留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物熏蒸配施微生物菌剂对西瓜连作土壤真菌群落结构的影响

常芳娟 张贵云 张丽萍 吕贝贝 刘珍 范巧兰 姚众

常芳娟, 张贵云, 张丽萍, 吕贝贝, 刘珍, 范巧兰, 姚众. 生物熏蒸配施微生物菌剂对西瓜连作土壤真菌群落结构的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 248−257 doi: 10.12357/cjea.20210473
引用本文: 常芳娟, 张贵云, 张丽萍, 吕贝贝, 刘珍, 范巧兰, 姚众. 生物熏蒸配施微生物菌剂对西瓜连作土壤真菌群落结构的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 248−257 doi: 10.12357/cjea.20210473
CHANG F J, ZHANG G Y, ZHANG L P, LYU B B, LIU Z, FAN Q L, YAO Z. Effects of biological fumigation combined with microbial agents on fungi community structure in continuous watermelon cropping soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 248−257 doi: 10.12357/cjea.20210473
Citation: CHANG F J, ZHANG G Y, ZHANG L P, LYU B B, LIU Z, FAN Q L, YAO Z. Effects of biological fumigation combined with microbial agents on fungi community structure in continuous watermelon cropping soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 248−257 doi: 10.12357/cjea.20210473

生物熏蒸配施微生物菌剂对西瓜连作土壤真菌群落结构的影响

doi: 10.12357/cjea.20210473
基金项目: 国家重点研发计划项目(2019YFD1002100)、运城市科技计划项目(YCKJ-2021019)和山西省农业科学院农业科技创新研究课题(YCX2018D2YS09)资助
详细信息
    作者简介:

    常芳娟, 主要从事农作物病虫害综合治理研究。E-mail: chang_fangjuan@126.com

    通讯作者:

    张丽萍, 主要从事昆虫分子生态及农作物病虫害综合治理研究。E-mail: lipingzh2006@126.com

  • 中图分类号: S154.3

Effects of biological fumigation combined with microbial agents on fungi community structure in continuous watermelon cropping soil

Funds: This study was supported by the National Key Research and Development Project of China (2019YFD1002100), the Science and Technology Project of Yuncheng City (YCKJ-2021019), the Agricultural Science and Technology Innovation Project of Shanxi Academy of Agricultural Sciences (YCX2018D2YS09).
More Information
  • 摘要: 土壤微生物区系变化引起的土传病害一直是制约西瓜产业健康发展的重要因素, 为揭示土壤真菌群落对生物熏蒸及配施微生物菌剂的响应机制, 本研究在连续种植两年的西瓜田设置生物熏蒸(R)、生物熏蒸配施微生物菌剂(RB)和空白对照(CK)处理, 于西瓜初花期采集土样, 采用Illumina HiSeq高通量测序技术, 分析生物熏蒸及配施微生物菌剂对连作西瓜土壤真菌群落组成和多样性的影响及其与土壤环境因子间的相关性。结果表明: 与CK相比, R和RB处理均提高了土壤碱解氮、有效磷、速效钾、全氮及有机质含量, 降低了土壤pH; Alpha多样性指数显示, R和RB处理显著降低了土壤真菌群落丰富度和多样性, 表现为R<RB<CK。3个处理的西瓜连作土壤样本共获得794个OTU, 其中含有一些未知真菌; 在已知的真菌群落中, 子囊菌门、担子菌门和被孢霉门为3个主要菌门, 其相对丰度占总丰度的95.14%~96.17%; R处理增加了土壤中子囊菌门和担子菌门的相对丰度, RB处理提高了子囊菌门的相对丰度, 显著降低了担子菌门的相对丰度; R和RB处理均显著提高了土壤中毛壳菌科和小囊菌科相对丰度, 此外, RB处理显著增加了从赤壳科真菌相对丰度, 并降低了柔膜菌科真菌相对丰度。聚类分析表明, RB处理与CK的真菌群落结构相似。RDA分析可知, 有机质、全氮、速效钾和pH是驱动土壤真菌群落结构变化的关键因子。综上所述, 生物熏蒸配施微生物菌剂不仅能够提高土壤质量, 相比于单独生物熏蒸, 还可提高土壤真菌群落丰度和多样性, 调节西瓜连作土壤真菌群落结构向有益方向发展。
  • 图  1  不同处理土壤样品稀释曲线

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents.

