留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响

张陆 曹玉博 王惟帅 张新媛 王选 姚培清 刘双 王红 马林

张陆, 曹玉博, 王惟帅, 张新媛, 王选, 姚培清, 刘双, 王红, 马林. 鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
引用本文: 张陆, 曹玉博, 王惟帅, 张新媛, 王选, 姚培清, 刘双, 王红, 马林. 鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J]. 中国生态农业学报 (中英文), 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
ZHANG L, CAO Y B, WANG W S, ZHANG X Y, WANG X, YAO P Q, LIU S, WANG H, MA L. Effect of chicken manure addition on humification of vegetable waste in composting process[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
Citation: ZHANG L, CAO Y B, WANG W S, ZHANG X Y, WANG X, YAO P Q, LIU S, WANG H, MA L. Effect of chicken manure addition on humification of vegetable waste in composting process[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536

鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响

doi: 10.12357/cjea.20210536
基金项目: 河北省重点研发计划项目(20373806D, 20327301D, 19227305D)、中国科学院STS项目(KFJ-STS-QYZD-160)、中国科学院青年创新促进会项目(2021095)、河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)和河北省现代农业产业技术体系蛋肉鸡产业创新团队项目(HBCT2018150209)资助
详细信息
    作者简介:

    张陆, 主要从事农业生态学研究。E-mail: 164192510@qq.com

    通讯作者:

    马林, 主要从事农业生态学和养分管理研究。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X712

Effect of chicken manure addition on humification of vegetable waste in composting process

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20373806D, 20327301D, 19227305D), the STS Program of Chinese Academy of Sciences (KFJ-STS-QYZD-160), the Program of Youth Innovation Promotion Association of Chinese Academy of Sciences (2021095), Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206) and Hebei Province Modern Agricultural Industrial Technology System Egg Broiler Industry Innovation Team Project (HBCT2018150209).
More Information
  • 摘要: 蔬菜废弃物是富含有机质和氮磷养分的潜在有机肥资源, 然而高木质纤维素含量制约了堆肥进程, 添加鸡粪可加快木质纤维素的降解, 而目前关于鸡粪添加量对蔬菜废弃物堆肥过程中腐殖化的影响尚不清楚。本文以黄化干枯后的甜瓜秧为原料(对照, CK), 添加不同比例鸡粪(25%、50%)进行高温好氧堆肥, 通过分析堆肥过程中的温度、碳氮变化、木质纤维素、腐殖质及种子发芽指数等指标, 解析鸡粪活性物质添加对蔬菜废弃物堆肥过程中木质纤维素降解及腐殖化过程的影响。结果表明, 鸡粪添加提高了初始物料活性碳氮(可溶性有机碳和可溶性氮)含量, 加速堆肥升温并延长了堆肥高温期时间。50%鸡粪添加(CM50)显著促进了有机质和木质纤维素降解, 较CK有机质和木质纤维素降解率分别提高18.5%和16.9%, 但腐殖酸含量并无明显提高; 适量鸡粪添加(25%)可有效促进腐殖酸的生成, 其含量较CK和CM50处理分别提高56.7%和48.6%。多种腐熟指标表明, 添加25%鸡粪处理腐熟程度最高, 其腐殖化指数、聚合度、发芽指数分别为14%、3.5和83%。冗余分析(RDA)表明, 可溶性有机碳、木质纤维素、富里酸的降解及腐殖酸的形成是促进堆肥腐熟的关键因素。因此, 鸡粪添加可显著促进蔬菜废弃物中木制纤维素的降解, 然而过量鸡粪添加会导致木质纤维素被完全矿化而损失, 不利于腐殖酸的形成。适量添加鸡粪是加快蔬菜废弃物堆肥过程中木质纤维素降解并促成腐殖酸形成的关键。研究结果可为蔬菜废弃物堆肥工业化生产提供理论依据。
  • 图  1  添加不同比例鸡粪下堆肥过程中的理化性质变化

    CK: 对照; CM25: 添加25%鸡粪处理; CM50: 添加50%鸡粪处理。CK: control; CM25: treatment of adding 25% chicken manure; CM50: treatment of adding 50% chicken manure.

    Figure  1.  Variations of physicochemical properties during composting under different addition rates of chicken manure

    图  2  添加不同比例鸡粪下堆肥过程中有机质含量及木质纤维素含量的变化

    CK: 对照; CM25: 添加25%鸡粪处理; CM50: 添加50%鸡粪处理。CK: control; CM25: treatment of adding 25% chicken manure; CM50: treatment of adding 50% chicken manure.

