留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东省农业碳排放特征、影响因素及达峰分析

刘杨 刘鸿斌

刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报 (中英文), 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582
引用本文: 刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报 (中英文), 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582
LIU Y, LIU H B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582
Citation: LIU Y, LIU H B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569 doi: 10.12357/cjea.20210582

山东省农业碳排放特征、影响因素及达峰分析

doi: 10.12357/cjea.20210582
详细信息
    通讯作者:

    刘杨, 主要从事环境监测与综合分析工作。E-mail: liuyang05178@163.com

  • 中图分类号: F323; X196

Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province

More Information
  • 摘要: 利用IPCC经典碳排放计算理论, 基于农资投入、农田利用及畜禽养殖3类主要碳源, 测算了山东省2000—2020年农业碳排放量, 采用LMDI模型开展影响因素分析, 并运用灰色预测模型GM(1, 1)预测2021—2045年碳排放量。结果表明: 2020年山东省农业碳排放量为1.58×107 t, 农业碳排放强度为0.205 t∙(104 ¥)−1。2000—2020年山东省农业碳排放总量呈先上升后波动下降趋势, 农业碳排放强度逐年降低。农业碳排放源类贡献率由高到低依次为农资投入、畜禽养殖和农田土壤利用。2000—2020年16地市农业碳排放量及排放强度均呈现一定的区域差异, 且有扩大趋势, 菏泽农业碳排放量和平均碳排放强度均居首位。农业生产效率、农业产业结构、地区产业结构、劳动力因素对碳减排起到一定作用, 地区经济发展水平和城镇化率因素为农业碳排放量增加的主要因素。预测结果表明, 山东省农业碳排放量在2030年前已达到峰值, 济南、青岛等9市农业碳排放量在2030年前已达峰, 枣庄、东营等7市在2030年前未达峰, 并针对山东省农业碳排放特征及影响因素提出减排建议。
  • 图  1  2000—2020年山东省各地市累计碳排放量及平均碳排放强度

    Figure  1.  Total agricultural carbon emissions and average carbon emission intensity in cities of Shandong Province from 2000 to 2020

    表  1  种植业碳排放源、碳排放系数及参考来源

    Table  1.   Carbon sources, carbon emission coefficients and reference sources for planting industry

    农业物资投入Agricultural material input农田土壤利用 Farmland utilization
    源类名称
    Carbon source
    碳排放系数
    Carbon emission coefficient
    参考来源
    Reference source
    源类名称
    Carbon source
    碳排放系数
    Carbon emission coefficient
    参考来源
    Reference source
    化肥 Chemical fertilizer 0.8956 kg(C)∙kg−1 ORNL 水稻 Rice 210 kg(CH4)∙hm−2 [18]
    农药 Pesticides 4.9341 kg(C)∙kg−1 ORNL 0.24 kg(N2O)∙hm−2
    农膜 Plastic film 5.18 kg(C)∙kg−1 IREEA 冬小麦 Winter wheat 2.05 kg(N2O)∙hm−2
    农用柴油 Agricultural diesel oil 0.5927 kg(C)∙kg−1 IPCC 大豆 Soybean 0.77 kg(N2O)∙hm−2
    农业灌溉 Agricultural irrigation 266.48 kg(C)∙hm−2 [17] 玉米 Corn 2.532 kg(N2O)∙hm−2
    棉花 Cotton 0.4804 kg(N2O)∙hm−2
    蔬菜 Vegetables 4.21 kg(N2O)∙hm−2
      ORNL: 美国橡树岭国家实验室; IREEA: 南京农业大学农业资源与生态环境研究所; IPCC: 政府间气候变化专门委员会。ORNL: Oak Ridge National Laboratory; IREEA: Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University; IPCC: Intergovernmental Panel on Climate Change.
    下载: 导出CSV

    表  2  畜禽养殖碳排放源、CH4和N2O排放系数[19-20]

    Table  2.   Carbon sources, CH4 and N2O emission coefficients for livestock and poultry farming[19-20]