    Figure  1.  Soil fungal rarefaction curves of different treatments

    图  2  不同处理土壤真菌Venn图

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents.

    Figure  2.  Venn diagrams of soil fungal community under different treatments

    图  3  不同处理土壤真菌门水平的群落组成及分布

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents.

    Figure  3.  Composition and distribution of soil fungal communities at phylum level in different treatments

    图  4  不同处理土壤真菌科水平的群落组成及分布

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents.

    Figure  4.  Composition and distribution of soil fungal communities at family level in different treatments

    图  5  不同处理土壤真菌群落相似性聚类树

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents.

    Figure  5.  Similarity cluster trees of soil fungal community in different treatments

    图  6  不同处理土壤真菌群落与土壤环境因子的关联分析

    CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂; AN: 碱解氮; AP: 有效磷; AK: 速效钾; TN: 全氮; OM: 有机质。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents; AN: available nitrogen; AP: available phosphorus; AK: available potassium; TN: total nitrogen; OM: organic matter.

    Figure  6.  Redundancy analysis for fungal groups and soil environmental factors under different treatments

    表  1  不同处理土壤化学性质分析

    Table  1.   Analysis of chemical properties of soil under different treatments

    处理
    Treatment
    pH碱解氮
    Available N (mg∙kg−1)
    有效磷
    Available P (mg∙kg−1)
    速效钾
    Available K (mg∙kg−1)
    全氮
    Total N (g∙kg−1)
    有机质
    Organic matter (g∙kg−1)
    R8.41±0.09a71.26±8.91a31.02±12.53a285.23±16.78a1.03±0.06a17.51±0.67a
    RB8.41±0.12a81.36±17.84a24.14±1.82a257.73±18.71a0.99±0.05ab16.84±0.13a
    CK8.48±0.03a68.29±1.03a21.79±5.67a220.60±51.66a0.89±0.03b16.02±3.50a
      CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。同列不同字母表示处理间差异显著(P<0.05)。CK: control; R: biological fumigation; RB: bi
    ological fumigation combined with microbial agents. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  2  不同处理土壤真菌群落丰度和多样性指数

    Table  2.   Abundance and diversity indexes of soil fungal communities of different treatments

    处理
    Treatment
    丰度指数 Abundance index多样性指数 Diversity index覆盖率
    Coverage (%)
    ACEChao1SimpsonShannon
    R702.11±14.48b712.95±24.88a0.89±0.03a5.22±0.29b99.81±0.01a
    RB714.72±8.81ab728.01±19.04a0.89±0.03a5.32±0.19b99.80±0.02a
    CK737.94±18.49a739.44±20.06a0.94±0.02a5.97±0.37a99.81±0.02a
      CK: 对照; R: 生物熏蒸; RB: 生物熏蒸配施微生物菌剂。同列不同小写字母表示处理间差异显著(P<0.05)。CK: control; R: biological fumigation; RB: biological fumigation combined with microbial agents. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level.
    下载: 导出CSV
  • [1] 黄春艳, 卜元卿, 单正军, 等. 西瓜连作病害机理及生物防治研究进展[J]. 生态学杂志, 2016, 35(6): 1670−1676

    HUANG C Y, BU Y Q, SHAN Z J, et al. Research advances in mechanisms of watermelon continuous cropping diseases and its biological control[J]. Chinese Journal of Ecology, 2016, 35(6): 1670−1676
    [2] 聂园军, 李瑞珍, 赵佳, 等. 西瓜连作对根际微生物群落的影响[J]. 中国瓜菜, 2019, 32(1): 6−11, 3 doi: 10.3969/j.issn.1673-2871.2019.01.002

