留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭对土壤微生物代谢活动的影响

谭春玲 刘洋 黄雪刚 张峻源 罗文浩

谭春玲, 刘洋, 黄雪刚, 张峻源, 罗文浩. 生物炭对土壤微生物代谢活动的影响[J]. 中国生态农业学报 (中英文), 2022, 30(3): 333−342 doi: 10.12357/cjea.20210542
引用本文: 谭春玲, 刘洋, 黄雪刚, 张峻源, 罗文浩. 生物炭对土壤微生物代谢活动的影响[J]. 中国生态农业学报 (中英文), 2022, 30(3): 333−342 doi: 10.12357/cjea.20210542
TAN C L, LIU Y, HUANG X G, ZHANG J Y, LUO W H. Effect of biochar on soil microbial metabolic activities[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 333−342 doi: 10.12357/cjea.20210542
Citation: TAN C L, LIU Y, HUANG X G, ZHANG J Y, LUO W H. Effect of biochar on soil microbial metabolic activities[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 333−342 doi: 10.12357/cjea.20210542

生物炭对土壤微生物代谢活动的影响

doi: 10.12357/cjea.20210542
基金项目: 国家自然科学基金地区基金项目(41967039)、云南省基础研究面上项目(202001AT070042)、云南省万人计划青年拔尖项目(YNWR-QNBJ-2019-065)和昆明理工大学大学生创新创业训练计划项目(202010674057)资助
详细信息
    作者简介:

    谭春玲, 研究方向为土壤生态学。E-mail: 969111509@qq.com

    通讯作者:

    刘洋, 主要从事污染物生态毒性效应评价与预测。E-mail: minipig6@163.com

  • 中图分类号: S36; Q936

Effect of biochar on soil microbial metabolic activities

Funds: This study was supported by the National Natural Science Foundation of China (41967039), the Basic Research Project of Yunnan Province (202001AT070042), Yunnan Provincial Ten-Thousand Plan (YNWR-QNBJ-2019-065), the Innovation and Entrepreneurship Training Program for College Students of Kunming University of Science and Technology (202010674057)
More Information
  • 摘要: 近年来, 生物炭在农业及环境领域的应用受到广泛关注, 不仅能够增强土壤肥力, 还能固定与降解土壤污染物, 从而降低污染物对土壤生态系统的毒性效应。土壤微生物的生长代谢活动是驱动土壤元素循环和有机污染物降解的主要动力, 也是反映土壤健康状况的重要指标。生物炭的上述正面作用可能是通过促进微生物生长代谢活动来实现的。而目前对各类生物炭影响下微生物代谢活动存在的差异认识仍不全面, 不利于生物炭的可持续发展应用。因此, 考察生物炭的施用对土壤微生物的影响显得十分必要。本文总结了生物炭对土壤微生物丰度、多样性、群落结构及活性变化的影响机制: 生物炭的多孔结构可为微生物提供栖息地, 其灰分可为微生物提供养分; 高温生物炭可提高酸性土壤pH, 这为大部分微生物提供适宜的生存环境; 同时, 生物炭的活性官能团可介导微生物的电子传递促进微生物的代谢活动。但生物炭含有的多环芳烃(PAHs)、挥发性有机物(VOCs)、环境持久性自由基(EPFRs)和重金属等对微生物生长代谢活动具有抑制作用。因此, 本文结合生物炭的原料来源、热解温度等重要因素, 深入探究了生物炭对土壤微生物的正面与负面作用; 以及生物炭与微生物作用对土壤的肥力提升、污染修复和控制病原微生物的影响, 及其所涉及的相关机制。最后, 本文就如何高效应用生物炭提出建议, 并对生物炭与微生物的未来研究方向提出了展望。
  • 图  1  生物炭介导微生物电子转移的4种路径

    Figure  1.  Four pathways of biochar-mediated microbial electron transfer

  • [1] KOPITTKE P M, MENZIES N W, WANG P, et al. Soil and the intensification of agriculture for global food security[J]. Environment International, 2019, 132: 105078 doi: 10.1016/j.envint.2019.105078
    [2] HAN L F, SUN K, YANG Y, et al. Biochar’ s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020, 364: 114184 doi: 10.1016/j.geoderma.2020.114184
    [3] ZHU X M, CHEN B L, ZHU L Z, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review[J]. Environmental Pollution, 2017, 227: 98−115 doi: 10.1016/j.envpol.2017.04.032
    [4] SAFAEI KHORRAM M, ZHANG Q, LIN D L, et al. Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications[J]. Journal of Environmental Sciences, 2016, 44: 269−279 doi: 10.1016/j.jes.2015.12.027
    [5] 沃尔克. 土壤微生物学[M]. 中国科学院南京土壤研究所微生物室译. 北京: 科学出版社, 1981

