: 在CT中, 玉米农田土壤颗粒粒径主要集中在0.25 mm以下, 其中23.9%~27.4%的为粒径在0.05~0.25 mm、表面光滑、形状较为规则的土壤砂粒, 其余为粉粒和黏粒(美国制), 团聚体数量占颗粒总数的9.1%~9.6%。与CT相比, 绿肥根茬还田(NT、T)的玉米农田土壤颗粒为大量粒径在0.05~0.1 mm之间的极细砂粒, NT和T处理的团聚体数量分别提高10.1%~23.3%和14.4%~17.3%。绿肥全量还田(TG、NTG)可促进玉米农田以单粒为基础的砂粒粒径减小, 由小粒径单粒构成大量表面粗糙多孔、凹凸不平, 附着有大量粉粒和黏粒的团聚体, 团聚体粒径主要集中在0.1~0.25 mm, 与CT处理相比, 团聚体数量分别提高25.8%~50.9%和34.1%~43.4%, 其中NTG处理具有形成粒径>0.25 mm大团聚体的构造性能和潜力。由此说明, 在荒漠绿洲区, 麦后复种绿肥全量还田条件下, 全量翻压或地表覆盖免耕还田措施可使后茬玉米农田具有良好的土壤团聚体结构特征。
  • 图  1  Nano Measurer土壤颗粒粒径分析软件

    Figure  1.  Nano Measurer soil particle size analysis software

    图  2  2019年和2020年绿肥不同还田方式下0~10 cm土层土壤颗粒扫描电镜图像

    各处理具体说明见表1。因各处理3个生物学重复下图片较多, 对团聚体结构的定性描述选取其中具有共性的图片, 图中粒径量化划线为部分较大颗粒, 具体每个土壤颗粒粒径量化使用Nano Measurer 1.2软件分析。

    Figure  2.  Scanning electron microscope images of soil particles in 0−10 cm layer under different green manure retention practices in 2019 and 2020

    The detail description of each treatment is shown in the table 1. Since there were many images in the three biological replicates of each treatment, the common images were selected for the qualitative description of the aggregate structure. The particle size quantification line in the figure is part of the larger particles, the particle size quantification of each soil particle is analyzed by Nano Measurer 1.2 software.

    图  3  2019年和2020年绿肥不同还田方式下10~20 cm土层的扫描电镜图像

    各处理具体说明见表1。因各处理3个生物学重复下图片较多, 对团聚体结构的定性描述选取其中具有共性的图片, 图中粒径量化划线为部分较大颗粒, 具体每个土壤颗粒粒径量化使用Nano Measurer 1.2软件分析。

    Figure  3.  Scanning electron microscope images of soil particles in 10−20 cm layer under different green manure retention practices in 2019 and 2020

    The detail description of each treatment is shown in the table 1. Since there were many images in the three biological replicates of each treatment, the common images were selected for the qualitative description of the aggregate structure. The particle size quantification line in the figure is part of the larger particle, the particle size quantification of each soil particle is analyzed by Nano Measurer 1.2 software.

    图  4  2019年和2020年绿肥不同还田方式下20~30 cm土层的扫描电镜图像

    各处理具体说明见表1。因各处理3个生物学重复下图片较多, 对团聚体结构的定性描述选取其中具有共性的图片, 图中粒径量化划线为部分较大颗粒, 具体每个土壤颗粒粒径量化使用Nano Measurer 1.2软件分析。The detail description of each treatment is shown in the table 1. Since there were many images in the three biological replicates of each treatment, the common images were selected for the qualitative description of the aggregate structure. The particle size quantification line in the figure is part of the larger particles, the particle size quantification of each soil particle is analyzed by Nano Measurer 1.2 software.

    Figure  4.  Scanning electron microscope images of soil particles in 20−30 cm layer under different green manure retention practices in 2019 and 2020

    图  5  2019年和2020年绿肥不同还田方式下0~30 cm玉米农田土壤颗粒粒径组成

    本研究土壤颗粒粒级分组和图6、图7的团聚体粒级分组参考美国制土壤粒级分类标准(表2), 分为<0.05 mm、0.05~0.1 mm、0.1~0.25 mm和0.25~0.5 mm 4个级别。此部分土壤颗粒粒级分组包括单粒和团粒的总数。不同小写字母表示同一粒径同一土层不同处理间差异显著(P<0.05)。In this study, the soil particle size groups and the aggregate particle size groups described in the figure 6 and 7 below were based on the American soil particle size classification standards (Table 2). There are four grades: <0.05 mm, 0.05−0.1 mm, 0.1−0.25 mm and 0.25−0.5 mm. This part of the soil particle size grouping includes the total number of soil single and aggregates. Different lowercase letters mean significant differences among treatments (P<0.05) for the same particle size in the same soil depth.