    NIE Y J, LI R Z, ZHAO J, et al. Relationship between watermelon’ s rhizosphere microbial communities and continuous cropping obstacle[J]. China Cucurbits and Vegetables, 2019, 32(1): 6−11, 3 doi: 10.3969/j.issn.1673-2871.2019.01.002
    [3] 吴宇佳, 谢良商, 张冬明, 等. 西瓜连作对热区土壤微生物多样性的影响[J]. 生态环境学报, 2017, 26(5): 778−784

    WU Y J, XIE L S, ZHANG D M, et al. Response of soil microbial diversities to continuous watermelon cropping in tropical region in China[J]. Ecology and Environmental Sciences, 2017, 26(5): 778−784
    [4] 张冬明, 郑道君, 曾建华, 等. 西瓜连作对土壤主要微生物数量、酶活性及果实品质的影响[J]. 北方园艺, 2017(4): 155–158

    ZHANG D M, ZHENG D J, ZENG J H, et al. Effects of continuous cropping on microorganism and enzymes in the soil and the quality of watermelon fruit[J]. Northern Horticulture, 2017(4): 155–158
    [5] 孙正国. 连作西瓜的根际土壤酶活性和微生物多样性[J]. 水土保持研究, 2015, 22(5): 46−51, 57

    SUN Z G. Soil enzyme activity and microbial diversity in rhizosphere of continuous watermelon cropping[J]. Research of Soil and Water Conservation, 2015, 22(5): 46−51, 57
    [6] 赵萌, 李敏, 王淼焱, 等. 西瓜连作对土壤主要微生物类群和土壤酶活性的影响[J]. 微生物学通报, 2008, 35(8): 1251−1254 doi: 10.3969/j.issn.0253-2654.2008.08.016

    ZHAO M, LI M, WANG M Y, et al. Effects of watermelon replanting on main microflora of rhizosphere and activities of soil enzymes[J]. Microbiology, 2008, 35(8): 1251−1254 doi: 10.3969/j.issn.0253-2654.2008.08.016
    [7] 曹云, 宋修超, 郭德杰, 等. 棉隆熏蒸与微生物有机肥联用对西瓜枯萎病的防控研究[J]. 土壤, 2018, 50(1): 93−100

    CAO Y, SONG X C, GUO D J, et al. Prevention and control of watermelon Fusarium wilt by dazomet fumigation combined with bio-organic fertilizer[J]. Soils, 2018, 50(1): 93−100
    [8] 张大琪, 颜冬冬, 方文生, 等. 生物熏蒸−环境友好型土壤熏蒸技术[J]. 农药学学报, 2020, 22(1): 11−18

    ZHANG D Q, YAN D D, FANG W S, et al. Biofumigation — an environment-friendly soil fumigation technology[J]. Chinese Journal of Pesticide Science, 2020, 22(1): 11−18
    [9] GANDARIASBEITIA M, OJINAGA M, ORBEGOZO E, et al. Winter biodisinfestation with Brassica green manure is a promising management strategy for Phytophthora capsici control of protected pepper crops in humid temperate climate regions of northern Spain[J]. Spanish Journal of Agricultural Research, 2019, 17(1): e1005 doi: 10.5424/sjar/2019171-13808
    [10] HOLLISTER E B, HU P, WANG A S, et al. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities[J]. FEMS Microbiology Ecology, 2013, 83(3): 632−641 doi: 10.1111/1574-6941.12020
    [11] MARK M, JACK B. Efficacy of brassicaceous seed meal formulations for the control of apple replant disease in conventional and organic production systems[J]. Plant Disease, 2010, 94(7): 835−842 doi: 10.1094/PDIS-94-7-0835
    [12] JONAS V, KATRIEN D V, SOFIE D, et al. Uncovering the biofumigant capacity of allyl isothiocyanate from several Brassicaceae crops against Fusarium pathogens in maize[J]. Journal of the Science of Food and Agriculture, 2020, 100(15): 5476−5486 doi: 10.1002/jsfa.10599
    [13] 张丽萍, 魏明峰, 张贵云, 等. 高硫苷油菜对棉花黄萎病菌和红腐病菌的抑制活性[J]. 中国棉花, 2017, 44(2): 10−14, 26 doi: 10.11963/issn.1000-632X.201702003

