留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离心微滤对猪场废水固液分离效果研究

胡旭朝 董红敏 尹福斌 陈永杏

胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035 doi: 10.12357/cjea.20210576
引用本文: 胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035 doi: 10.12357/cjea.20210576
HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035 doi: 10.12357/cjea.20210576
Citation: HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035 doi: 10.12357/cjea.20210576

离心微滤对猪场废水固液分离效果研究

doi: 10.12357/cjea.20210576
基金项目: 国家重点研发计划项目(2018YFD1100505)、财政部和农业农村部国家现代农业产业技术体系资助
详细信息
    作者简介:

    胡旭朝, 研究方向为农业废弃物处理与资源化利用。E-mail: huxuzhao@caas.cn

    通讯作者:

    尹福斌, 主要从事畜牧环境工程方面研究。E-mail: yinfubin@caas.cn

  • 中图分类号: X713

Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater

Funds: The study was supported by the National Key Research and Development Program of China (2018YFD1100505) and China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs.
More Information
  • 摘要: 固液分离是畜禽废水处理的关键技术, 不仅可以将固体物质分离出来进一步肥料化利用, 还可减少废水中污染物浓度从而降低后续处理负荷。本文主要针对传统的固液分离设备效果差和效率低的问题, 以离心微滤机为研究对象, 通过系统监测, 科学评价猪场废水总固体浓度(1%、2%、3%、4%和5%)和离心微滤机筛网孔径(15 µm、25 µm和50 µm)对去除率的影响。结果表明, 随着总固体浓度的增高和筛网孔径的减小, 水质指标的去除率有增加趋势。随筛网孔径的增大离心微滤机单位时间内的处理量也随之增加, 50 µm时处理量为14~19 m3∙h−1, 15 µm与25 µm时处理量为2~7 m3∙h−1。综合考虑, 总固体浓度为5%和筛网孔径为50 µm为最佳处理组, 水质指标中总固体浓度、化学需氧量和总磷的去除率分别为57%、29%和43%。该离心微滤机与其他固液分离设备相比, 具有分离效果好和能耗低的优点, 因此在处理猪场废水时具有较好的应用前景。
  • 图  1  离心微滤工艺流程图

    1. 进料口; 2. 滤网; 3. 搅拌泵; 4. 储水桶; 5. 止水阀; 6. 螺杆泵; 7. 微滤机; 8. 固体储存池; 9. 液体储存池。1. feed inlet; 2. screen; 3. mixing pump; 4. water storage bucket; 5. water stop valve; 6. screw pump; 7. microfiltration machine; 8. solid storage pool; 9. liquid storage pool.

    Figure  1.  Flow chart of the centrifugal microfiltration process

    图  2  离心微滤机的示意图

    1. 进料口; 2. 微滤液体出口; 3. 浓缩污泥出口; 4. 流量调节器; 5.自动加油脂器; 6. 筛网; 7. 电机; 8. 支撑脚。1. feed inlet; 2. microfiltration liquid outlet; 3. concentrated sludge outlet; 4. flow regulator; 5. automatic greaser; 6. filter mesh; 7. motor; 8. support foot.

    Figure  2.  Schematic diagram of centrifugalmicrofiltration

    图  3  猪场废水总固体浓度与酸碱度和电导率(a)、浊度和化学需氧量(b)、总氮和氨氮(c)及总磷(d)的关系

    Figure  3.  Correlations between total solid concentration with pH and electrical conductivity (a), turbidity and chemical oxygen demand (b), total nitrogen and ammonia nitrogen contents (c) and total phosphorus content (d)

    图  4  总固体浓度和筛网孔径下离心微滤机的猪场废水总固体(a)、浊度(b)、化学需氧量(c)、总氮(d)、总磷(e)和氨氮(f)的去除效果

    不同小写字母表示筛网孔径对去除率在P<0.05水平影响显著; 不同大写字母表示总固体浓度对去除率在P<0.05水平影响显著。Different lowercase letters represent significant differences in the removal rate with different mesh sizes at P<0.05 level; and different capital letters represent significant differences in the removal rate with different total solid concentrations at P<0.05 level.

