留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Determination of volatile oil and non-volatile organic compounds contents and ultrastructure changes in the petals of Dendrobium huoshanense upon Zn application

ZHU Wangsheng DAI Jun CHEN Naidong WANG Jiahong

朱旺生, 戴军, 陈乃东, 王佳宏. 锌处理对霍山石斛花瓣挥发油、非挥发性有机物及超微结构的影响[J]. 中国生态农业学报(中英文), 2022, 30(3): 419-430. doi: 10.12357/cjea.20210486
引用本文: 朱旺生, 戴军, 陈乃东, 王佳宏. 锌处理对霍山石斛花瓣挥发油、非挥发性有机物及超微结构的影响[J]. 中国生态农业学报(中英文), 2022, 30(3): 419-430. doi: 10.12357/cjea.20210486
ZHU W S, DAI J, CHEN N D, WANG J H. Determination of volatile oil and non-volatile organic compounds contents and ultrastructure changes in the petals of Dendrobium huoshanense upon Zn application[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 419−430 doi: 10.12357/cjea.20210486
Citation: ZHU W S, DAI J, CHEN N D, WANG J H. Determination of volatile oil and non-volatile organic compounds contents and ultrastructure changes in the petals of Dendrobium huoshanense upon Zn application[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 419−430 doi: 10.12357/cjea.20210486

锌处理对霍山石斛花瓣挥发油、非挥发性有机物及超微结构的影响

doi: 10.12357/cjea.20210486
详细信息
  • 中图分类号: S573

Determination of volatile oil and non-volatile organic compounds contents and ultrastructure changes in the petals of Dendrobium huoshanense upon Zn application

Funds: This work was supported by the National Natural Science Foundation of China (81573536) and the Key Project of the Natural Science of Universities of Anhui Province (KJ2018A0421).
More Information
  • 摘要: 霍山石斛花瓣具有宜人的香气和保健价值, 具有开发功能性食品的潜力。为获得用于功能性食品生产的优质原料, 在大田栽培条件下提高霍山石斛花瓣的食品品质性状越来越受到人们关注。该研究主要关注Zn施用对霍山石斛花瓣中挥发油和非挥发性有机物的影响, 并从花瓣超微结构变化视角探讨其机制。采用气相色谱-质谱联用技术(GC-MS)分析挥发油成分, 化学分析法测定非挥发性有机物(可溶性糖、游离氨基酸和酚类化合物)含量, 透射电镜观察超微结构变化。结果表明, 施Zn提高了霍山石斛花瓣挥发油(主要由萜烯类及其衍生物组成)和非挥发性有机物含量, 不同Zn处理对挥发油和非挥发性有机物生产影响差异明显。挥发油、可溶性糖、自由氨基酸及酚类化合物含量最大增幅分别达28.57%、33.53%、28.89%和58.41%。超微结构变化表明, 施Zn促进花瓣细胞液泡融合, 增加细胞中线粒体、淀粉粒和脂滴的产生。Zn施用能提高霍山石斛花瓣挥发油和非挥发性有机物的含量。 超微结构分析能为挥发油和非挥发性有机物生产提供新的解剖学见解。
  • Figure  1.  Representative samples of petals of Dendrobium hu oshanense treated with different levels of Zn. A (Zn0): 0 mg∙(100 mL)−1 ZnSO4·7H2O; B (Zn 2.9): 2.9 mg∙(100 mL)−1 ZnSO4·7H2O; C (Zn5.8): 5.8 mg∙(100 mL)−1 ZnSO4·7H2O; D (Zn11.6): 11.6 mg∙(100 mL)−1 ZnSO4·7H2O.

    Figure  2.  Total ion chromatogram of petal volatile oils of Dendrobium huoshanense treated with different levels of Zn application. A: 0 mg∙(100 mL)−1 ZnSO4·7H2O treatment; B: 2.9 mg∙(100 mL)−1 ZnSO4·7H2O treatment; C: 5.8 mg∙(100 mL)−1 ZnSO4·7H2O treatment; D: 11.6 mg∙(100 mL)−1 ZnSO4·7H2O treatment.