    ZHANG L P, WEI M F, ZHANG G Y, et al. Inhibition activity of the rapes with high content glucosinolate on Verticillium dahliae and Fusarium moniliforme in cotton[J]. China Cotton, 2017, 44(2): 10−14, 26 doi: 10.11963/issn.1000-632X.201702003
    [14] SEDDIGHEH F, AGHAZADE S. Adverse effects of Brassica green manures on encysted eggs, infective second-stage juveniles and the reproduction of Globodera rostochiensis[J]. Journal of Plant Diseases and Protection, 2016, 123(5): 225−233 doi: 10.1007/s41348-016-0031-2
    [15] PAUDEL B R, CARPENTER-BOGGS L, HIGGINS S. Influence of brassicaceous soil amendments on potentially beneficial and pathogenic soil microorganisms and seedling growth in Douglas-fir nurseries[J]. Applied Soil Ecology, 2016, 105: 91−100 doi: 10.1016/j.apsoil.2016.04.007
    [16] KORON D, SONJAK S, REGVAR M. Effects of non-chemical soil fumigant treatments on root colonisation with arbuscular mycorrhizal fungi and strawberry fruit production[J]. Crop Protection, 2014, 55: 35−41 doi: 10.1016/j.cropro.2013.09.009
    [17] MAXWELL H, YOUNG-KI J, SHANE Z X G. Integration of Brassica cover crop with host resistance and azoxystrobin for management of rice sheath blight[J]. Plant Disease, 2015, 99(6): 883−885 doi: 10.1094/PDIS-08-14-0845-RE
    [18] 黎妍妍, 王林, 彭五星, 等. 解淀粉芽孢杆菌施用方式对烟株根际土壤真菌群落的影响[J]. 中国烟草科学, 2020, 41(4): 1−6

    LI Y Y, WANG L, PENG W X, et al. Promotion effects of three application methods of Bacillus amyloliquefaciens on fungal community in tobacco rhizosphere soil[J]. Chinese Tobacco Science, 2020, 41(4): 1−6
    [19] QIN Y X, SHANG Q M, ZHANG Y, et al. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling[J]. Frontiers in Microbiology, 2017, 8: 2620 doi: 10.3389/fmicb.2017.02620
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 172−178

    LU R K. Analysis Methods of Soil Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000: 172−178
    [21] 张庆华, 曾祥国, 韩永超, 等. 土壤熏蒸剂棉隆和生物菌肥对草莓连作土壤真菌多样性的影响[J]. 微生物学通报, 2018, 45(5): 1048−1060

    ZHANG Q H, ZENG X G, HAN Y C, et al. Effects of dazomet fumigation and biological fertilizer on strawberry soil fungal diversity under replant conditions[J]. Microbiology China, 2018, 45(5): 1048−1060
    [22] 李晋, 杨晓晓, 杨文平, 等. 饲料油菜压青还田对后作小麦土壤真菌群落的影响[J]. 微生物学报, 2021, 61(9): 2869–2882

    LI J, YANG X X, YANG W P, et al. Effect of forage rape green manure returning to field on soil fungal community in winter wheat field[J]. Acta Microbiologica Sinica, 2021, 61(9): 2869–2882
    [23] 李海云, 姚拓, 高亚敏, 等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报, 2019, 59(4): 678−688