    Figure  4.  Separation efficiencies of total solid (a), turbidity (b), chemical oxygen demand (c), total nitrogen (d), total phosphorus (e), and ammonia nitrogen (f) of centrifugal microfiltration with different sizes under different total solid concentration of pig farm wastewater

    图  5  猪场废水总固体浓度和筛网孔径对处理量的影响

    Figure  5.  Effects of total solid concentration of pig farm wastewater and mesh size on treatment capacity

    表  1  原始猪场废水的特性

    Table  1.   Properties of the raw pig farm wastewater

    指标 Index数值 Value
    总固体浓度 Total solid concentration (%)0.5~8.0
    pH5.73~7.31
    电导率 Electrical conductivity (µS·cm−1)4360~9307
    浊度 Turbidity (NTU)5595~39 720
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 650
    总氮 Total nitrogen (mg·L−1)464~2460
    总磷 Total phosphorus (mg·L−1)442~4500
    氨氮 Ammonia nitrogen (mg·L−1)300~1248
    下载: 导出CSV

    表  2  猪粪固液分离主要试验仪器的设备参数

    Table  2.   Parameters of equipment used for the solid-liquid separation of pig farm wastewater

    设备仪器
    Equipment instrument
    参数
    Parameter
    数值
    Value
    搅拌泵 Mixing pump功率 Power3 kW
    储水桶 Water storage bucket体积 Volume8 m3
    滤网 Screen孔径 Mesh size1 cm
    螺杆泵 Screw pump功率 Power4 kW
    微滤机 Microfiltration machine功率 Power7.5 kW
    下载: 导出CSV

    表  3  离心微滤机进水和产水水质指标

    Table  3.   Water quality indexes of inlet and produced water of centrifugal microfiltration machine

    指标
    Index
    进水
    Raw pig farm wastewater
    出水 Separated wastewater
    15 µm筛网
    15 µm mesh
    25 µm筛网
    25 µm mesh
    50 µm筛网
    50 µm mesh
    总固体浓度 Total solid (%)0.5~8.00.3~1.70.6~2.20.6~2.8
    pH5.73~7.315.88~6.956.1~7.226.32~7.27
    电导率 Electrical conductivity (µS∙cm−1)4360~93076001~77465077~11 5004339~10 870
    浊度 Turbidity (NTU)5595~39 7208490~18 4504695~26 7504920~32 340
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 6509740~35 0806720~45 48012 350~46 360
    总氮 Total nitrogen (mg·L−1)464~2460312~1950640~2000620~2440
    总磷 Total phosphorus (mg·L−1)442~4500456~1602208~3780396~3220
    氨氮 Ammonia nitrogen (mg·L−1)300~1248432~970340~1167276~1504
    下载: 导出CSV

    表  4  猪场废水总固体浓度和离心微滤机筛网孔径对于水质指标去除率影响的显著性分析(P值)

    Table  4.   Significance analysis of total solid concentration and mesh size on wastewater characters (removal rates of wastewater indexes) of pig farm wastewater after solid-liquid separation (P value)

    变异来源
    Variation source
    总固体浓度
    Total solid
    浊度
    Turbidity
    化学需氧量
    Chemical oxygen demand
    总氮
    Total nitrogen
    总磷
    Total phosphorus
    氨氮
    Ammonia nitrogen
    孔径 Mesh size (MA)<0.05<0.05<0.05<0.050.260.11
    总固体浓度 Total solid (TS)<0.05<0.050.09<0.05<0.050.11
    MA×TS0.940.160.950.540.870.26
      P<0.05水平上因素之间相关性显著; P>0.05水平上因素之间相关性不显著。 There was significant correlation between the factors at the level of P<0.05; there was no significant correlation between the factors at the level of P>0.05.
    下载: 导出CSV

    表  5  不同筛网孔径的离心微滤机处理猪场废水的经济性分析

    Table  5.   Economic analysis of solid-liquid separation of pig farm wastewater with centrifugal microfiltration with different size

    项目 Project筛网孔径 Mesh size (µm)
    152550
    处理量 Processing amount (m3∙h−1)5515
    离心微滤机的购置费 Cost of centrifugal microfiltration equipment (×104 ¥)454515
    离心微滤机折旧费用 Depreciation cost of centrifugal microfiltration (¥∙m−3)0.560.560.18
    离心微滤机能耗 Electricity consumption of centrifugal microfiltration (¥∙m−3)1.210.830.23
    人工费 Cost of labor (¥∙m−3)0.670.670.67
    处理成本 Treatment cost (¥∙t−1)2.442.061.08
    下载: 导出CSV

    表  6  不同固液分离技术的效果与能耗

    Table  6.   Different solid-liquid separation of separation effect and energy consumption

