留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻OsMYB57基因表达的调控与其化感抑草作用

杨陆可 王浩 高钰杰 严雪 母丹 林文雄 方长旬

杨陆可, 王浩, 高钰杰, 严雪, 母丹, 林文雄, 方长旬. 水稻OsMYB57基因表达的调控与其化感抑草作用[J]. 中国生态农业学报 (中英文), 2022, 30(2): 236−247 doi: 10.12357/cjea.20210550
引用本文: 杨陆可, 王浩, 高钰杰, 严雪, 母丹, 林文雄, 方长旬. 水稻OsMYB57基因表达的调控与其化感抑草作用[J]. 中国生态农业学报 (中英文), 2022, 30(2): 236−247 doi: 10.12357/cjea.20210550
YANG L K, WANG H, GAO Y J, YAN X, MU D, LIN W X, FANG C X. Regulation of OsMYB57 gene expression in rice and its allelopathic suppression to weed[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 236−247 doi: 10.12357/cjea.20210550
Citation: YANG L K, WANG H, GAO Y J, YAN X, MU D, LIN W X, FANG C X. Regulation of OsMYB57 gene expression in rice and its allelopathic suppression to weed[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 236−247 doi: 10.12357/cjea.20210550

水稻OsMYB57基因表达的调控与其化感抑草作用

doi: 10.12357/cjea.20210550
基金项目: 国家自然科学基金项目(31871556)、福建省自然科学基金项目(2020J01547)、福建农林大学杰出青年科研人才计划(xjq201805)和福建农林大学科技创新专项基金(CXZX2018042)资助
详细信息
    作者简介:

    杨陆可, 主要从事水稻化感作用的调控研究。E-mail: 1539237501@qq.com

    通讯作者:

    林文雄, 主要从事植物化感作用的生态学机制研究, E-mail: lwx@fafu.edu.cn

    方长旬, 主要从事水稻化感作用的分子生态机制研究, E-mail: changfangxingyx@163.com

  • 中图分类号: S181

Regulation of OsMYB57 gene expression in rice and its allelopathic suppression to weed

Funds: This work was supported by the National Natural Science Foundation of China (31871556), the Provincial Natural Science Foundation of Fujian, China (2020J01547), the Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University (xjq201805), the Foundation for the Science and Technology Innovation of Fujian Agriculture and Forestry University (CXZX2018042).
More Information
  • 摘要: 转录因子MYB57能够调控水稻化感抑草能力。为进一步研究调控OsMYB57基因表达的上游因子, 以化感水稻‘PI312777’和非化感水稻‘Lemont’为对象, 分离鉴定了OsMYB57基因启动子的转录因子。结果显示, OsMYB57基因表达受转录因子basic helix-loop-helix protein 009 (bHLH009, 基因: OsMYC2)、LOC_Os04g32590.1 (基因: Os04g0397500)、LOC_Os02g31160.1 (基因: Os02g0516800)以及转录调节因子 LOC_Os03g25430.1 (基因: Os03g0370250)、LOC_Os03g50110.1 (基因: Os03g0708800)等的调控。稗草胁迫下的‘PI312777’和‘Lemont’中的这些基因上调表达。bHLH009 (OsMYC2)是茉莉酸信号途径的调节因子, 外源添加0.05 mmol∙L−1茉莉酸甲酯(MeJA)不同程度提高了‘PI312777’和‘Lemont’中的OsMYC2Os04g0397500Os02g0516800Os03g0370250Os03g0708800基因的表达, 水稻根系分泌液对稗草的化感抑制率提高; 化感水稻‘PI312777’根系分泌液对稗草地上和地下部生物量的抑制率分别提高25.82%和17.01%; 而非化感水稻‘Lemont’根系分泌液的抑制率则分别提高5.30%和15.36%。本研究表明, OsMYB57基因表达受bHLH009 (MYC2)等的转录调控, 适宜浓度的茉莉酸甲酯则能够促进OsMYC2的表达, 进而调控提高OsMYB57表达, 增强水稻化感抑草能力。
  • 图  1  ‘PI312777’和‘Lemont’水稻中OsMYB57基因启动子的结合蛋白