    WALKER. Soil Microbiology[M]. Trans. by Nanjing Institute of Soil Science, Chinese Academy of Sciences. Beijing: Science Press, 1981
    [6] SIEDT M, SCHAFFER A, SMITH K E C, et al. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides[J]. Science of the Total Environment, 2021, 751: 19−28
    [7] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339−344
    [8] QUILLIAM R S, RANGECROFT S, EMMETT B A, et al. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?[J]. GCB Bioenergy, 2013, 5(2): 96−103 doi: 10.1111/gcbb.12007
    [9] DUTTA T, KWON E, BHATTACHARYA S S, et al. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review[J]. GCB Bioenergy, 2017, 9(6): 990−1004 doi: 10.1111/gcbb.12363
    [10] TAO W M, DUAN W Y, LIU C B, et al. Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics[J]. Science of the Total Environment, 2020, 715: 136575 doi: 10.1016/j.scitotenv.2020.136575
    [11] LIU T, LIU B, WEI Z. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment[J]. Polish Journal of Environmental Studies, 2014, 23(1): 271−275
    [12] QUILLIAM R S, GLANVILLE H C, WADE S C, et al. Life in the ‘charosphere’ — Does biochar in agricultural soil provide a significant habitat for microorganisms?[J]. Soil Biology and Biochemistry, 2013, 65: 287−293 doi: 10.1016/j.soilbio.2013.06.004
    [13] PIETIKÄINEN J, KIIKKILÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231−242 doi: 10.1034/j.1600-0706.2000.890203.x
    [14] SAMONIN V V, ELIKOVA E E. A study of the adsorption of bacterial cells on porous materials[J]. Microbiology, 2004, 73(6): 696−701 doi: 10.1007/s11021-005-0011-1
    [15] CHEN W F, MENG J, HAN X R, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1(1): 75−87 doi: 10.1007/s42773-019-00008-3
    [16] ABIT S M, BOLSTER C H, CAI P, et al. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil[J]. Environmental Science & Technology, 2012, 46(15): 8097−8105
    [17] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International, 2020, 137: 105576 doi: 10.1016/j.envint.2020.105576
    [18] EL-NAGGAR A, LEE S S, RINKLEBE J, et al. Biochar application to low fertility soils: a review of current status, and future prospects[J]. Geoderma, 2019, 337: 536−554 doi: 10.1016/j.geoderma.2018.09.034
    [19] IPPOLITO J A, CUI L Q, KAMMANN C, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review[J]. Biochar, 2020, 2(4): 421−438 doi: 10.1007/s42773-020-00067-x
    [20] YANG X, MENG J, LAN Y, et al. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China[J]. Agriculture, Ecosystems & Environment, 2017, 240: 24−31
    [21] BAI X F, LI Z F, ZHANG Y Z, et al. Recovery of ammonium in urine by biochar derived from faecal sludge and its application as soil conditioner[J]. Waste and Biomass Valorization, 2018, 9(9): 1619−1628 doi: 10.1007/s12649-017-9906-0
    [22] KIZITO S, LUO H Z, LU J X, et al. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand[J]. Sustainability, 2019, 11(11): 3211 doi: 10.3390/su11113211
    [23] JIN Q S, KIRK M F. pH as a primary control in environmental microbiology: 1. thermodynamic perspective[J]. Frontiers in Environmental Science, 2018, 6: 21 doi: 10.3389/fenvs.2018.00021
    [24] ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309−320
    [25] 董心亮, 林启美. 生物质炭对土壤物理性质影响的研究进展[J]. 中国生态农业学报, 2018, 26(12): 1846−1854

    DONG X L, LIN Q M. Biochar effect on soil physical properties: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1846−1854
    [26] WROBEL-TOBISZEWSKA A, BOERSMA M, ADAMS P, et al. Biochar for Eucalyptus forestry plantations[J]. Acta Horticulturae, 2016, 1108: 55–62
    [27] WANG Z L, LI Y F, CHANG S X, et al. Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation[J]. Biology and Fertility of Soils, 2014, 50(7): 1109−1119 doi: 10.1007/s00374-014-0933-8
    [28] 段靖禹, 周长志, 曹柳, 等. 生物炭复合青霉菌修复砷污染土壤对其微生物群落功能多样性的影响[J]. 环境科学研究, 2020, 33(4): 1037−1044