    Figure  5.  Distribution of soil particle number in 0−30 cm layer of maize field under different green manure retention practices in 2019 and 2020

    图  6  2019年和2020年绿肥不同还田方式下0~30 cm玉米农田土壤团聚体数量分布

    团聚体和非团聚体的计数方法是将扫描电镜图像导入Nano Measurer 1.2软件, 在软件中目测出非团聚体和团聚体, 然后对其进行最大直径划线后该软件统计输出团聚体数量和粒径。土壤颗粒表面粗糙, 附着有黏粒、腐殖质等物质, 并与周边土粒存在一定连接关系的土粒可判断为团聚体。不同小写字母表示同一土层团聚体数量不同处理间差异显著(P<0.05)。

    Figure  6.  Distribution of soil aggregates number in 0−30 cm layer of maize field under different green manure retention practices in 2019 and 2020

    The aggregates and non-aggregates are counted by importing the above SEM images into the Nano Measurer 1.2 software. Non-aggregates and aggregates can be visually detected in the software. After the maximum diameter is crossed, the software outputs the aggregate number and particle size statistically. Soil particles with rough surface, clay particles, humus and other substances attached, and a certain connection relationship with the surrounding soil particles can be judged as aggregates. Different lowercase letters mean significant differences among treatments (P<0.05) for number of soil aggregates in the same soil depth.

    图  7  2019年和2020年绿肥不同还田方式下0~30 cm玉米农田土壤团聚体粒径组成

    不同小写字母表示同一粒径同一土层不同处理间差异显著(P<0.05)。 Different lowercase letters mean significant differences among treatments (P<0.05) for the same particle size in the same soil depth.

    Figure  7.  Distribution of soil aggregates particle number in 0−30 cm layer of maize field under different green manure retention practices in 2019 and 2020

    表  1  试验处理及代码

    Table  1.   Experiment treatments and codes

    处理代码
    Treatment code
    处理设计
    Treatment design
    CT春小麦收获后传统翻耕、休闲 Conventional tillage and leisure without green manure after spring wheat harvest
    TG春小麦复种绿肥, 绿肥全量翻压 Multiple cropping green manure after spring wheat harvest, tillage with full quantity of green manure incorporated in the soil
    NTG春小麦复种绿肥, 绿肥地表覆盖免耕 Multiple cropping green manure after spring wheat harvest, no-tillage with full quantity of green manure mulched on soil surface
    T春小麦复种绿肥, 绿肥地上部收获移除, 根茬翻压 Multiple cropping green manure after spring wheat harvest, above ground green manure harvested and tillage with root incorporated in the soil
    NT春小麦复种绿肥, 绿肥地上部收获移除, 免耕 Multiple cropping green manure after spring wheat harvest, no-tillage with above ground green manure harvested
    下载: 导出CSV

    表  2  美国制(USDA)土壤粒级分类标准

    Table  2.   Classification standard of soil grain size in the United States

    粒级 Grain size (mm)土壤质地 Soil texture
    >3石块 Stone
    2~3石砾 Cobble
    0.05~2砂粒 Sand
    0.05~0.1极细砂粒 Very fine sand
    0.1~0.25细砂粒 Fine sand
    0.25~0.5中砂粒 Medium sand
    0.5~1粗砂粒 Coarse sand
    1~2极粗砂 Very coarse sand
    0.002~0.05粉粒 Silt
    <0.002黏粒 Clay
    下载: 导出CSV
  • [1] 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415−421 doi: 10.3321/j.issn:0564-3945.2005.03.031

    WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415−421 doi: 10.3321/j.issn:0564-3945.2005.03.031
    [2] YOUNG I M, CRAWFORD J W. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304(5677): 1634−1637 doi: 10.1126/science.1097394
    [3] 曹升赓. 土壤微形态[J]. 土壤, 1980, 12(4): 155−161

    CAO S G. Soil micromorphology[J]. Soils, 1980, 12(4): 155−161
    [4] KARSANINA M V, GERKE K M, SKVORTSOVA E B, et al. Universal spatial correlation functions for describing and reconstructing soil microstructure[J]. PLoS One, 2015, 10(5): e0126515 doi: 10.1371/journal.pone.0126515
    [5] KUBIËNA W L. Micropedology[J]. Soil Science, 1939, 47(2): 163
    [6] FROUZ J, NOVÁKOVÁ A. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development[J]. Geoderma, 2005, 129(1/2): 54−64
    [7] VERA M, SIERRA M, DÍEZ M, et al. Deforestation and land use effects on micromorphological and fertility changes in acidic rainforest soils in Venezuelan Andes[J]. Soil and Tillage Research, 2007, 97(2): 184−194 doi: 10.1016/j.still.2007.09.015
    [8] 杨秀华, 黄玉俊. 不同培肥措施下黄潮土肥力变化定位研究[J]. 土壤学报, 1990, 27(2): 186−194