    Marker: 标准蛋白Marker; 泳道1: 稗草胁迫下‘PI312777’的结合蛋白; 泳道2: ‘PI312777’ 的阴性对照; 泳道3: 稗草胁迫下‘Lemont’的结合蛋白; 泳道4: ‘Lemont’的阴性对照; 箭头所指为结合蛋白。Marker: protein ladder; Lane 1: binding proteins from ‘PI312777’ co-cultured with barnyardgrass; Lane 2: negative control of ‘PI312777’; Lane 3: binding proteins from ‘Lemont’ co-cultured with barnyardgrass; Lane 4: negative control of ‘Lemont’. Arrow indicates the binding proteins.

    Figure  1.  Proteins binding on the promoter of OsMYB57 from rice varieties ‘PI312777’ and ‘Lemont’

    图  2  稗草胁迫下‘PI312777’和‘Lemont’水稻中OsMYB57基因转录调控因子的动态表达

    a: ‘PI312777’叶中基因的表达; b: ‘PI312777’根中基因的表达; c: ‘Lemont’叶中基因的表达; d: ‘Lemont’根中基因的表达。a: gene expression in ‘PI312777’ leaves; b: gene expression in ‘PI312777’ roots; c: gene expression in ‘Lemont’ leaves; d: gene expression in ‘Lemont’ roots.

    Figure  2.  Dynamic gene expression levels of transcriptional regulators of OsMYB57 in rice varieties ‘PI312777’ and ‘Lemont’ co-cultured with barnyardgrass

    图  3  不同浓度茉莉酸甲酯处理不同时间‘PI312777’和‘Lemont’水稻根系中基因的动态表达

    a−e: ‘PI312777’水稻根系中5个基因的表达; f−j: ‘Lemont’水稻根系中5个基因的表达。a−e: gene expression level in the root of ‘PI312777’; f−j: dynamic gene expression level in the root of ‘Lemont’.

    Figure  3.  Dynamics of gene expression level in the root of ‘PI312777’ and ‘Lemont’ under treatments of different concentrations of methyl jasmonate

    图  4  不同浓度茉莉酸甲酯处理不同时间‘PI312777’和‘Lemont’水稻叶片中基因的动态表达

    a−e: ‘PI312777’水稻叶片中5个基因的表达; f−j: ‘Lemont’水稻叶片中5个基因的表达。a−e: gene expression level in the leaves of ‘PI312777’; f−j: gene expression level in the leaves of ‘Lemont’.

    Figure  4.  Dynamics of gene expression level in the leaves of ‘PI312777’ and ‘Lemont’ under treatments of different concentrations of methyl jasmonate

    图  5  不同浓度茉莉酸处理不同时间‘PI312777’和‘Lemont’水稻中MYB57、PAL2;3和MAPK11蛋白的表达量

    anti-PAL2;3: PAL2;3抗体; anti-MAPK11: MAPK11抗体; anti-MYB57: MYB57抗体; anti-β-actin: β-肌动蛋白抗体。anti-PAL2;3: antibody of PAL2;3; anti-MAPK11: antibody of MAPK11; anti-MYB57: antibody of MYB57; anti-β-actin: antibody of β-actin.

    Figure  5.  Protein expression of MYB57, PAL2;3 and MAPK11 in ‘PI312777’ and ‘Lemont’ under treatments of different concentrations of methyl jasmonate for different days

    图  6  不同浓度茉莉酸甲酯(MeJA)处理不同时间‘PI312777’和‘Lemont’水稻的生长状况

    Figure  6.  Plant phenotype of ‘PI312777’ and ‘Lemont’ under treatmetns of different concentrations of methyl jasmonate (MeJA) for different days

    图  7  不同浓度茉莉酸甲酯(MeJA)对稗草生长的影响

    不同小写字母表示不同茉莉酸甲脂浓度间差异显著(P<0.05)。

    Figure  7.  Effect of different concentrations of methyl jasmonate (MeJA) on barnyardgrass growth

    Different lowercase letters indicate significant different among different MeJA concentrations at P<0.05.