    Figure  3.  Bi-plot (score plot and loading plot) of the PCA of the volatile oil constituents in petals of Dendrobium huoshanense as influenced by different levels of Zn application. Zn0: 0 mg∙(100 mL)−1 ZnSO4·7H2O; Zn2.9: 2.9 mg∙(100 mL)−1 ZnSO4·7H2O; Zn5.8: 5.8 mg∙(100 mL)−1 ZnSO4·7H2O; Zn11.6: 11.6 mg∙(100 mL)−1 ZnSO4·7H2O. No.1–51 represents the corresponding volatile oil components in Table 1.

    Figure  4.  Transmission electron microscopic images showing the submicroscopic structure characteristic of petal cells of Dendrobium huoshanense treated with different levels of Zn. There is an obvious difference in vacuole morphology (A-D), starch and lipid accumulation (E-H), and the number of mitochondria (I-L) in petal cells among the Zn0-Zn11.6 treatments, respectively. Fig. A, E, and I show the Zn0 treatment [0 mg∙(100 mL)−1 ZnSO4·7H2O]; fig. B, F, and J show Zn2.9 treatment [2.9 mg∙(100 mL)−1 ZnSO4·7H2O]; fig. C, G, and K show Zn5.8 treatment [5.8 mg∙(100 mL)−1 ZnSO4·7H2O]; fig. D, H, and L show Zn11.6 treatment [11.6 mg∙(100 mL)−1 ZnSO4·7H2O]. “CW” cell wall, “CN” cell nucleus, “V” vacuole, “SG” starch grain, “P” plastid, “M” mitochondria, “→” lipid droplet.

    Table  1.   Constituents of volatile oils from the petals of Dendrobium huoshanense treated with different levels of Zn

