留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遮阴对伴矿景天Cd、Pb、Zn累积特征的影响

陈思 阎凯 何永美 湛方栋 祖艳群 李元 陈建军 李博

陈思, 阎凯, 何永美, 湛方栋, 祖艳群, 李元, 陈建军, 李博. 遮阴对伴矿景天Cd、Pb、Zn累积特征的影响[J]. 中国生态农业学报 (中英文), 2022, 30(3): 409−418 doi: 10.12357/cjea.20210579
引用本文: 陈思, 阎凯, 何永美, 湛方栋, 祖艳群, 李元, 陈建军, 李博. 遮阴对伴矿景天Cd、Pb、Zn累积特征的影响[J]. 中国生态农业学报 (中英文), 2022, 30(3): 409−418 doi: 10.12357/cjea.20210579
CHEN S, YAN K, HE Y M, ZHAN F D, ZU Y Q, LI Y, CHEN J J, LI B. Effect of shading on the accumulation of Cd, Pb and Zn of Sedum plumbizincicola[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 409−418 doi: 10.12357/cjea.20210579
Citation: CHEN S, YAN K, HE Y M, ZHAN F D, ZU Y Q, LI Y, CHEN J J, LI B. Effect of shading on the accumulation of Cd, Pb and Zn of Sedum plumbizincicola[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 409−418 doi: 10.12357/cjea.20210579

遮阴对伴矿景天Cd、Pb、Zn累积特征的影响

doi: 10.12357/cjea.20210579
基金项目: 云南省重点研发项目(2019BC001-04)资助
详细信息
    作者简介:

    陈思, 主要从事土壤重金属污染生态修复研究。E-mail: 1204035029@qq.com

    通讯作者:

    李博, 主要从事土壤重金属污染生态修复研究。E-mail: ecolibo@foxmail.com

  • 中图分类号: X53

Effect of shading on the accumulation of Cd, Pb and Zn of Sedum plumbizincicola

Funds: The study was supported by the Key Research and Development Project of Yunnan Province (2019BC001-04).
More Information
  • 摘要: 为促进伴矿景天(Sedum plumbizincicola)在云南高原土壤污染地区修复实践中的应用, 本文在云南怒江兰坪铅锌矿区矿渣地开展种植伴矿景天的大田试验, 设置遮阴处理(光照强度降低25%), 以自然光照为对照, 测定植株生物量、亚细胞组分和化学形态镉(Cd)、铅(Pb)、锌(Zn)含量及全量, 研究遮阴处理对伴矿景天Cd、Pb、Zn累积特征的影响。结果表明: 1)遮阴处理导致伴矿景天茎、叶中Cd、Pb、Zn含量和累积量均显著降低(P<0.05或P<0.01), 含量降幅范围为15.2%~52.1%, 累积量降幅范围为17.6%~67.4%; 且遮阴条件下伴矿景天Cd、Zn的富集系数和转移系数显著小于未遮阴条件下生长的伴矿景天(P<0.05)。2)遮阴条件下, 伴矿景天植株叶细胞壁Cd含量显著降低(P<0.05), Pb含量显著增加(P<0.05); 且伴矿景天茎、叶中细胞器和可溶部分Zn含量均显著降低(P<0.05), 降幅范围为11.8%~57.3%。3)伴矿景天茎、叶中Zn以醋酸提取态(FHAc)和盐酸提取态(FHCl)为主, Cd、Pb以氯化钠提取态(FNaCl)为主; 且遮阴处理导致伴矿景天叶片中FHAc-Cd含量极显著增加(P<0.01), 去离子水提取态(FW) Cd含量显著降低(P<0.05或P<0.01); 茎、叶中乙醇提取态(FE) Zn和FHAc-Zn、FHCl-Zn含量均极显著降低(P<0.01)。综上所述, 遮阴导致伴矿景天的液泡区隔化和细胞壁固持作用降低, 且其体内难溶的磷酸盐类惰性态重金属含量减少, 最终降低伴矿景天对Cd、Zn的富集和转运能力。
  • 图  1  遮阴对伴矿景天生物量(a)和叶绿素含量(b)的影响

    *和**分别表示遮阴和不遮阴处理间差异达P<0.05和P<0.01显著水平。* and ** mean significant differences between shading and no shading treatments at P<0.05 and P<0.01 levels, respectively.