    DUAN J Y, ZHOU C Z, CAO L, et al. Effects of biochar composite Penicillium on functional diversity of microbial community in arsenic-contaminated soil[J]. Research of Environmental Sciences, 2020, 33(4): 1037−1044
    [29] NGUYEN T T N, WALLACE H M, XU C Y, et al. The effects of short term, long term and reapplication of biochar on soil bacteria[J]. Science of the Total Environment, 2018, 636: 142−151 doi: 10.1016/j.scitotenv.2018.04.278
    [30] SATHISHKUMAR K, LI Y, SANGANYADO E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395: 9−18
    [31] AI T, ZHAN H, ZOU L Z, et al. Potential applications of endogenous sulfide for enhanced denitrification of low C/N domestic wastewater in anodic mixotrophic denitrification microbial fuel cell: The mechanism of electrons transfer and microbial community[J]. Science of the Total Environment, 2020, 722: 137830 doi: 10.1016/j.scitotenv.2020.137830
    [32] YUAN H J, ZHANG Z J, LI M Y, et al. Biochar’s role as an electron shuttle for mediating soil N2O emissions[J]. Soil Biology and Biochemistry, 2019, 133: 94−96 doi: 10.1016/j.soilbio.2019.03.002
    [33] YU L P, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5: 16221 doi: 10.1038/srep16221
    [34] SAQUING J M, YU Y H, CHIU P C. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor[J]. Environmental Science & Technology Letters, 2016, 3(2): 62−66
    [35] HILBER I, BASTOS A C, LOUREIRO S, et al. The different faces of biochar: contamination risk versus remediation tool[J]. Journal of Environmental Engineering and Landscape Management, 2017, 25(2): 86−104 doi: 10.3846/16486897.2016.1254089
    [36] KONG L L, GAO Y Y, ZHOU Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343: 276−284 doi: 10.1016/j.jhazmat.2017.09.040
    [37] 李鹭, 任婷, 甄岩. 多环芳烃类化合物代谢机制的研究进展[J]. 职业与健康, 2018, 34(16): 2297−2301

    LI L, REN T, ZHEN Y. Research progress on metabolic mechanisms of polycyclic aromatic hydrocarbons[J]. Occupation and Health, 2018, 34(16): 2297−2301
    [38] RAJKOVICH S, ENDERS A, HANLEY K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48(3): 271−284 doi: 10.1007/s00374-011-0624-7
    [39] SUN D Q, MENG J, LIANG H, et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities[J]. Journal of Soils and Sediments, 2015, 15(2): 271−281 doi: 10.1007/s11368-014-0996-z
    [40] ENNIS C J, EVANS A G, ISLAM M, et al. Biochar: carbon sequestration, land remediation, and impacts on soil microbiology[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(22): 2311−2364 doi: 10.1080/10643389.2011.574115
    [41] ABU ZIED AMIN A E E. Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil[J]. Communications in Soil Science and Plant Analysis, 2016, 47(17): 2026−2033 doi: 10.1080/00103624.2016.1225081
    [42] HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2020, 2(4): 379−420 doi: 10.1007/s42773-020-00065-z
    [43] 陈静, 刘荣辉, 陈岩贽, 等. 重金属污染对土壤微生物生态的影响[J]. 生命科学, 2018, 30(6): 667−672