    废水类型
    Wastewater type
    水质指标
    Water quality index
    固液分离类型Solid-liquid
    separation type
    筛网孔径
    Mesh aperture (mm)
    去除率Removal
    rate (%)
    处理量Treatment
    amount (m3·h−1)
    能耗Power
    consumption
    参考文献
    Reference
    猪场废水
    Pig farm wastewater
    COD: 10 086~19 051 mg∙L−1振动筛
    Vibrating screen
    0.93, 1.20, 1.519.26~23.240~801.5 kW[24]
    TN: 2350~1367 mg∙L−113.9~31.4
    ${\rm{NH}}_4^ + $-N: 528~250 mg∙L−10.3~1.2
    TP: 197~107 mg∙L−110.4~18.7
    猪场废水
    Pig farm wastewater
    COD: 12 000~18 000 mg∙L−1滤网
    Filter screen
    NA25~30NANA[26]
    牛场废水
    Cattle farm wastewater
    TS: 13%螺旋挤压机
    Screw extractor
    0.3, 0.5, 0.741.5~60.915~20NA[25]
    VS: 83.1%7.3~11.6
    ${\rm{NH}}_4^ + $-N: 790 mg∙L−1
    猪场废水
    Pig farm wastewater
    TS, TP, TN: 5.6 mg∙L−1螺旋挤压机
    Screw extractor
    0.5, 0.75, 1, 3TS 19.2~49.4TP 12.8~49.4
    TN 4.4~19.2
    NANA[27]
    猪场废水
    Pig farm wastewater
    TS: 2.0%~8%沉降离心机
    Sedimentation centrifuge
    NATS 43~61
    SS 73
    4~1015 kW[23]
    猪场废水
    Pig farm wastewater
    TS: 0.5%~8.0%离心微滤机
    Centrifugal microfiltration
    0.015, 0.025, 0.055714~197.5 kW本研究
    This study
    COD: 6720~72 650 mg∙L−129
    TP: 442~4500 mg∙L−143
      COD: 化学需氧量; TN: 总氮; NH4+-N: 氨氮; TP: 总磷; TS: 总固体含量; VS: 挥发型固体; NA: 无相关参数。COD: chemical oxygen demand; TN: total nitrogen; NH4+-N: ammonia nitrogen; TP: total phosphorus; TS: total solids; VS: volatile solid; NA: not available
    下载: 导出CSV
  • [1] 罗娟, 赵立欣, 姚宗路, 等. 规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J]. 农业工程学报, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022

    LUO J, ZHAO L X, YAO Z L, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022
    [2] ZHENG C H, LIU Y, BLUEMLING B, et al. Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach[J]. Agricultural Systems, 2013, 122: 60−72 doi: 10.1016/j.agsy.2013.08.005
    [3] KUNZ A, STEINMETZ R L R, RAMME M A, et al. Effect of storage time on swine manure solid separation efficiency by screening[J]. Bioresource Technology, 2009, 100(5): 1815−1818 doi: 10.1016/j.biortech.2008.09.022
    [4] 邹细霞, 陈海旭, 李丽娟, 等. 喀斯特石漠化地区畜牧养殖场粪便固液分离一体化圈舍研究[J]. 中国沼气, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008

    ZOU X X, CHEN H X, LI L J, et al. Manure solid-liquid separation integrated animal house for livestock farms in Karst rocky desertification areas[J]. China Biogas, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008
    [5] 陈长卿, 林雪, 郑涛, 等. 规模化养殖场畜禽粪便固液分离技术与装备[J]. 农业工程, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005

    CHEN C Q, LIN X, ZHENG T, et al. Solid-liquid separation technology and equipment of livestock manure for large-scale farms[J]. Agricultural Engineering, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005
    [6] 杨柏松, 关正军. 畜禽粪便固液分离研究[J]. 农机化研究, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065

    YANG B S, GUAN Z J. Study on the solid-liquid separation[J]. Journal of Agricultural Mechanization Research, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065
    [7] FORD M, FLEMIN R. Mechanical Solid-Liquid Separation of Livestock Manure Literature Review[R]. Ridgetown, Ontario: Ridgetwon College, University of Guelph, 2002
    [8] 江滔, 温志国, 马旭光, 等. 畜禽粪便固液分离技术特点及效率评估[J]. 农业工程学报, 2016, 32(S2): 218−225

    JIANG T, WEN Z G, MA X G, et al. Characteristics and efficiency evaluation of livestock slurry separation technologies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 218−225
    [9] RIAÑO B, GARCÍA-GONZÁLEZ M C. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction[J]. Journal of Environmental Management, 2014, 132: 87−93
    [10] 关正军, 李文哲, 杨柏松, 等. 牛粪螺旋压榨固液分离工艺参数优化[J]. 农业工程学报, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047