    Figure  2.  Variation of organic matter content and lignocellulose content during composting under different addition rates of chicken manure

    图  3  添加不同比例鸡粪下堆肥过程中腐殖质组分的变化

    CK: 对照; CM25: 添加25%鸡粪处理; CM50: 添加50%鸡粪处理。CK: control; CM25: treatment of adding 25% chicken manure; CM50: treatment of adding 50% chicken manure.

    Figure  3.  Variation of humus component during composting under different addition rates of chicken manure

    图  4  添加不同比例鸡粪下堆肥过程中腐熟程度的变化

    CK: 对照; CM25: 添加25%鸡粪处理; CM50: 添加50%鸡粪处理。HA/FA: 聚合度, 为腐殖酸与富里酸的比例。CK: control; CM25: treatment of adding 25% chicken manure; CM50: treatment of adding 50% chicken manure. HA/FA: degree of polymerization, ratio of fulvic acid to hmmic acid.

    Figure  4.  Variation of maturity degrees during composting under different addition rates of chicken manure

    图  5  堆肥腐熟程度与各理化参数之间的关系 (a: 理化性质与腐熟程度之间冗余分析; b: 理化因子对腐熟程度解释方差百分比)

    DOC: 可溶性有机碳; Lce: 木质纤维素; HA: 腐殖酸; FA: 富里酸; SN: 可溶性氮; OM: 有机质; HI: 腐殖化指数; Tem: 温度; TN: 总氮; GI: 发芽指数。DOC: dissolved organic carbon; Lce: lignocellulose; HA: humic acid; FA: fulvic acid; SN: soluble nitrogen; OM: organic matter; HI: humus index; Tem: temperature; TN: total nitrogen; GI: germination index.

    Figure  5.  Relationship between maturity degree of decomposition and physical and chemical parameters (a: redundancy analysis between physicochemical properties and maturity degre; b: percentage of variance explained by physicochemical properties to maturity degree)

    表  1  堆肥材料的理化性状

    Table  1.   Characters of composting materials

    试验材料
    Material
    含水率
    Moisture content (%)
    总碳1)
    Total carbon1) (%)
    总氮1)
    Total nitrogen1) (%)
    碳氮比1)
    C/N1)
    pH电导率
    Electrical conductivity
    (mS∙cm−1)
    瓜秧 Melon vine 13.38±0.43 44.10±0.52 2.68±0.014 16.45±0.11 6.05±0.08 18.72±0.11
    鸡粪 Chicken manure 69.31±0.44 25.66±0.16 2.96±0.02 8.67±0.03 7.48±0.02 5.99±0.12
      1): 基于物料干重。1): based on dry weight of material.
    下载: 导出CSV

    表  2  试验处理及初始理化性质

    Table  2.   Experimental treatments and initial physicochemical properties

    处理
    Treatment
    瓜秧比例1)
    Melon vine
    proportion1) (%)
    鸡粪比例1)
    Chicken manure
    proportion1) (%)
    有机质2)
    Organic matter
    content2) (%)
    初始含水率
    Initial moisture
    content (%)
    初始碳氮比2)
    Initial C/N2)
    初始pH
    Initial pH
    CK 100 0 76.03±0.14 60.88±0.86 16.47±0.02 6.49±0.20
    CM25 75 25 72.99±0.39 60.95±0.65 15.76±0.07 6.51±0.02
    CM50 50 50 71.80±0.05 60.72±1.76 15.27±0.01 7.02±0.01
      1): 基于物料鲜重; 2)基于物料干重。CK: 对照; CM25: 添加25%鸡粪处理; CM50: 添加50%鸡粪处理。1): based on wet weight of material; 2): based on dry weight of material. CK: control; CM25: treatment of adding 25% chicken manure; CM50: treatment of adding 50% chicken manure.
    下载: 导出CSV
  • [1] 刘佳豪, 姚昕, 翟胜, 等. 我国蔬菜废弃物资源化利用技术分析及展望[J]. 农业资源与环境学报, 2020, 37(5): 636−644

    LIU J H, YAO X, ZHAI S, et al. Analysis and prospects for resource utilization of vegetable waste in China[J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 636−644
    [2] 杜鹏祥, 韩雪, 高杰云, 等. 我国蔬菜废弃物资源化高效利用潜力分析[J]. 中国蔬菜, 2015(7): 15–20