    Compound codeCompound nameLRI expLRI litTreatment
    Zn0Zn2.9Zn5.8Zn11.6
    No.1 2-hexanol 801 803 0.35 0.15 0.56
    No.2 Acetic acid, butyl ester 809 812 0.12 0.39 0.35 0.76
    No.3 2-methylbutanoic acid ethyl ester 838 846 0.15 0.48 0.41
    No.4 (Z)-hex-3-en-1-ol 847 851 0.25 0.45 0.38
    No.5 1-hexanol 863 867 5.20 7.68 7.76 7.59
    No.6 Acetic acid, 3-methylbutyl ester 876 876 0.41 0.45 0.53 0.75
    No.7 α-pinene 938 939 0.22 0.34 0.15 0.77
    No.8 Tiglic acid ethyl ester 947 949 6.12 5.76 5.59 5.47
    No.9 1-heptanol 968 970 0.89 1.08 2.56
    No.10 β-pinene 973 974 1.11 0.12 0.21 0.75
    No.11 1-octen-3-ol 984 986 0.73 0.34 1.16 1.78
    No.12 3-octanone 988 987 5.84 4.65 4.60 2.36
    No.13 3-octanol 1001 995 0.19 0.11 0.27 0.14
    No.14 1,8-cineol 1012 1015 0.51 0.47
    No.15 α-ocimene 1021 1018 0.23 0.35 0.77 0.56
    No.16 Limonene 1026 1025 0.21 0.32 0.56 0.64
    No.17 β-ocimene 1039 1044 15.90 17.48 17.64 18.68
    No.18 β-trans-ocimene 1052 1050 0.31 0.45 0.63 0.56
    No.19 (E)-2-octen-1-ol 1066 1067 0.19 0.38 0.42 0.50
    No.20 Terpinolene 1082 1088 0.11 0.15 0.31 0.26
    No.21 Nonanal 1095 1089 1.21 0.12 0.33 0.55
    No.22 α-cyclocitral 1103 1102 0.18 0.19 0.32
    No.23 Linalool 1107 1104 0.38 0.62 0.59 0.43
    No.24 (E,E)-2,6-Dimethyl-2,4,6-octatriene 1139 1143.5 0.35 0.41
    No.25 3-nonen-2-one 1142 1136 0.25 0.31 0.6 0.52
    No.26 1-ethenyl-4-methoxybenzene 1153 1151.6 0.41 0.34 0.87 0.58
    No.27 β-terpineol 1159 1160 0.54 1.21 0.31
    No.28 1,4-dimethoxybenzene 1169 1165 0.34 0.52 0.77 0.79
    No.29 (E)-isopentyl 2-methylbut-2-enoate 1184 1195.8 0.23 0.35 0.46 0.32
    No.30 β-cyclocitral 1213 1214 0.39 0.28 0.42
    No.31 4-(2-propenyl) phenol 1242 1254 0.84 0.98
    No.32 Geraniol 1252 1254 1.02 0.89 0.43 0.42
    No.33 1,3-dimethoxy-5-methylbenzene 1265 1260 0.12 0.45
    No.34 β-geranial 1268 1269 0.65 0.57 1.03 0.98
    No.35 Safrole 1282 1287 1.12 1.08 1.24 1.09
    No.36 δ-elemene 1320 1324 0.53 0.41 1.08 2.30
    No.37 3-methoxy-5-methylphenol 1341 1342 0.54 0.65 0.98
    No.38 Eugenol 1356 1359 0.21 0.32 0.54 0.67
    No.39 β-elemene 1368 1373 0.23 0.32 0.54 0.62
    No.40 β-caryophyllene 1423 1417 19.48 20.41 21.36 21.94
    No.41 α-ionone 1429 1426 0.18 0.31 0.21 0.03
    No.42 α,β-dihydro-β-ionone 1436 1433 3.72 2.02 2.32 2.83
    No.43 Geranyl acetone 1461 1455 4.72 2.23 2.79 2.56
    No.44 α-farnesene 1511 1507 2.48 4.13 5.05 6.04
    No.45 Butylated Hydroxytoluene 1515 1511 0.13 1.20 0.19
    No.46 δ-cadinene 1537 1541 1.35 0.36 0.39 0.98
    No.47 Trans-nerolidol 1549 1565 0.65 0.37 0.21 0.32
    No.48 α-Cedrene epoxide 1562 1570 0.42 0.65 0.09 0.55
    No.49 Caryophyllene oxide 1613 1593 0.12 0.23 0.51 0.39
    No.50 Methyl jasmonate 1639 1655 0.21 0.34 0.17 0.32
    No.51 (E,E)-farnesol 1697 1722 3.12 4.32 2.35 2.87
    Total identified (%) 83.25 85.14 91.99 93.65
    Yield (v/w, %) 0.21 0.22 0.25 0.27
    Grouped compounds (%)
    Terpenes 42.16 44.84 49.04 54.51
    Alcohols 14.02 17.45 16.37 15.30
    Ketones 14.71 9.52 10.52 8.30
    Esters 7.09 7.44 7.58 8.03
    Benzenes 2.87 3.75 6.05 4.30
    Aldehydes 1.86 1.26 1.83 2.27
    Others 0.54 0.88 0.60 0.94
    “—” means not detected. LRIexp: experimental linear retention indices; LRIlit: literature linear retention indices (from NIST Standard Reference Database Number 69). Zn0, Zn2.9, Zn5.8 and Zn11.6 are treatments of application of 0, 2.9, 5.8 and 11.6 mg∙(100 mL)−1 ZnSO4·7H2O.
    下载: 导出CSV

    Table  2.   Soluble sugar contents (mean±SE) in the petals of Dendrobium huoshanense treated with different levels of Zn mg∙g−1(FW) 

    Soluble sugarZn level [mg∙(100 mL)−1(ZnSO4·7H2O)]
    02.95.811.6
    Fructose2.96±0.13a3.32±0.13ab3.66±0.06bc3.92±0.05c
    Glucose1.25±0.11a1.53±0.07ab1.75±0.06bc2.07±0.12c
    Galactose2.41±0.12a2.53±0.11a2.81±0.05a2.88±0.26a
    Sucrose1.76±0.07a2.00±0.06ab2.06±0.06ab2.32±0.12b
    Total contents8.38±0.42a9.38±0.24ab10.28±0.14bc11.19±0.39c
    Different lowercase letters in the same row indicate significant differences at P<0.05 level.
    下载: 导出CSV