    GUAN Z J, LI W Z, YANG B S, et al. Optimization on parameters of solid-liquid separation process of dairy manure by screw press[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047
    [11] 王明, 孔威, 晏水平, 等. 猪场废水厌氧发酵前固液分离对总固体及污染物的去除效果[J]. 农业工程学报, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031

    WANG M, KONG W, YAN S P, et al. Effect of solid-liquid separation on removal of total solid and pollutants from pig manure wastewater before anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031
    [12] PETERS K, HJORTH M, JENSEN L S, et al. Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry[J]. Journal of Environmental Quality, 2011, 40(1): 224−232 doi: 10.2134/jeq2010.0217
    [13] MØLLER H B, SOMMER S G, AHRING B K. Separation efficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2): 189−196 doi: 10.1016/S0960-8524(02)00047-0
    [14] 吴军伟. 畜禽粪便固液分离技术研究[D]. 南京: 南京农业大学, 2009

    WU J W. The research on solid and liquid separation of animal manure[D]. Nanjing: Nanjing Agricultural University, 2009
    [15] HJORTH M, CHRISTENSEN K V, CHRISTENSEN M L, et al. Solid-liquid separation of animal slurry in theory and practice. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 153−180 doi: 10.1051/agro/2009010
    [16] 占源航. 纸带过滤与中空纤维超滤膜结合工艺预处理猪场沼液应用研究[D]. 北京: 中国农业科学院, 2019

    ZHAN Y H. The combination of paper filtration and hollow fiber ultrafiltration for the pretreatment of the digestate from swine manure[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
    [17] ZHU J, NDEGWA P M, ZHANG Z J. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs[J]. Bioresource Technology, 2004, 92(3): 243−250 doi: 10.1016/j.biortech.2003.09.010
    [18] LI J G, AKDENIZ N, KIM H H M, et al. Quantification of sustainable animal manure utilization strategies in Hangzhou, China[J]. Agricultural Systems, 2021, 191: 103150 doi: 10.1016/j.agsy.2021.103150
    [19] SINGH A, BICUDO J R. Dairy manure nutrient analysis using quick tests[J]. Environmental Technology, 2005, 26(5): 471−478 doi: 10.1080/09593332608618541
    [20] SURESH A, CHOI H L, OH D I, et al. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC — electrical conductivity[J]. Bioresource Technology, 2009, 100(20): 4683−4689 doi: 10.1016/j.biortech.2009.05.006
    [21] AZAM H M, ALAM S T, HASAN M, et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems[J]. Environmental Science and Pollution Research International, 2019, 26(20): 20183−20207 doi: 10.1007/s11356-019-04732-y
    [22] SOMMER S G, ZHANG G Q, BANNINK A, et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores[J]. Advances in Agronomy, 2006, 89: 261−335
    [23] SNEATH R W, SHAW M, WILLIAMS A G. Centrifugation for separating piggery slurry 1. The performance of a decanting centrifuge[J]. Journal of Agricultural Engineering Research, 1988, 39(3): 181−190 doi: 10.1016/0021-8634(88)90095-9
    [24] 杨迪, 邓良伟, 郑丹, 等. 猪场废水固液分离及其影响因素研究[J]. 中国沼气, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004

    YANG D, DENG L W, ZHENG D, et al. Solid-liquid separation of swine wastewater and its influencing factors[J]. China Biogas, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004
    [25] 王明, 赵胜雪, 李旭荣, 等. 螺旋挤压机筛网孔径对牛粪固液分离效果的影响[J]. 太阳能学报, 2018, 39(4): 1032−1037

    WANG M, ZHAO S X, LI X R, et al. Effect of mesh size of screw extruder on solid-liquid separation of cattle manure[J]. Acta Energiae Solaris Sinica, 2018, 39(4): 1032−1037
    [26] 杨朝晖, 曾光明, 高锋, 等. 固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J]. 湖南大学学报: 自然科学版, 2002, 29(6): 95−99

    YANG Z H, ZENG G M, GAO F, et al. Study on piggery wastewater treatment by screening-UASB-SBR processes[J]. Journal of Hunan University: Natural Science, 2002, 29(6): 95−99
    [27] MØLLER H B, LUND I, SOMMER S G. Solid-liquid separation of livestock slurry: efficiency and cost[J]. Bioresource Technology, 2000, 74(3): 223−229 doi: 10.1016/S0960-8524(00)00016-X
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  50
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2021-12-30
  • 网络出版日期:  2022-02-21
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回