    Figure  1.  Effects of shading on the biomass (a) and chlorophyll content (b) of Sedum plumbisincicola

    图  2  遮阴对伴矿景天Cd (a)、Pb (b)、Zn (c)含量的影响

    *和**分别表示遮阴和不遮阴处理间差异达P<0.05和P<0.01显著水平。* and ** mean significant differences between shading and no shading treatments at P<0.05 and P<0.01 levels, respectively.

    Figure  2.  Effects of shading on the content of Cd (a), Pb (b) and Zn (c) in Sedum plumbisincicola

    图  3  遮阴对伴矿景天Cd (a)、Pb (b)、Zn (c)累积量的影响

    *和**分别表示遮阴和不遮阴处理间差异达P<0.05和P<0.01显著水平。* and ** mean significant differences between shading and no shading treatments at P<0.05 and P<0.01 levels, respectively.

    Figure  3.  Effects of shading on the accumulation of Cd (a), Pb (b) and Zn (c) in Sedum plumbisincicola

    图  4  遮阴对伴矿景天叶、茎中Cd (a, b)、Pb (c, d)、Zn (e, f)化学形态含量的影响

    FE: 乙醇提取态; FW: 去离子水提取态; FNaCl: 氯化钠提取态; FHAc: 醋酸提取态; FHCl: 盐酸提取态; FR: 残渣态。*和**分别表示遮阴和不遮阴处理间差异达P<0.05和P<0.01显著水平。FE: ethanol-extractable form; FW: water extractable form; FNaCl: NaCl extractable form; FHAc: HAc extractable form; FHCl: HCl extractable form; FR: residual form. * and ** mean significant differences between shading and no shading treatments at P<0.05 and P<0.01 levels, respectively.

    Figure  4.  Effects of shading on the contents of Cd (a, b), Pb (c, d) and Zn (e, f) chemical forms in leaves, stems of Sedum plumbisincicola

    表  1  遮阴对Cd、Pb和Zn在伴矿景天叶和茎中亚细胞分布的影响

    Table  1.   Effects of shading on subcellular distrubition of Cd, Pb and Zn in leaves and stems of Sedum plumbisincicola

    重金属
    Heavy metal
    器官
    Organ
    处理
    Treatment
    含量 Content (mg∙kg−1)亚细胞组分占比 Proportion of subcellular (%)
    F1F2F3F1F2F3
    Cd叶 Leaf遮阴 Shading3.91±0.46Bb2.00±0.31Ac5.89±0.89Aa33.216.949.9
    不遮阴 No shading8.05±0.63Aa2.79±0.34Ac5.90±0.75Ab48.116.735.2
    茎 Stem遮阴 Shading2.40±0.16Ab1.60±0.28Ac3.66±0.10Aa31.320.947.8
    不遮阴 No shading2.10±0.33Aab1.50±0.09Ab2.61±0.57Ba33.824.242.0
    Pb叶 Leaf遮阴 Shading19.50±1.52Aa16.41±2.80Aa9.29±0.71Ab43.136.320.6
    不遮阴 No shading16.90±0.68Ba14.65±0.45Ab9.33±0.19Ac41.4
    35.822.8
    茎 Stem遮阴 Shading17.40±0.38Ab19.85±1.06Aa8.52±0.82Ac38.043.418.7
    不遮阴 No shading16.36±2.86Aa18.32±1.84Aa7.53±0.47Ab38.843.417.8
    Zn叶 Leaf遮阴 Shading111.41±19.03Aa16.99±2.76Bb90.25±7.73Ba51.07.741.3
    不遮阴 No shading124.92±5.02Aa39.92±5.35Ac105.40±4.43Ab46.214.839.0
    茎 Stem遮阴 Shading97.26±15.34Aa38.47±5.76Bb96.34±6.91Ba41.916.641.5
    不遮阴 No shading126.50±24.00 Aa80.44±5.32Ab109.19±2.73Aa40.025.534.5
      表中数据为平均值±标准差(n=3)。同列不同大写字母表示两个处理间差异显著(P<0.05); 同行不同小写字母表示亚细胞组分间差异显著(P<0.05)。F1: 细胞壁; F2: 细胞器; F3: 含核糖体的可溶部分。The data in the table is average mean±standard deviation (n=3). Different uppercase letters in the same column indicate significant differences between shading and no shading treatments (P<0.05), while different lowercase letters in the same line indicate significant differences among subcellular components (P<0.05). F1, F2 and F3 are cell wall, cell organelle, and soluble fraction.
    下载: 导出CSV