    YANG X H, HUANG Y J. Long term study on fertilization on the changes of fertility of yellow fluvo-aquic soil[J]. Acta Pedologica Sinica, 1990, 27(2): 186−194
    [9] KRAVCHENKO A, CHUN H C, MAZER M, et al. Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates[J]. Applied Soil Ecology, 2013, 63: 134−142 doi: 10.1016/j.apsoil.2012.10.001
    [10] 张晓周, 卢玉东, 郭雯, 等. 微观尺度下黄土多级湿陷性研究[J]. 水土保持通报, 2019, 39(6): 170−175

    ZHANG X Z, LU Y D, GUO W, et al. A study on multi-level collapsibility of loess at microscale[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 170−175
    [11] 赵冬, 许明祥, 刘国彬, 等. 用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J]. 农业工程学报, 2016, 32(9): 123−129 doi: 10.11975/j.issn.1002-6819.2016.09.017

    ZHAO D, XU M X, LIU G B, et al. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 123−129 doi: 10.11975/j.issn.1002-6819.2016.09.017
    [12] 王世佳, 蒋代华, 朱文国, 等. 粉垄耕作对农田赤红壤团聚体结构的影响[J]. 土壤学报, 2020, 57(2): 326−335

    WANG S J, JIANG D H, ZHU W G, et al. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil[J]. Acta Pedologica Sinica, 2020, 57(2): 326−335
    [13] 张小平, 施斌. 石灰膨胀土团聚体微结构的扫描电镜分析[J]. 工程地质学报, 2007, 15(5): 654−660 doi: 10.3969/j.issn.1004-9665.2007.05.012

    ZHANG X P, SHI B. SEM analysis of micro-structure of the particle clusters in lime-treated expansive soils[J]. Journal of Engineering Geology, 2007, 15(5): 654−660 doi: 10.3969/j.issn.1004-9665.2007.05.012
    [14] 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥的土壤团聚体碳分布及其固持特征[J]. 中国土壤与肥料, 2019(1): 71–78

    ZHANG Q, YU E J, LIN H B, et al. Distribution and sequestration of aggregate organic carbon affected by continuous different kind of green manure cultivation[J]. Soil and Fertilizer Sciences in China, 2019(1): 71–78
    [15] 刘小粉, 王清涛, 白双宇, 等. 绿肥根茬还田和化肥用量对土壤团聚性及碳氮分布的影响[J]. 中国土壤与肥料, 2021(3): 220–226

    LIU X F, WANG Q T, BAI S Y, et al. Soil aggregation and distributions of carbon and nitrogen as affected by chemical fertilizer applying rate and returning root stubble of green manure[J]. Soil and Fertilizer Sciences in China, 2021(3): 220–226
    [16] 熊顺贵. 基础土壤学[M]. 北京: 中国农业大学出版社, 2001

    XIONG S G. Basic Soil Science[M]. Beijing: China Agricultural University Press, 2001
    [17] 李裕瑞, 范朋灿, 曹智, 等. 基于扫描电镜解析毛乌素沙地砒砂岩与沙复配成土的微观结构特征[J]. 应用基础与工程科学学报, 2019, 27(4): 707−719

    LI Y R, FAN P C, CAO Z, et al. Analysis of micro-structure of composited soil with feldspathic sandstone and sand through the scanning electronic microscope in Mu Us sandy land region[J]. Journal of Basic Science and Engineering, 2019, 27(4): 707−719
    [18] 顾敏芬, 何畅, 黄玉彪, 等. 扫描/透射电子显微技术在土壤环境微生物相互作用超微结构研究中的应用进展[J]. 应用与环境生物学报, 2018, 24(5): 978−984

    GU M F, HE C, HUANG Y B, et al. Application of scanning electron microscopy and transmission electron microscopy for studying ultrastructural interactions between the soil and microorganisms[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 978−984
    [19] 李景, 吴会军, 武雪萍, 等. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响[J]. 中国农业科学, 2015, 48(23): 4690−4697 doi: 10.3864/j.issn.0578-1752.2015.23.010

    LI J, WU H J, WU X P, et al. Effects of 15-year conservation tillage on soil and aggregate organic carbon sequestration in the loess hilly region of China[J]. Scientia Agricultura Sinica, 2015, 48(23): 4690−4697 doi: 10.3864/j.issn.0578-1752.2015.23.010
    [20] 张旭冉, 张卫青. 土壤团聚体研究进展[J]. 北方园艺, 2020(21): 131−137