    CHEN J, LIU R H, CHEN Y Z, et al. Effect of heavy metal pollution on soil microbial ecology[J]. Chinese Bulletin of Life Sciences, 2018, 30(6): 667−672
    [44] HU X F, JIANG Y, SHU Y, et al. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J]. Journal of Geochemical Exploration, 2014, 147: 139−150 doi: 10.1016/j.gexplo.2014.08.001
    [45] KAPUSTA P, SZAREK-ŁUKASZEWSKA G, STEFANOWICZ A M. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland)[J]. Environmental Pollution, 2011, 159(6): 1516−1522 doi: 10.1016/j.envpol.2011.03.015
    [46] ROMBOLÀ A G, MARISI G, TORRI C, et al. Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis[J]. Journal of Agricultural and Food Chemistry, 2015, 63(30): 6660−6667 doi: 10.1021/acs.jafc.5b01540
    [47] LIU X X, WANG Y W, GUI C M, et al. Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis[J]. RSC Advances, 2016, 6(104): 101960−101967 doi: 10.1039/C6RA22511J
    [48] AWASTHI S K, DUAN Y M, LIU T, et al. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?[J]. Journal of Hazardous Materials, 2021, 406: 124593 doi: 10.1016/j.jhazmat.2020.124593
    [49] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota — A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812−1836 doi: 10.1016/j.soilbio.2011.04.022
    [50] 方晰, 陈金磊, 王留芳, 等. 亚热带森林土壤磷有效性及其影响因素的研究进展[J]. 中南林业科技大学学报, 2018, 38(12): 1−12

    FANG X, CHEN J L, WANG L F, et al. Research progress on soil phosphorus availability and its influential factors in subtropical forests[J]. Journal of Central South University of Forestry & Technology, 2018, 38(12): 1−12
    [51] ZHANG Y, PAN B, SHU K L, et al. Predicting the ratio of nitrification to immobilization to reflect the potential risk of nitrogen loss worldwide[J]. Environmental Science and Technology, 2021, 55(11): 7721−7730 doi: 10.1021/acs.est.0c08514
    [52] LEHMANN J, SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343−357 doi: 10.1023/A:1022833116184
    [53] DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354(1/2): 311−324 doi: 10.1007/s11104-011-1067-5
    [54] AUGUSTENBORG C A, HEPP S, KAMMANN C, et al. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions[J]. Journal of Environmental Quality, 2012, 41(4): 1203−1209 doi: 10.2134/jeq2011.0119
    [55] 宋延静, 张晓黎, 龚骏. 添加生物质炭对滨海盐碱土固氮菌丰度及群落结构的影响[J]. 生态学杂志, 2014, 33(8): 2168−2175

    SONG Y J, ZHANG X L, GONG J. Effects of biochar amendment on the abundance and community structure of nitrogen-fixing microbes in a coastal alkaline soil[J]. Chinese Journal of Ecology, 2014, 33(8): 2168−2175
    [56] 梁韵. 生物炭与菜田土壤氮循环微生物的相关性研究[D]. 上海: 上海交通大学, 2017

    LIANG Y. Study on correlations between biochar and microbes associated with N-cycling in the soil of vegetable fields[D]. Shanghai: Shanghai Jiaotong University, 2017
    [57] COPLEY T R, ALIFERIS K A, JABAJI S. Maple bark biochar affects rhizoctonia solani metabolism and increases damping-off severity[J]. Phytopathology, 2015, 105(10): 1334−1346 doi: 10.1094/PHYTO-08-14-0231-R
    [58] ENDERS A, HANLEY K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 2012, 114: 644−653 doi: 10.1016/j.biortech.2012.03.022
    [59] LIU S N, TANG W Z, YANG F, et al. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer[J]. Preparative Biochemistry & Biotechnology, 2017, 47(1): 32−37
    [60] BUI E N. Soil salinity: A neglected factor in plant ecology and biogeography[J]. Journal of Arid Environments, 2013, 92: 14–25
    [61] 张娟, 吴丹丹. 生物炭对土壤肥料的作用及未来研究[J]. 现代农业研究, 2020, 26(12): 29−31 doi: 10.3969/j.issn.1674-0653.2020.12.011

    ZHANG J, WU D D. Effects of biochar on soil fertilizer and future studies[J]. Modern Agriculture Research, 2020, 26(12): 29−31 doi: 10.3969/j.issn.1674-0653.2020.12.011
    [62] 韩光明. 生物炭对不同类型土壤理化性质和微生物多样性的影响[D]. 沈阳: 沈阳农业大学, 2013

    HAN G M. Effect of biochar on soil physicochemical property and microbial diversity in different soil types[D]. Shenyang: Shenyang Agricultural University, 2013
    [63] AHMAD M, WANG X K, HILGER T H, et al. Evaluating biochar-microbe synergies for improved growth, yield of maize, and post-harvest soil characteristics in a semi-arid climate[J]. Agronomy, 2020, 10(7): 1055 doi: 10.3390/agronomy10071055
    [64] 王岩, 周鹏, 白立伟, 等. 生物炭和AM真菌配施对连作辣椒生长和土壤养分的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1600−1608