    表  2  遮阴对伴矿景天的Cd、Pb、Zn累积特征

    Table  2.   Effects of shading on accumulation characteristics of Cd, Pb and Zn in Sedum plumbisincicola

    处理
    Treatment
    CdPbZn
    ECTFBTFECTFBTFECTFBTF
    不遮阴 No shading5.55±0.61a4.20±0.45a8.23±1.02a0.10±0.01a0.87±0.07a1.73±0.34a1.61±0.14a4.39±0.44a8.59±0.61a
    遮阴 Shading3.16±0.34b3.40±0.39b6.98±2.41a0.08±0.01a0.65±0.12b1.28±0.07b0.61±0.03b3.47±0.34b6.94±1.22a
      表中数据为平均值±标准差(n=3), 同列不同字母表示处理间差异显著(P<0.05)。EC: 富集系数; TF: 转运系数; BTF: 生物转移因子。The data in the table are average value±standard deviation (n=3). Different letters in the same column indicate significant differences (P<0.05) between shading and no shading treatments. EC: enrichment coefficient; TF: transfer factor; BTF: biological transfer factor.
    下载: 导出CSV
  • [1] 张龙, 张云霞, 宋波, 等. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力[J]. 环境科学, 2020, 41(9): 4210−4217

    ZHANG L, ZHANG Y X, SONG B, et al. Potential of accumulation and application of dominant plants in Lanping lead-zinc mine, Yunnan Province[J]. Environmental Science, 2020, 41(9): 4210−4217
    [2] 缪福俊, 孙浩, 陈玲, 等. 兰坪铅锌尾矿区土壤与自然发生的5种植物的研究[J]. 环境工程学报, 2011, 5(1): 189−194

    MIAO F J, SUN H, CHEN L, et al. Study on lead-zinc tailings soil and five plants occurring naturally in lead-zinc mining tailings in Lanping[J]. Chinese Journal of Environmental Engineering, 2011, 5(1): 189−194
    [3] WU L H, LIU Y J, ZHOU S B, et al. Sedum plumbizincicola (Crassulaceae): a new species from Zhejiang Province, China[J]. Plant Systematics and Evolution, 2013, 299(3): 487−498 doi: 10.1007/s00606-012-0738-x
    [4] 殷志遥, 和君强, 秦华, 等. 覆膜对伴矿景天生长和吸镉动态影响研究[J]. 农业环境科学学报, 2019, 38(5): 1043−1050 doi: 10.11654/jaes.2018-1022

    YIN Z Y, HE J Q, QIN H, et al. Effect of film mulching on plant growth and cadmium uptake by Sedum plumbizincicola[J]. Journal of Agro-Environment Science, 2019, 38(5): 1043−1050 doi: 10.11654/jaes.2018-1022
    [5] 陈国皓, 祖艳群, 湛方栋, 等. 钝化剂处理对玉米与伴矿景天间作下植株生长及镉累积特征的影响[J]. 农业环境科学学报, 2019, 38(9): 2103−2110 doi: 10.11654/jaes.2018-1446