    LI H Y, YAO T, GAO Y M, et al. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland[J]. Acta Microbiologica Sinica, 2019, 59(4): 678−688
    [24] 刘哲辉, 张利艳, 康继平, 等. 旱作条件下油菜根茬对玉米两种土传病害的生防作用[J]. 中国油料作物学报, 2017, 39(5): 674−680

    LIU Z H, ZHANG L Y, KANG J P, et al. Bio-control effects of rapeseed stubbles on two soil-borne diseases of maize under dry-land planting system[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(5): 674−680
    [25] 韩配配, 胡小加, 廖祥生, 等. 盛花期油菜绿肥还田对土壤微生物和后茬花生的影响[J]. 中国油料作物学报, 2019, 41(4): 638−642 doi: 10.7505/j.issn.1007-9084.2019.04.019

    HAN P P, HU X J, LIAO X S, et al. Effects of flowering rapeseed-manure returns on soil microorganism and growth of peanut[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 638−642 doi: 10.7505/j.issn.1007-9084.2019.04.019
    [26] SNAPP S S, DATE K U, KIRK W, et al. Root, shoot tissues of Brassica juncea and cereal Secale promote potato health[J]. Plant and Soil, 2007, 294(1/2): 55−72
    [27] 宋以玲, 于建, 陈士更, 等. 复合微生物菌剂对棉花生理特性及根际土壤微生物和化学性质的影响[J]. 土壤, 2019, 51(3): 477−487

    SONG Y L, YU J, CHEN S G, et al. Effects of complex microbial agent on cotton physiological characteristics, microorganism and physicochemical properties in rhizosphere soil[J]. Soils, 2019, 51(3): 477−487
    [28] 林叶春, 李雨, 陈伟, 等. 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响[J]. 中国土壤与肥料, 2018(3): 161–167

    LIN Y C, LI Y, CHEN W, et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco[J]. Soil and Fertilizer Sciences in China, 2018(3): 161–167
    [29] 傅海平, 周品谦, 王沅江, 等. 绿肥间作对茶树根际土壤真菌群落的影响[J]. 茶叶通讯, 2020, 47(3): 406−415 doi: 10.3969/j.issn.1009-525X.2020.03.007

    FU H P, ZHOU P Q, WANG Y J, et al. Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant[J]. Journal of Tea Communication, 2020, 47(3): 406−415 doi: 10.3969/j.issn.1009-525X.2020.03.007
    [30] 杨鑫, 樊吴静, 李丽淑, 等. 不同栽培模式对冬作马铃薯根际土壤真菌多样性的影响[J]. 福建农业学报, 2020, 35(2): 192−199

    YANG X, FAN W J, LI L S, et al. Effect of cultivation practices on fungal diversity in rhizosphere soil at winter potato fields as determined by high-throughput sequencing[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 192−199
    [31] 张春怡, 曲红云, 桑平, 等. 土壤消毒结合微生物菌剂防控茄子黄萎病及对根际真菌群落结构的影响[J]. 北方园艺, 2020(7): 27–35

    ZHANG C Y, QU H Y, SANG P, et al. Effect of soil disinfection combined with microbial agents on control of eggplant Verticillium wilt and its relationship to rhizosphere fungi community structure[J]. Northern Horticulture, 2020(7): 27–35
    [32] 武俊男, 刘昱辛, 周雪, 等. 基于Illumina MiSeq测序平台分析长期不同施肥处理对黑土真菌群落的影响[J]. 微生物学报, 2018, 58(9): 1658−1671

    WU J N, LIU Y X, ZHOU X, et al. Effects of long-tem different fertilization on soil fungal communities in black soil based on the Illunina MiSeq[J]. Acta Microbiologica Sinica, 2018, 58(9): 1658−1671
    [33] CAMPANELLA V, MANDALÀ C, ANGILERI V, et al. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure[J]. Crop Protection, 2020, 130: 105073 doi: 10.1016/j.cropro.2019.105073
    [34] ROBERT P L, WAYNE H C, MODESTO O O. Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history[J]. Plant Disease, 2011, 95(5): 568−576 doi: 10.1094/PDIS-09-10-0670
    [35] 胡洪涛, 胡时友, 周荣华, 等. 油菜秸秆还田对土壤真菌群落结构和功能影响的研究[J]. 环境科学与技术, 2020, 43(S1): 6−10