    Table  3.   Free amino acid contents (mean±SE) in the petals of Dendrobium huoshanense treated with different levels of Zn μg∙g−1(FW) 

    Free amino acidZn level [mg∙(100 mL)−1(ZnSO4·7H2O)]
    02.95.811.6
    Glutamic acid27.43±0.48a29.23±0.42a33.75±0.93b36.47±0.49c
    Lysine2.49±0.06a2.43±0.09a2.30±0.05a2.25±0.06a
    Leucine1.34±0.04c1.25±0.01bc1.17±0.02b1.07±0.01a
    Asparagine2.33±0.03a2.54±0.04ab2.84±0.05b3.05±0.17bc
    Alanine13.24±0.39a15.08±0.46b17.66±0.17c18.74±0.28c
    Valine12.89±0.14c12.04±0.13b11.20±0.09a10.80±0.11a
    Proline18.69±0.71a19.25±0.41a22.98±0.32b23.44±0.31b
    Threonine8.01±0.05a8.37±0.07a12.94±0.34b15.67±0.22c
    Total contents86.65±0.45a90.11±0.40b104.87±0.41c111.69±0.35d
    Different lowercase letters in the same row indicate significant differences at P<0.05 level.
    下载: 导出CSV

    Table  4.   Phenolic compound contents (mean±SE) in the petals of Dendrobium huoshanense treated with different levels of Zn                                           g∙kg−1 (FW) 