    CHEN G H, ZU Y Q, ZHAN F D, et al. Effects of passivators on the growth and cadmium accumulation of intercropped maize and Sedum plumbizincicola[J]. Journal of Agro-Environment Science, 2019, 38(9): 2103−2110 doi: 10.11654/jaes.2018-1446
    [6] HOU S, WANG X, SHAFI M, et al. Remediation efficacy of Sedum plumbizincicola as affected by intercropping of landscape plants and oxalic acid in urban cadmium contaminated soil[J]. Journal of Soils and Sediments, 2019, 19(10): 3512−3520 doi: 10.1007/s11368-019-02309-3
    [7] ZOU J, SONG F, LU Y, et al. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc[J]. Chemosphere, 2021, 276: 130223 doi: 10.1016/j.chemosphere.2021.130223
    [8] 刘玲, 吴龙华, 李娜, 等. 种植密度对镉锌污染土壤伴矿景天植物修复效率的影响[J]. 环境科学, 2009, 30(11): 3422−3426 doi: 10.3321/j.issn:0250-3301.2009.11.049

    LIU L, WU L H, LI N, et al. Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola[J]. Environmental Science, 2009, 30(11): 3422−3426 doi: 10.3321/j.issn:0250-3301.2009.11.049
    [9] 崔立强, 吴龙华, 李娜, 等. 水分特征对伴矿景天生长和重金属吸收性的影响[J]. 土壤, 2009, 41(4): 572−576 doi: 10.3321/j.issn:0253-9829.2009.04.011

    CUI L Q, WU L H, LI N, et al. Effects of soil moisture on growth and uptake of heavy metals of Sedum plumbizincicola[J]. Soils, 2009, 41(4): 572−576 doi: 10.3321/j.issn:0253-9829.2009.04.011
    [10] PANDEY V, BHATT I D, NANDI S K. Seasonal trends in morpho-physiological attributes and bioactive content of Valeriana jatamansi Jones under full sunlight and shade conditions[J]. Physiology and Molecular Biology of Plants, 2021, 27(2): 327−340 doi: 10.1007/s12298-021-00944-0
    [11] 关元静, 刘鸿雁, 孙曦, 等. 间作对伴矿景天与红背桂花生长及镉锌吸收的影响[J]. 农业环境科学学报, 2021, 40(2): 347−354 doi: 10.11654/jaes.2020-0916

    GUAN Y J, LIU H Y, SUN X, et al. Effects of intercropping on growth and Cd/Zn uptake by Sedum plumbizincicola and Excoecaria cochinchinensis[J]. Journal of Agro-Environment Science, 2021, 40(2): 347−354 doi: 10.11654/jaes.2020-0916
    [12] 李娜, 唐明灯, 崔立强, 等. 光照强度对伴矿景天生长和锌镉吸收性的影响[J]. 土壤学报, 2010, 47(2): 370−373 doi: 10.11766/trxb2010470224

    LI N, TANG M D, CUI L Q, et al. Effects of light intensity on plant growth and zinc and cadmium uptake by Sedum plumbizincicola[J]. Acta Pedologica Sinica, 2010, 47(2): 370−373 doi: 10.11766/trxb2010470224
    [13] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd edtion. Beijing: Chinese Agriculture Press, 2000
    [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000

    LI H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000
    [15] WEIGEL H J, JÄGER H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980, 65(3): 480−482 doi: 10.1104/pp.65.3.480
    [16] PERRONNET K, SCHWARTZ C, MOREL J L. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil[J]. Plant and Soil, 2003, 249(1): 19−25 doi: 10.1023/A:1022560711597
    [17] 李思亮, 李娜, 徐礼生, 等. 不同生境下锌镉在伴矿景天不同叶龄叶中的富集与分布特征[J]. 土壤, 2010, 42(3): 446−452