    图  8  不同浓度茉莉酸甲酯处理下‘PI312777’ (PI)和‘Lemont’ (Le)水稻根系分泌液对稗草生长的影响

    不同小写字母表示不同茉莉酸甲脂浓度间差异显著(P<0.05)。

    Figure  8.  Effect of root exudates of ‘PI312777’ (PI) and ‘Lemont’ (Le) rice induced by different concentrations of methyl jasmonate (MeJA) on barnyardgrass growth

    Different lowercase letters indicate significant different among different MeJA concentrations at P<0.05.

    图  9  不同浓度茉莉酸甲酯添加下的‘PI312777’和‘Lemont’水稻根系分泌液对稗草干重的抑制率

    Figure  9.  Inhibitory rates of root exudates of ‘PI312777’ and ‘Lemont’ rice induced by different concentrations of methyl jasmonate (MeJA) to the dry weight of barnyardgrass

    表  1  本研究中采用的qPCR引物

    Table  1.   qPCR primers used in this study

    基因名称
    Gene name
    引物序列
    Primer sequences (5′-3′)
    OsMYC2F: GGGTTTTGTTATCTCCTCTCCT
    OsMYC2R: AGAATAGGAGGAGAGGAAAGGT
    Os04g0397500F: GAATCGCTGATAAGATGTAGCC
    Os04g0397500R: CCCCATGCATTTTCCTTCTTTT
    Os02g0516800F: GGAAGAGTCGCTGTTCTCC
    Os02g0516800R: AGAAGAATAGTCGCGGATATCG
    Os03g0370250F: AGCACCTCATAGTACATTGTCG
    Os03g0370250R: CTCCTGCTAATCCTATCTGCAA
    Os03g0708800F: CTCAAGAACAAGTTCCGCG
    Os03g0708800R: GTAATCATGGGAATTGCTGTCC
    actinF: CTTCATAGGAATGGAAGCTGCGGGTA
    actinR: CGACCACCTTGATCTTCATGCTGCTA
    下载: 导出CSV

    表  2  ‘PI312777’和‘Lemont’水稻中OsMYB57基因启动子上的结合蛋白鉴定结果

    Table  2.   Identification of the proteins binding on the OsMYB57 gene promoter from rice varieties ‘PI312777’ and ‘Lemont’

    水稻品种
    Rice variety
    蛋白登录号
    Protein_ID
    特异肽段数
    Unique peptide number
    覆盖率
    Coverage
    蛋白描述
    Protein description
    基因
    Gene
    PI312777LOC_Os10g42430.180.1558basic helix-loop-helix protein 009OsMYC2
    LOC_Os04g32590.1110.5410transcription factorOs04g0397500
    LOC_Os02g31160.1110.4626transcription factorOs02g0516800
    LOC_Os03g25430.190.3926transcription regulatorOs03g0370250
    LOC_Os03g50110.140.1733transcription regulatorOs03g0708800
    LemontLOC_Os04g32590.1130.5137transcription factorOs04g0397500
    LOC_Os02g31160.1130.5134transcription factorOs02g0516800
    LOC_Os03g25430.160.2122transcription regulatorOs03g0370250
    下载: 导出CSV
  • [1] WESTON L A, DUKE S O. Weed and crop allelopathy[J]. Critical Reviews in Plant Sciences, 2003, 22(3/4): 367−389
    [2] MALLIK A U. Allelopathy in forested ecosystems[M]// Allelopathy in Sustainable Agriculture and Forestry. New York: Springer New York, 2008: 363–386
    [3] REIGOSA M S, GONZALEZY L, SOUTO X C, et al. Allelopathy in forest ecosystems[M]//Allelopathy in Ecological Agriculture and Forestry. Dordrecht: Springer Netherlands, 2000: 183–193
    [4] GRANÉLI E, PAVIA H. Allelopathy in marine ecosystems[M]//Allelopathy. Dordrecht: Kluwer Academic Publishers, 2006: 415–431
    [5] INDERJIT, DAKSHINI K M M. Algal allelopathy[J]. The Botanical Review, 1994, 60(2): 182−196 doi: 10.1007/BF02856576
    [6] HE H B, WANG H B, FANG C X, et al. Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice[J]. Journal of Plant Physiology, 2012, 169(17): 1747−1753 doi: 10.1016/j.jplph.2012.06.018
    [7] LI J Y, ZHANG Q, YANG X Y, et al. A reappraisal of the content and the differences of phenolic acids between allelopathic and non-allelopathic rice accessions[J]. Allelopathy Journal, 2017, 40(1): 35−46 doi: 10.26651/2017-40-1-1064
    [8] LI L L, ZHAO H H, KONG C H. (−)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy[J]. Journal of Experimental Botany, 2019, 71(4): 1540−1550
    [9] KATO-NOGUCHI H, PETERS R J. The role of momilactones in rice allelopathy[J]. Journal of Chemical Ecology, 2013, 39(2): 175−185 doi: 10.1007/s10886-013-0236-9
    [10] KONG C H, ZHAO H, XU X H, et al. Activity and allelopathy of soil of Flavone O-glycosides from rice[J]. Journal of Agricultural and Food Chemistry, 2007, 55(15): 6007−6012 doi: 10.1021/jf0703912
    [11] 王海斌, 俞振明, 何海斌, 等. 不同化感潜力水稻化感效应与产量的关系[J]. 中国生态农业学报, 2012, 20(1): 75−79 doi: 10.3724/SP.J.1011.2012.00075