    Phenolic compound Zn level [mg∙(100 mL)−1(ZnSO4·7H2O)]
    02.95.811.6
    Gallic acid1.09±0.02a1.28±0.02b1.56±0.02c1.67±0.03c
    Gallocatechin0.51±0.01a0.59±0.01b0.83±0.01c0.88±0.02c
    Catechin1.80±0.01a2.13±0.03b2.47±0.02c2.88±0.03d
    p-Coumaric acid1.12±0.01a1.41±0.02b1.54±0.01c1.73±0.03d
    Total contents4.52±0.04a5.41±0.03b6.40±0.02c7.16±0.03d
    Different lowercase letters in the same row indicate significant differences at P<0.05 level.
    下载: 导出CSV
  • [1] AISALA H, MANNINEN H, LAAKSONEN T, et al. 2020. Linking volatile and non-volatile compounds to sensory profiles and consumer liking of wild edible Nordic mushrooms[J]. Food Chemistry, 304: 125403 doi: 10.1016/j.foodchem.2019.125403
    [2] ALVARENGA I C A, BOLDRIN P F, PACHECO F V, et al. 2015. Effects on growth, essential oil content and composition of the volatile fraction of Achillea millefolium L. cultivated in hydroponic systems deficient in macro- and microelements[J]. Scientia Horticulturae, 197: 329−338 doi: 10.1016/j.scienta.2015.09.046
    [3] AMIRI A, BANINASAB B, GHOBADI C, et al. 2016. Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress[J]. Photosynthetica, 54(2): 267−274 doi: 10.1007/s11099-016-0078-0
    [4] AYSELI M T, İPEK AYSELI Y. 2016. Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods[J]. Trends in Food Science & Technology, 48: 69−77
    [5] BARRAMEDA-MEDINA Y, BLASCO B, LENTINI M, et al. 2017. Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco[J]. Plant Science, 258: 45−51 doi: 10.1016/j.plantsci.2017.02.004
    [6] BELL L, METHVEN L, SIGNORE A, et al. 2017. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds[J]. Food Chemistry, 218: 181−191 doi: 10.1016/j.foodchem.2016.09.076
    [7] BOEHLEIN S K, LIU P, WEBSTER A, et al. 2019. Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill[J]. The Plant Journal, 99(1): 23−40 doi: 10.1111/tpj.14283
    [8] CHEN J, DUAN B L, XU G, et al. 2016. Sexual competition affects biomass partitioning, carbon-nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress[J]. Tree Physiology, 36(11): 1353−1368
    [9] CHEN S T, DAI J, SONG X W, et al. 2020. Endophytic microbiota comparison of Dendrobium huoshanense root and stem in different growth years[J]. Planta Medica, 86(13/14): 967−975 doi: 10.1055/a-1046-1022
    [10] ELMASTAŞ M, DEMIR A, GENÇ N, et al. 2017. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening[J]. Food Chemistry, 235: 154−159 doi: 10.1016/j.foodchem.2017.05.004
    [11] ELMORE J S, KOUTSIDIS G, DODSON A T, et al. 2005. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems[J]. Journal of Agricultural and Food Chemistry, 53(4): 1286−1293 doi: 10.1021/jf048557b
    [12] GILL R A, ZANG L L, ALI B, et al. 2015. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassicanapus L.[J]. Chemosphere, 120: 154−164 doi: 10.1016/j.chemosphere.2014.06.029
    [13] GUIMARÃES E, NOGUEIRA A, MACHADO S R. 2016. Floral nectar production and nectary structure of a bee-pollinated shrub from neotropical savanna[J]. Plant Biology, 18(1): 26−36 doi: 10.1111/plb.12370
    [14] JIN Q, JIAO C Y, SUN S W, et al. 2016. Metabolic analysis of medicinal Dendrobium officinale and Dendrobium huoshanense during different growth years[J]. PLoS One, 11(1): e0146607 doi: 10.1371/journal.pone.0146607
    [15] KAZNINA N M, BATOVA Y V, LAIDINEN G F, et al. 2019. Low-temperature adaptation of winter wheat seedlings under excessive zinc content in the root medium[J]. Russian Journal of Plant Physiology, 66(5): 763−770 doi: 10.1134/S1021443719050091
    [16] KELLY K, WHITAKER V M, NUNES M C D N. 2016. Physicochemical characterization and postharvest performance of the new Sensation® ‘Florida127’ strawberry compared to commercial standards[J]. Scientia Horticulturae, 211: 283−294 doi: 10.1016/j.scienta.2016.09.012
    [17] KONARSKA A. 2017. Comparative micromorphology and anatomy of flowers and floral secretory structures in two Viburnum species[J]. Protoplasma, 254(1): 523−537 doi: 10.1007/s00709-016-0972-0
    [18] KUMAR V, OKEM A, MOYO M, et al. 2019. Effect of zinc on the production of phenolic acids and hypoxoside in micropropagated Hypoxis hemerocallidea[J]. Plant Growth Regulation, 89(1): 19−24 doi: 10.1007/s10725-019-00513-2
    [19] LAJAYER H A, SAVAGHEBI G, HADIAN J, et al. 2017. Comparison of copper and zinc effects on growth, micro-and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.)[J]. Brazilian Journal of Botany, 40(2): 379−388 doi: 10.1007/s40415-016-0353-0