    WANG Y, ZHOU P, BAI L W, et al. Effects of biochar and arbuscular mycorrhizal fungi on the growth of continuous cropping pepper and soil nutrient status[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1600−1608
    [65] PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046 doi: 10.1016/j.envint.2019.105046
    [66] 王宁, 侯艳伟, 彭静静, 等. 生物炭吸附有机污染物的研究进展[J]. 环境化学, 2012, 31(3): 287−295

    WANG N, HOU Y W, PENG J J, et al. Research progess on sorption of orgnic contaminants to biochar[J]. Environmental Chemistry, 2012, 31(3): 287−295
    [67] 肖冬林. 生物炭对微生物降解苯酚的促进作用及机制[D]. 上海: 上海交通大学, 2019

    XIAO D L. Stimulation effects and mechanisms of biocahr in biodegradation of phenol[D]. Shanghai: Shanghai Jiaotong University, 2019
    [68] TANG J Y, ZHANG J C, REN L H, et al. Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution[J]. Journal of Environmental Management, 2019, 242: 121−130
    [69] KONG L L, LIU W T, ZHOU Q X. Biochar: An effective amendment for remediating contaminated soil[M]//Reviews of Environmental Contamination and Toxicology, 2014: DOI: 10.1007/978-3-319-01619-1_4
    [70] SONG Y, BIAN Y R, WANG F, et al. Dynamic effects of biochar on the bacterial community structure in soil contaminated with polycyclic aromatic hydrocarbons[J]. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6789−6796 doi: 10.1021/acs.jafc.7b02887
    [71] 任宏洋, 马伶俐, 王兵, 等. 生物炭基固定化菌剂对石油类污染物的高效降解[J]. 环境工程学报, 2017, 11(11): 6177−6183 doi: 10.12030/j.cjee.201608158

    REN H Y, MA L L, WANG B, et al. Efficient degradation of petroleum pollutant by immobilized bacteria based on biochar material[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6177−6183 doi: 10.12030/j.cjee.201608158
    [72] QI F, LAMB D, NAIDU R, et al. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar[J]. Science of the Total Environment, 2018, 610/611: 1457–1466
    [73] MISHRA G K. Microbes in heavy metal remediation: a review on current trends and patents[J]. Recent Patents on Biotechnology, 2017, 11(3): 188−196
    [74] GAO Y, LU Y, LIN W P, et al. Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community[J]. Microorganisms, 2019, 7(12): 676 doi: 10.3390/microorganisms7120676
    [75] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19−33 doi: 10.1016/j.chemosphere.2013.10.071
    [76] 唐美珍, 汪文飞, 李如如, 等. 生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J]. 环境科学学报, 2017, 37(9): 3441−3448

    TANG M Z, WANG W F, LI R R, et al. Immobilized Pseudomonas flava WD-3 by biochar for the sewage purification in the artificial wetland[J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3441−3448
    [77] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12−22

    YANG Z, DAI C C, WANG X X, et al. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12−22
    [78] WANG G F, MA Y, CHENIA H Y, et al. Biochar-mediated control of Phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community[J]. Frontiers in Microbiology, 2020, 11: 1427 doi: 10.3389/fmicb.2020.01427
    [79] ZHANG C S, LIN Y, TIAN X Y, et al. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J]. Applied Soil Ecology, 2017, 112: 90−96 doi: 10.1016/j.apsoil.2016.12.005
    [80] WU H M, QIN X J, WU H M, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture[J]. Chemosphere, 2020, 246: 125835 doi: 10.1016/j.chemosphere.2020.125835
    [81] JAISWAL A K, FRENKEL O, TSECHANSKY L, et al. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: A possible mechanism involved in soilborne disease suppression[J]. Soil Biology & Biochemistry, 2018, 121: 59−66
    [82] GRABER E R, MELLER HAREL Y, KOLTON M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2): 481−496
    [83] RASOOL M, AKHTER A, HAIDER M S. Molecular and biochemical insight into biochar and Bacillus subtilis induced defense in tomatoes against Alternaria solani[J]. Scientia Horticulturae, 2021, 285: 110203 doi: 10.1016/j.scienta.2021.110203
    [84] KOLTON M, GRABER E R, TSEHANSKY L, et al. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. The New Phytologist, 2017, 213(3): 1393−1404 doi: 10.1111/nph.14253
  • 加载中
图(1)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  115
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回