    LI S L, LI N, XU L S, et al. Characters of Zn and Cd accumulation and distribution in leaves of Sedum plumbizincicola at different ages[J]. Soils, 2010, 42(3): 446−452
    [18] CAO D, ZHANG H Z, WANG Y D, et al. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2): 171−176 doi: 10.1007/s00128-014-1284-8
    [19] PENG J S, GUAN Y H, LIN X J, et al. Comparative understanding of metal hyperaccumulation in plants: a mini-review[J]. Environmental Geochemistry and Health, 2021, 43(4): 1599−1607 doi: 10.1007/s10653-020-00533-2
    [20] HOU J L, LI W D, ZHENG Q Y, et al. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch[J]. Biochemical Systematics and Ecology, 2010, 38(2): 160−168 doi: 10.1016/j.bse.2009.12.026
    [21] 吴能表, 李琳琳, 杨卫星, 等. 光强对长春花叶片碳氮及次生代谢产物积累的影响[J]. 草业科学, 2014, 31(8): 1508−1514 doi: 10.11829/j.issn.1001-0629.2013-0584

    WU N B, LI L L, YANG W X, et al. Effects of light intensity on carbon-nitrogen metabolism and secondary metabolite of Catharanthus roseus leaves[J]. Pratacultural Science, 2014, 31(8): 1508−1514 doi: 10.11829/j.issn.1001-0629.2013-0584
    [22] YANG L, WEN K S, RUAN X, et al. Response of plant secondary metabolites to environmental factors[J]. Molecules, 2018, 23(4): 762 doi: 10.3390/molecules23040762
    [23] YASODA P G C, PRADHEEBAN L, NISHANTHAN K, et al. Effect of different shade levels on growth and yield performances of cauliflower[J]. International Journal of Environment, Agriculture and Biotechnology, 2018, 3(3): 948−955 doi: 10.22161/ijeab/3.3.30
    [24] 陈文, 刘守赞, 耿东杰, 等. 遮阴对浙北地区七叶一枝花生理生化指标及皂苷含量的影响[J]. 中国生态农业学报(中英文), 2022, 30(1): 72−81

    CHEN W, LIU S Z, GENG D J, et al. Effects of different shading treatments on saponin content and biochemical indexes of Paris polyphylla var. chinensis (Franch.) Hara in Northern Zhejiang[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 72−81
    [25] 张辉, 王荷, 张蓓蓓, 等. 光强对黑麦草萌发生长、叶片叶绿素含量及光系统Ⅱ的影响[J]. 干旱地区农业研究, 2018, 36(4): 207−213 doi: 10.7606/j.issn.1000-7601.2018.04.30

    ZHANG H, WANG H, ZHANG B B, et al. Effects of light intensity on germination, growth, chlorophyll content and photosystem Ⅱ of leaves in ryegrass (Lolium perenne L.)[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 207−213 doi: 10.7606/j.issn.1000-7601.2018.04.30
    [26] HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels[J]. Photosynthetica, 2011, 49(4): 611−618 doi: 10.1007/s11099-011-0076-1
    [27] ZHAO H X, WANG L E, ZHAO F J, et al. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola[J]. Plant, Cell & Environment, 2019, 42(4): 1112−1124
    [28] 袁淑娜, 涂寒奇, 潘剑, 等. 遮光对辣木幼苗生长及叶片矿质元素含量的影响[J]. 福建农林大学学报: 自然科学版, 2021, 50(1): 79−84

    YUAN S N, TU H Q, PAN J, et al. Effects of shading on the plant growth and leaf mineral elements contents of Moringaoteifera Lam[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2021, 50(1): 79−84
    [29] MUHAMMAD A A, JIANG H K, SHUI Z W, et al. Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings[J]. Journal of Integrative Agriculture, 2021, 20(9): 2382−2394 doi: 10.1016/S2095-3119(20)63383-4
    [30] 熊娟, 王依涵, 陈畅, 等. 伴矿景天修复农田土壤镉污染的研究进展[J]. 农业环境科学学报, 2021: 1–20. https://wenku.baidu.com/view/06870e55bc23482fb4daa58da0116c175f0e1e3e.html