    DU P X, HAN X, GAO J Y, et al. Potential analysis on high efficient utilization of waste vegetable resources in China[J]. China Vegetables, 2015(7): 15–20
    [3] 李火金, 蔡尽忠. 蔬菜废弃物堆肥化处理概述[J]. 生物学教学, 2019, 44(7): 67−68 doi: 10.3969/j.issn.1004-7549.2019.07.033

    LI H J, CAI J Z. Summary of composting treatment of vegetable waste[J]. Biology Teaching, 2019, 44(7): 67−68 doi: 10.3969/j.issn.1004-7549.2019.07.033
    [4] 王丽英, 吴硕, 张彦才, 等. 蔬菜废弃物堆肥化处理研究进展[J]. 中国蔬菜, 2014(6): 6–12

    WANG L Y, WU S, ZHANG Y C, et al. Research progress on composting treatment of vegetable wastes[J]. China Vegetables, 2014(6): 6–12
    [5] 宋丽. 蔬菜废物两级强化水解厌氧消化实验研究[D]. 北京: 北京化工大学, 2010

    SONG L. Experimental study of an enhanced two-phase anaerobic digestion of vegetable waste[D]. Beijing: Beijing University of Chemical Technology, 2010
    [6] WU J Q, ZHAO Y, YU H M, et al. Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure[J]. Science of the Total Environment, 2019, 658: 510−520 doi: 10.1016/j.scitotenv.2018.12.198
    [7] ZHANG D F, LUO W H, LI Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions[J]. Bioresource Technology, 2018, 250: 853−859 doi: 10.1016/j.biortech.2017.08.136
    [8] ZHANG S, WEI Z M, ZHAO M Y, et al. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting[J]. Bioresource Technology, 2020, 318: 124075 doi: 10.1016/j.biortech.2020.124075
    [9] ZHANG Z C, ZHAO Y, WANG R X, et al. Effect of the addition of exogenous precursors on humic substance formation during composting[J]. Waste Management, 2018, 79: 462−471 doi: 10.1016/j.wasman.2018.08.025
    [10] 龚建英, 田锁霞, 王智中, 等. 微生物菌剂和鸡粪对蔬菜废弃物堆肥化处理的影响[J]. 环境工程学报, 2012, 6(8): 2813−2817

    GONG J Y, TIAN S X, WANG Z Z, et al. Effect of inoculation and poultry dung on composting of vegetable residues[J]. Chinese Journal of Environmental Engineering, 2012, 6(8): 2813−2817
    [11] 何宗均, 梁海恬, 李峰, 等. 干鸡粪、醋渣对叶菜类蔬菜废弃物堆肥效果的影响[J]. 山西农业科学, 2016, 44(9): 1328−1333, 1337 doi: 10.3969/j.issn.1002-2481.2016.09.24

    HE Z J, LIANG H T, LI F, et al. Effect of the dry chicken manure and vinegar residue on the composting of leafy vegetables waste[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(9): 1328−1333, 1337 doi: 10.3969/j.issn.1002-2481.2016.09.24
    [12] KULIKOWSKA D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Management, 2016, 49: 196−203 doi: 10.1016/j.wasman.2016.01.005
    [13] WANG L Q, ZHAO Y, GE J P, et al. Effect of tricarboxylic acid cycle regulators on the formation of humic substance during composting: The performance in labile and refractory materials[J]. Bioresource Technology, 2019, 292: 121949 doi: 10.1016/j.biortech.2019.121949
    [14] 郜斌斌, 王选, 常瑞雪, 等. 黏土矿物和化学添加剂对牛粪堆肥过程氮素固持的影响[J]. 农业工程学报, 2018, 34(20): 250−257 doi: 10.11975/j.issn.1002-6819.2018.20.032

    GAO B B, WANG X, CHANG R X, et al. Effects of clay and chemical additives on nitrogen retention during cow manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 250−257 doi: 10.11975/j.issn.1002-6819.2018.20.032
    [15] WANG X, BAI Z H, YAO Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195: 448−457 doi: 10.1016/j.jclepro.2018.05.146
    [16] ZHAO Y, ZHAO Y, ZHANG Z C, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64−73 doi: 10.1016/j.wasman.2017.06.022
    [17] VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583−3597 doi: 10.3168/jds.S0022-0302(91)78551-2
    [18] BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444−5453 doi: 10.1016/j.biortech.2008.11.027
    [19] 侯勇. 秸秆发酵制取生化腐殖酸过程中的理化特性及微生物学特性研究[D]. 雅安: 四川农业大学, 2013