    WANG H B, YU Z M, HE H B, et al. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 75−79 doi: 10.3724/SP.J.1011.2012.00075
    [12] BATISH D R, SINGH H P, KAUR S. Crop allelopathy and its role in ecological agriculture[J]. Journal of Crop Production, 2001, 4(2): 121−161 doi: 10.1300/J144v04n02_03
    [13] NARWAL S S, HAOUALA R. Role of allelopathy in weed management for sustainable agriculture[M]//Allelopathy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 217–249
    [14] FANG C X, LI Y Z, LI C X, et al. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crusgalli) in response to rice allelopathy[J]. Plant, Cell & Environment, 2015, 38(7): 1368−1381
    [15] CAMM E L, TOWERS G H N. Phenylalanine ammonia-lyase[J]. Phytochemistry, 1973, 12(5): 961−973 doi: 10.1016/0031-9422(73)85001-0
    [16] 李兰兰, 母丹, 严雪, 等. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197−209 doi: 10.3724/SP.J.1006.2021.02034

    LI L L, MU D, YAN X, et al. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.)[J]. Acta Agronomica Sinica, 2021, 47(2): 197−209 doi: 10.3724/SP.J.1006.2021.02034
    [17] FAROOQ M A, ISLAM F, YANG C, et al. Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots[J]. Plant Growth Regulation, 2018, 84(1): 135−148 doi: 10.1007/s10725-017-0327-7
    [18] BI H H, ZENG R S, SU L M, et al. Rice allelopathy induced by methyl jasmonate and methyl salicylate[J]. Journal of Chemical Ecology, 2007, 33(5): 1089−1103 doi: 10.1007/s10886-007-9286-1
    [19] DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573−581 doi: 10.1016/j.tplants.2010.06.005
    [20] LIU J Y, OSBOURN A, MA P D. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5): 689−708 doi: 10.1016/j.molp.2015.03.012
    [21] DIAS A P, GROTEWOLD E. Manipulating the accumulation of phenolics in maize cultured cells using transcription factors[J]. Biochemical Engineering Journal, 2003, 14(3): 207−216 doi: 10.1016/S1369-703X(02)00225-5
    [22] LUO J, BUTELLI E, HILL L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol[J]. The Plant Journal, 2008, 56(2): 316−326 doi: 10.1111/j.1365-313X.2008.03597.x
    [23] ROMMENS C M, RICHAEL C M, YAN H, et al. Engineered native pathways for high kaempferol and caffeoylquinate production in potato[J]. Plant Biotechnology Journal, 2008, 6(9): 870−886 doi: 10.1111/j.1467-7652.2008.00362.x
    [24] PAYYAVULA R S, SINGH R K, NAVARRE D A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism[J]. Journal of Experimental Botany, 2013, 64(16): 5115−5131 doi: 10.1093/jxb/ert303
    [25] QIU J, GAO F H, SHEN G A, et al. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata[J]. PLoS One, 2013, 8(8): e70665 doi: 10.1371/journal.pone.0070665
    [26] DELUC L, BARRIEU F, MARCHIVE C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiology, 2006, 140(2): 499−511 doi: 10.1104/pp.105.067231
    [27] STRACKE R, ISHIHARA H, HUEP G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. The Plant Journal, 2007, 50(4): 660−677 doi: 10.1111/j.1365-313X.2007.03078.x
    [28] FANG C X, YANG L K, CHEN W S, et al. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy[J]. Journal of Experimental Botany, 2020, 71(6): 2127−2141 doi: 10.1093/jxb/erz540
    [29] GEALY D R, WAILES E J, ESTORNINOS JR L E, et al. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crusgalli) and economics of reduced propanil rates[J]. Weed Science, 2013, 51(4): 601−609
    [30] YOSHIDA S. Routine procedure for growing rice plants in culture solution[R]//Laboratory Manual for Physiological Studies of Rice. Los Baños: The International Rice Research Institute, 1976: 61–66
    [31] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402−408 doi: 10.1006/meth.2001.1262
    [32] 秦利征, 赵全志, 李俊周. 水稻根系蛋白质提取方法的改良[J]. 分子植物育种, 2013, 11(4): 588−594