    XIONG J, WANG Y H, CHEN C, et al. Research progress on the remediation of Sedum plumbizincicola in cadmium-contaminated farmland soils[J]. Journal of Agro-Environment Science, 2021: 1–20. https://wenku.baidu.com/view/06870e55bc23482fb4daa58da0116c175f0e1e3e.html
    [31] ZHOU J, ZHOU T, LI Z, et al. Differences in phytoextraction by the cadmium and zinc hyperaccumulator Sedum plumbizincicola in greenhouse, polytunnel and field conditions[J]. International Journal of Phytoremediation, 2018, 20(14): 1400−1407 doi: 10.1080/15226514.2018.1488808
    [32] LIU C F, XIAO R B, DAI W J, et al. Cadmium accumulation and physiological response of Amaranthus tricolor L. under soil and atmospheric stresses[J]. Environmental Science and Pollution Research, 2021, 28(11): 14041−14053 doi: 10.1007/s11356-020-11569-3
    [33] FU X P, DOU C M, CHEN Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011, 186(1): 103−107 doi: 10.1016/j.jhazmat.2010.10.122
    [34] 刘清泉, 陈亚华, 沈振国, 等. 细胞壁在植物重金属耐性中的作用[J]. 植物生理学报, 2014, 50(5): 605−611

    LIU Q Q, CHEN Y H, SHEN Z G, et al. Roles of cell wall in plant heavy metal tolerance[J]. Plant Physiology Journal, 2014, 50(5): 605−611
    [35] LOIX C, HUYBRECHTS M, VANGRONSVELD J, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants[J]. Frontiers in Plant Science, 2017, 8: 1867 doi: 10.3389/fpls.2017.01867
    [36] WANG J C, CHEN X F, CHU S H, et al. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum[J]. Environmental Science and Pollution Research, 2021, 28(11): 13955−13969 doi: 10.1007/s11356-020-11505-5
    [37] YANG L P, ZHU J, WANG P, et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata[J]. Ecotoxicology and Environmental Safety, 2018, 160: 10−18 doi: 10.1016/j.ecoenv.2018.05.026
    [38] XIAO Y T, DU Z J, BUSSO C A, et al. Differences in root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars[J]. Environmental Science and Pollution Research, 2020, 27(2): 1417−1427 doi: 10.1007/s11356-019-06708-4
    [39] GUAN M Y, ZHANG H H, PAN W, et al. Sulfide alleviates cadmium toxicity in Arabidopsis plants by altering the chemical form and the subcellular distribution of cadmium[J]. Science of the Total Environment, 2018, 627: 663−670 doi: 10.1016/j.scitotenv.2018.01.245
    [40] NI T H, WEI Y Z. Subcellular distribution of cadmium in mining ecotype Sedum alfredii[J]. Acta Botanica Sinica, 2003, 45(8): 925−928
    [41] 闫雷, 朱园辰, 陈辰, 等. 镉在黄瓜幼苗中的化学形态及亚细胞分布[J]. 农业环境科学学报, 2019, 38(8): 1864−1871 doi: 10.11654/jaes.2019-0395

    YAN L, ZHU Y C, CHEN C, et al. Subcellular distribution and chemical forms of cadmium in cucumber seedlings[J]. Journal of Agro-Environment Science, 2019, 38(8): 1864−1871 doi: 10.11654/jaes.2019-0395
    [42] XU G P, DENG C B, WANG J, et al. Lead bioaccumulation, subcellular distribution and chemical form in sugarcane and its potential for phytoremediation of lead-contaminated soil[J]. Human and Ecological Risk Assessment:an International Journal, 2020, 26(5): 1175−1187 doi: 10.1080/10807039.2018.1543016
    [43] 王月月, 董效文, 姜礅, 等. 镉、锌复合胁迫对银中杨化学防御的影响[J]. 北京林业大学学报, 2019, 41(6): 96−101