    HU H T, HU S Y, ZHOU R H, et al. Study on effects of rapeseed straw returning on the structure and function of soil fungal community[J]. Environmental Science & Technology, 2020, 43(S1): 6−10
    [36] 王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890−898

    WANG X L, MA K, FU Y Z, et al. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 890−898
    [37] BASTIDA F, TORRES I F, MORENO J L, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils[J]. Molecular Ecology, 2016, 25(18): 4660−4673 doi: 10.1111/mec.13783
    [38] 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528−1536

    XUE X M, WANG L P, HAN X P, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard[J]. Acta Ecologica Sinica, 2021, 41(4): 1528−1536
    [39] ARAUJO ADEMIR SERGIO F, MELGAÇO B W, MARIA D S V, et al. Fungal diversity in soils across a gradient of preserved Brazilian Cerrado[J]. Journal of Microbiology, 2017, 55(4): 273−279 doi: 10.1007/s12275-017-6350-6
    [40] 张翰林, 白娜玲, 郑宪清, 等. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 531−539

    ZHANG H L, BAI N L, ZHENG X Q, et al. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 531−539
    [41] 赵晓红, 柴姗姗, 张曼曼, 等. 施用贝壳粉对酸化土壤微生物多样性及平邑甜茶幼苗生长的影响[J]. 林业科学, 2020, 56(9): 153−163 doi: 10.11707/j.1001-7488.20200917

    ZHAO X H, CHAI S S, ZHANG M M, et al. Effects of shell powder on microbial diversity in acidified soil and growth of Malus hupehensis var. mengshanensis seedlings[J]. Scientia Silvae Sinicae, 2020, 56(9): 153−163 doi: 10.11707/j.1001-7488.20200917
    [42] JOONG-HYEOP P, JA C G, SOO J K, et al. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum[J]. FEMS Microbiology Letters, 2005, 252(2): 309−313 doi: 10.1016/j.femsle.2005.09.013
    [43] 郑焕娣, 庄文颖. 膜盘菌属研究概况[J]. 菌物学报, 2015, 34(5): 799−808

    ZHENG H D, ZHUANG W Y. Current status and future prospects of research on the genus Hymenoscyphus (Leotiomycetes)[J]. Mycosystema, 2015, 34(5): 799−808
    [44] 任菲, 庄文颖. 柔膜菌科并非单系群[J]. 菌物学报, 2017, 36(3): 282−291

    REN F, ZHUANG W Y. Non-monophyly of the family Helotiaceae (Helotiales)[J]. Mycosystema, 2017, 36(3): 282−291
    [45] MINJI R, CHANDRA M R, JUNHYUN J, et al. Drought-induced susceptibility for Cenangium ferruginosum leads to progression of Cenangium-dieback disease in Pinus koraiensis[J]. Scientific Reports, 2018, 8: 16368 doi: 10.1038/s41598-018-34318-6
    [46] ANDREJ K, ROMAN L. Pines dieback caused by Cenangium ferruginosum fr. in Slovakia in 2012[J]. Folia Oecologica, 2013, 40(2): 220−224
    [47] 刘珊珊, 夏萌, 胡夏茹, 等. 石灰碳铵熏蒸联合生物有机肥对香蕉枯萎病和细菌群落的影响[J]. 应用生态学报, 2020, 31(12): 4189−4196

    LIU S S, XIA M, HU X R, et al. Effects of lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application on banana Fusarium wilt and bacterial community[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4189−4196
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  71
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-02-08

目录

    /

    返回文章
    返回