    QIN L Z, ZHAO Q Z, LI J Z. The modified method for rice root protein extraction[J]. Molecular Plant Breeding, 2013, 11(4): 588−594
    [33] FANG C X, XIONG J, QIU L, et al. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid[J]. Plant Growth Regulation, 2008, 57(2): 163−172
    [34] CHUNG I M, KIM K H, AHN J K, et al. Screening of allelochemicals on barnyardgrass (Echinochloa crusgalli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts[J]. Crop Protection, 2002, 21(10): 913−920 doi: 10.1016/S0261-2194(02)00063-7
    [35] VOM ENDT D, KIJNE J W, MEMELINK J. Transcription factors controlling plant secondary metabolism: what regulates the regulators?[J]. Phytochemistry, 2002, 61(2): 107−114 doi: 10.1016/S0031-9422(02)00185-1
    [36] OKSMAN-CALDENTEY K M, INZÉ D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites[J]. Trends in Plant Science, 2004, 9(9): 433−440 doi: 10.1016/j.tplants.2004.07.006
    [37] NIU Y J, FIGUEROA P, BROWSE J. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6): 2143−2154 doi: 10.1093/jxb/erq408
    [38] 蔡昆争, 董桃杏, 徐涛. 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J]. 生态环境, 2006, 15(2): 397−404

    CAI K Z, DONG T X, XU T. The physiological roles and resistance control in stress environment of jasmonates[J]. Ecology and Environment, 2006, 15(2): 397−404
    [39] ORTIGOSA A, FONSECA S, FRANCO-ZORRILLA J M, et al. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression[J]. The Plant Journal, 2020, 102(1): 138−152 doi: 10.1111/tpj.14618
    [40] FANG C X, YU Y, CHEN W S, et al. Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass[J]. Plant Growth Regulation, 2016, 79(3): 265−273 doi: 10.1007/s10725-015-0131-1
    [41] BHAVANAM S, STOUT M. Seed treatment with jasmonic acid and methyl jasmonate induces resistance to insects but reduces plant growth and yield in rice, Oryza sativa[J]. Frontiers in Plant Science, 2021, 12: 691768 doi: 10.3389/fpls.2021.691768
    [42] BERTINI L, PALAZZI L, PROIETTI S, et al. Proteomic analysis of MeJA-induced defense responses in rice against wounding[J]. International Journal of Molecular Sciences, 2019, 20(10): 2525
    [43] YANG Y C, DU Z M, ZHANG X P, et al. Effects of spraying methyl jasmonate on yield and grain quality of japonica rice during heading and flowering stage[J]. Crops, 2021, 37(2): 71−76
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  65
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 录用日期:  2021-09-15
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-02-08

目录

    /

    返回文章
    返回