    ZHANG X R, ZHANG W Q. Research progress of soil aggregates[J]. Northern Horticulture, 2020(21): 131−137
    [21] WEI X, SHAO M, GALE W J, et al. Dynamics of aggregate-associated organic carbon following conversion of forest to cropland[J]. Soil Biology & Biochemistry, 2013, 57(3): 876−883
    [22] 李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5): 1310−1318 doi: 10.11674/zwyf.15423

    LI H Y, HU T C, CAO Q H, et al. Effect of improving soil fertility by planting different green manures in different patterns in dryland[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1310−1318 doi: 10.11674/zwyf.15423
    [23] 吴萍萍, 王家嘉, 李录久. 不同施肥措施对白土腐殖质组成的影响[J]. 土壤, 2016, 48(1): 76−81

    WU P P, WANG J J, LI L J. Effects of different fertilizations on humus components of white soil[J]. Soils, 2016, 48(1): 76−81
    [24] AI Y J, LI F P, GU H H, et al. Combined effects of green manure returning and addition of sewage sludge compost on plant growth and microorganism communities in gold tailings[J]. Environmental Science and Pollution Research International, 2020, 27(25): 31686−31698 doi: 10.1007/s11356-020-09118-z
    [25] EDWARDS A P, BREMNER J M. Dispersion of soil particles by sonic vibration[J]. Journal of Soil Science, 1967, 18(1): 47−63 doi: 10.1111/j.1365-2389.1967.tb01487.x
    [26] BRONICK C J, LAL R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA[J]. Soil and Tillage Research, 2005, 81(2): 239−252 doi: 10.1016/j.still.2004.09.011
    [27] 张维俊, 李双异, 徐英德, 等. 土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展[J]. 水土保持学报, 2019, 33(4): 1−9

    ZHANG W J, LI S Y, XU Y D, et al. Advances in research on relationships between soil pore structure and soil microenvironment and organic carbon turnover[J]. Journal of Soil and Water Conservation, 2019, 33(4): 1−9
    [28] 吕奕彤, 于爱忠, 吕汉强, 等. 绿洲灌区玉米农田土壤团聚体组成及其稳定性对绿肥还田方式的响应[J]. 中国生态农业学报(中英文), 2021, 29(7): 1194−1204

    LYU Y T, YU A Z, LYU H Q, et al. Composition and stability of soil aggregates in maize farmlands under different green manure utilization patterns in an oasis irrigation area[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1194−1204
    [29] 李清华, 王飞, 林诚, 等. 长期施肥对黄泥田土壤微生物群落结构及团聚体组分特征的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1599−1606 doi: 10.11674/zwyf.2015.0627

    LI Q H, WANG F, LIN C, et al. Effects of long-term fertilization on soil microbial community structure and aggregate composition in yellow clayey paddy field[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1599−1606 doi: 10.11674/zwyf.2015.0627
    [30] 孙经伟, 尧水红, 李娜, 等. 农田恢复措施对黑土母质发育的新成土壤团聚体微形态及孔隙结构的影响[J]. 中国土壤与肥料, 2016(4): 17−23 doi: 10.11838/sfsc.20160403

    SUN J W, YAO S H, LI N, et al. Effect of farmland restoration practices on morphology and pore structure of soil aggregates newly developed from the parent material of mollisol of China[J]. Soil and Fertilizer Sciences in China, 2016(4): 17−23 doi: 10.11838/sfsc.20160403
    [31] 秦鱼生, 涂仕华, 王正银, 等. 长期定位施肥下紫色土土壤微形态特征[J]. 生态环境学报, 2009, 18(1): 352−356 doi: 10.3969/j.issn.1674-5906.2009.01.065

    QIN Y S, TU S H, WANG Z Y, et al. Micro-morphological features of a purple soil under different long-term fertilizer treatments[J]. Ecology and Environmental Sciences, 2009, 18(1): 352−356 doi: 10.3969/j.issn.1674-5906.2009.01.065
    [32] PUGET P, CHENU C, BALESDENT J. Total and young organic matter distributions in aggregates of silty cultivated soils[J]. European Journal of Soil Science, 1995, 46(3): 449−459 doi: 10.1111/j.1365-2389.1995.tb01341.x
    [33] CHRISTENSEN B T. Physical fractionation of soil and organic matter in primary particle size and density separates[M]//Advances in Soil Science. New York, NY: Springer New York, 1992: 1–90
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  116
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-17
  • 录用日期:  2021-11-15
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回