    HOU Y. Physicochemical and microbial properties in the process of biochemical humic acids producing by straw fermentation[D]. Ya’an: Sichuan Agricultural University, 2013
    [20] WU J Q, ZHAO Y, QI H S, et al. Identifying the key factors that affect the formation of humic substance during different materials composting[J]. Bioresource Technology, 2017, 244: 1193−1196 doi: 10.1016/j.biortech.2017.08.100
    [21] 王定美, 麦力文, 杨霞, 等. 粪便对食用菌渣堆肥中碳氮转化的影响[J]. 环境污染与防治, 2020, 42(11): 1368−1374

    WANG D M, MAI L W, YANG X, et al. Effect of animal manures on the conversion of carbon and nitrogen in edible fungi residue compost[J]. Environmental Pollution & Control, 2020, 42(11): 1368−1374
    [22] CAO Y B, WANG X, LIU L, et al. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process[J]. Journal of Environmental Management, 2020, 264: 110454 doi: 10.1016/j.jenvman.2020.110454
    [23] CHANG R X, LI Y M, CHEN Q, et al. Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 ℃[J]. Journal of Environmental Management, 2019, 230: 119−127
    [24] BAI L, DENG Y, LI J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology, 2020, 307: 122941 doi: 10.1016/j.biortech.2020.122941
    [25] GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501−510 doi: 10.1016/j.scitotenv.2019.01.137
    [26] WANG X, SELVAM A, WONG J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227−232 doi: 10.1016/j.biortech.2016.02.117
    [27] ZHOU Y, SELVAM A, WONG J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology, 2014, 168: 229−234 doi: 10.1016/j.biortech.2014.05.070
    [28] WU D, WEI Z M, QU F T, et al. Effect of Fenton pretreatment combined with bacteria inoculation on humic substances formation during lignocellulosic biomass composting derived from rice straw[J]. Bioresource Technology, 2020, 303: 122849 doi: 10.1016/j.biortech.2020.122849
    [29] ZHOU H B, MENG H B, ZHAO L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258: 279−286 doi: 10.1016/j.biortech.2018.02.086
    [30] 常瑞雪, 王骞, 甘晶晶, 等. 易降解有机质含量对黄瓜秧堆肥腐熟和氮损失的影响[J]. 农业工程学报, 2017, 33(1): 231−237 doi: 10.11975/j.issn.1002-6819.2017.01.032

    CHANG R X, WANG Q, GAN J J, et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 231−237 doi: 10.11975/j.issn.1002-6819.2017.01.032
    [31] 常瑞雪, 甘晶晶, 陈清, 等. 碳源调理剂对黄瓜秧堆肥进程和碳氮养分损失的影响[J]. 农业工程学报, 2016, 32(S2): 254−259

    CHANG R X, GAN J J, CHEN Q, et al. Effect of carbon resources conditioner on composting process and carbon and nitrogen loss during composting of cucumber stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 254−259
    [32] CHANG R X, GUO Q Y, CHEN Q, et al. Effect of initial material bulk density and easily-degraded organic matter content on temperature changes during composting of cucumber stalk[J]. Journal of Environmental Sciences, 2019, 80: 306−315 doi: 10.1016/j.jes.2017.10.004
    [33] 韩雪, 常瑞雪, 杜鹏祥, 等. 不同蔬菜种类的产废比例及性状分析[J]. 农业资源与环境学报, 2015, 32(4): 377−382

    HAN X, CHANG R X, DU P X, et al. Straw coefficient and properties of different vegetable wastes[J]. Journal of Agricultural Resources and Environment, 2015, 32(4): 377−382
    [34] 霍凯丽, 常瑞雪, 李彦明, 等. 辣椒秸秆快速高温好氧堆肥工艺研究[J]. 中国蔬菜, 2019(2): 58–62

    HUO K L, CHANG R X, LI Y M, et al. Studies on rapid high temperature aerobic compost technology of pepper stalk[J]. China Vegetables, 2019(2): 58–62
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  119
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-02-08

目录

    /

    返回文章
    返回