    WANG Y Y, DONG X W, JIANG D, et al. Effects of Cd and Zn combined stress on chemical defense of Populus alba Berolinensis[J]. Journal of Beijing Forestry University, 2019, 41(6): 96−101
    [44] REN B Z, CUI H Y, CAMBERATO J J, et al. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize[J]. The Science of Nature, 2016, 103(7/8): 1−12
    [45] 郁慧, 刘中亮, 胡宏亮, 等. 干旱胁迫对5种植物叶绿体和线粒体超微结构的影响[J]. 植物研究, 2011, 31(2): 152−158 doi: 10.7525/j.issn.1673-5102.2011.02.005

    YU H, LIU Z L, HU H L, et al. Effect of drought stress on the ultramicrostructures of chloroplasts and mitochondria of five plants[J]. Bulletin of Botanical Research, 2011, 31(2): 152−158 doi: 10.7525/j.issn.1673-5102.2011.02.005
    [46] 陈斌, 李洪瑶, 刘筱玮, 等. 不同光照强度对新娘草叶片形态建成及超微结构的影响[J]. 草业学报, 2019, 28(7): 175−185 doi: 10.11686/cyxb2019174

    CHEN B, LI H Y, LIU X W, et al. Effects of different light intensities on morphogenesis and ultrastructure of Gibasis pellucida leaf[J]. Acta Prataculturae Sinica, 2019, 28(7): 175−185 doi: 10.11686/cyxb2019174
    [47] ZHANG W, LIN K F, ZHOU J, et al. Cadmium accumulation, subcellular distribution and chemical forms in rice seedling in the presence of sulfur[J]. Environmental Toxicology and Pharmacology, 2014, 37(1): 348−353 doi: 10.1016/j.etap.2013.12.006
    [48] 杨登, 张昊, 邹慧玲, 等. 镉在水生植物中的富集与亚细胞分布及其化学形态特征[J]. 西北植物学报, 2018, 38(4): 682−689

    YANG D, ZHANG H, ZOU H L, et al. Accumulation, subcellular distribution and chemical forms of cadmium in aquatic plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 682−689
    [49] ZHAO Y F, WU J F, SHANG D R, et al. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis[J]. Food Chemistry, 2015, 168: 48−54 doi: 10.1016/j.foodchem.2014.07.054
    [50] ZHU J J, ZHAO P, NIE Z J, et al. Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum)[J]. BMC Plant Biology, 2020, 20(1): 550 doi: 10.1186/s12870-020-02763-z
    [51] 周守标, 徐礼生, 吴龙华, 等. 镉和锌在皖景天细胞内的分布及化学形态[J]. 应用生态学报, 2008, 19(11): 2515−2520

    ZHOU S B, XU L S, WU L H, et al. Subcellular distribution and chemical forms of Cd and Zn in Sedum jinianum[J]. Chinese Journal of Applied Ecology, 2008, 19(11): 2515−2520
    [52] BRAUDE G L, NASH A M, WOLF W J, et al. Cadmium and lead content of soybean products[J]. Journal of Food Science, 1980, 45(5): 1187−1189 doi: 10.1111/j.1365-2621.1980.tb06517.x
    [53] RAUSER W E. Phytochelatins and related peptides (structure, biosynthesis, and function)[J]. Plant Physiology, 1995, 109(4): 1141−1149 doi: 10.1104/pp.109.4.1141
    [54] SCHMÖGER M E V, OVEN M, GRILL E. Detoxification of arsenic by phytochelatins in plants[J]. Plant Physiology, 2000, 122(3): 793−802 doi: 10.1104/pp.122.3.793
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  91
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-29
  • 录用日期:  2021-11-09
  • 网络出版日期:  2021-12-11
  • 刊出日期:  2022-03-07

目录

    /

    返回文章
    返回