    [20] LEE P L, CHEN J T. 2014. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobiumhuoshanense[J]. Acta Physiologiae Plantarum, 36(10): 2619−2625 doi: 10.1007/s11738-014-1632-7
    [21] MAITI S, MITRA A. 2017. Morphological, physiological and ultrastructural changes in flowers explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L.[J]. Plant and Cell Physiology, 58(12): 2095−2111 doi: 10.1093/pcp/pcx143
    [22] MANAN A A, TAHA R M, MUBARAK E E, et al. 2016. In vitro flowering, glandular trichomes ultrastructure, and essential oil accumulation in micropropagated Ocimum basilicum L.[J]. In Vitro Cellular & Developmental Biology - Plant, 52(3): 303−314
    [23] MARQUES J P R, AMORIM L, SPÓSITO M B, et al. 2016. Ultrastructural changes in the epidermis of petals of the sweet orange infected by Colletotrichum acutatum[J]. Protoplasma, 253(5): 1233−1242 doi: 10.1007/s00709-015-0877-3
    [24] MONTALVO D, DEGRYSE F, DA SILVA R C, et al. 2016. Agronomic effectiveness of zinc sources as micronutrient fertilizer[J]. Advances in Agronomy, 139: 215−267
    [25] MORENO-MOYANO L T, BONNEAU J P, SÁNCHEZ-PALACIOS J T, et al. 2016. Association of increased grain iron and zinc concentrations with agro-morphological traits of biofortified rice[J]. Frontiers in Plant Science, 7: 1463
    [26] NAM J S, PARK S Y, OH H J, et al. 2019. Phenolic profiles, antioxidant and antimicrobial activities of pawpaw pulp (Asimina triloba [L.] Dunal) at different ripening stages[J]. Journal of Food Science, 84(1): 174−182 doi: 10.1111/1750-3841.14414
    [27] NAVARRO-LEÓN E, BARRAMEDA-MEDINA Y, LENTINI M, et al. 2016. Comparative study of Zn deficiency in L. sativa andB. oleracea plants: NH4+ assimilation and nitrogen derived protective compounds[J]. Plant Science, 248: 8−16 doi: 10.1016/j.plantsci.2016.04.002
    [28] OGÉE J, WINGATE L, GENTY B. 2018. Estimating mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity[J]. Plant Physiology, 178(2): 728−752 doi: 10.1104/pp.17.01031
    [29] OKATAN V. 2018. Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey[J]. Folia Horticulturae, 30(1): 93−101 doi: 10.2478/fhort-2018-0010
    [30] OLECHNOWICZ J, TINKOV A, SKALNY A, et al. 2018. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism[J]. The Journal of Physiological Sciences, 68(1): 19−31 doi: 10.1007/s12576-017-0571-7
    [31] PAN L H, FENG B J, WANG J H, et al. 2013. Structural characterization and anti-glycation activityin vitroof a water-soluble polysaccharide fromdendrobium huoshanense[J]. Journal of Food Biochemistry, 37(3): 313−321 doi: 10.1111/j.1745-4514.2011.00633.x
    [32] RAZZAQ K, KHAN A S, MALIK A U, et al. 2013. Foliar application of zinc influences the leaf mineral status, vegetative and reproductive growth, yield and fruit quality of ‘Kinnow’ mandarin[J]. Journal of Plant Nutrition, 36(10): 1479−1495 doi: 10.1080/01904167.2013.785567
    [33] REZAEIEH K A P, GURBUZ B, EIVAZI A. 2016. Effects of different zinc levels on vegetative growth and essential oil contents of some Iranian and Turkish cumin (Cumin cyminum L.) genotypes[J]. Journal of Essential Oil Bearing Plants, 19(5): 1181−1191 doi: 10.1080/0972060X.2016.1186573
    [34] RODRIGUEZ-FURLAN C, DOMOZYCH D, QIAN W X, et al. 2019. Interaction between VPS35 and RABG3f is necessary as a checkpoint to control fusion of late compartments with the vacuole[J]. PNAS, 116(42): 21291−21301 doi: 10.1073/pnas.1905321116
    [35] SAADATI S, MOALLEMI N, MORTAZAVI S M H, et al. 2013. Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening[J]. Scientia Horticulturae, 164: 30−34 doi: 10.1016/j.scienta.2013.08.033
    [36] SAMREEN T, HUMAIRA, SHAH H U, et al. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata)[J]. Arabian Journal of Chemistry, 10: S1802−S1807 doi: 10.1016/j.arabjc.2013.07.005
    [37] SONG C Z, LIU M Y, MENG J F, et al. 2015. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil[J]. Molecules: Basel, Switzerland, 20(2): 2536−2554 doi: 10.3390/molecules20022536
    [38] ULLAH A, FAROOQ M, REHMAN A, et al. 2020. Zinc nutrition in chickpea (Cicer arietinum): a review[J]. Crop and Pasture Science, 71(3): 199 doi: 10.1071/CP19357
    [39] ZHANG C H, HICKS G R, RAIKHEL N V. 2014. Plant vacuole morphology and vacuolar trafficking[J]. Frontiers in Plant Science, 5: 476
    [40] ZHAO K, WU Y Y. 2017. Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species[J]. PLoS One, 12(1): e0169812 doi: 10.1371/journal.pone.0169812
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  71
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 录用日期:  2021-09-08
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回