    源类名称
    Carbon source
    肠道发酵
    Intestinal fermentation
    [kg(CH4)∙(head∙a)−1]
    粪便管理 Fecal discharge
    kg(CH4)∙(head∙a)−1kg(N2O)∙(head∙a)−1
    牛 Cattle 47.00 1.00 1.39
    羊 Sheep 5.00 0.16 0.86
    猪 Pig 1.00 4.00 0.53
    家禽 Poultry 0.02 0.02
    下载: 导出CSV

    表  3  2000—2020年山东省农业碳排放量情况

    Table  3.   Agricultural carbon emissions in Shandong Province from 2000 to 2020

    年度
    Year
    农资投入
    Agricultural material input
    农田土壤利用
    Farmland utilization
    畜禽养殖
    Livestock and poultry breeding
    碳排放总量
    Total amount
    碳排放强度
    Carbon emission intensity
    排放量
    Carbon emission
    (×104 t)
    占比
    Proportion
    (%)
    排放量
    Carbon emission
    (×104 t)
    占比
    Proportion
    (%)
    排放量
    Carbon emission
    (×104 t)
    占比
    Proportion
    (%)
    总量
    Amount
    (×104 t)
    同比变化
    Year-on-year
    growth rate (%)
    排放强度
    Emission intensity
    [t∙(104 ¥)–1]
    同比变化
    Year-on-year
    growth rate (%)
    2000 786.5 50.5 220.8 14.2 551.6 35.4 1558.9 0.821
    2001 813.5 51.0 204.5 12.8 576.8 36.2 1594.7 2.3 0.776 −5.5
    2002 848.8 50.6 213.9 12.8 613.6 36.6 1676.3 5.1 0.791 2.0
    2003 859.0 50.4 203.5 11.9 642.8 37.7 1705.4 1.7 0.702 −11.3
    2004 875.7 50.2 193.4 11.1 676.7 38.8 1745.7 2.4 0.599 −14.6
    2005 906.1 49.9 196.2 10.8 712.0 39.2 1814.3 3.9 0.574 −4.1
    2006 943.6 50.4 195.5 10.4 732.3 39.1 1871.4 3.1 0.566 −1.5
    2007 950.4 51.3 199.2 10.8 702.7 37.9 1852.3 −1.0 0.474 −16.2
    2008 916.5 50.0 200.4 10.9 715.1 39.0 1832.1 −1.1 0.400 −15.6
    2009 906.2 49.7 202.8 11.1 715.9 39.2 1824.9 −0.4 0.375 −6.3
    2010 917.0 50.2 203.3 11.1 707.7 38.7 1828.0 0.2 0.339 −9.4
    2011 913.1 50.6 204.8 11.3 686.5 38.0 1804.4 −1.3 0.304 −10.6
    2012 910.5 50.4 205.9 11.4 691.3 38.2 1807.7 0.2 0.294 −3.3
    2013 903.9 50.0 208.3 11.5 695.2 38.5 1807.4 0.0 0.268 −8.7
    2014 889.6 49.4 211.4 11.7 699.2 38.8 1800.2 −0.4 0.256 −4.5
    2015 880.7 49.2 213.0 11.9 698.2 39.0 1791.9 −0.5 0.247 −3.6
    2016 870.3 48.9 211.8 11.9 699.4 39.3 1781.5 −0.6 0.254 3.1
    2017 844.0 47.7 217.6 12.3 708.2 40.0 1769.8 −0.7 0.256 0.8
    2018 810.9 46.6 217.4 12.5 711.2 40.9 1739.5 −1.7 0.245 −4.6
    2019 773.8 47.7 214.5 13.2 634.7 39.1 1623.0 −6.7 0.222 −9.4
    2020 751.1 47.4 214.2 13.5 618.1 39.0 1583.4 −2.4 0.205 −7.7
    下载: 导出CSV

    表  4  2000—2020年山东省农业碳排放源排放量占比情况

    Table  4.   Ratios of different agricultural carbon sources emissions to total amount in Shandong Province from 2000 to 2020

    年度
    Year
    农资投入 Agricultural material input农田土壤利用 Farmland utilization畜禽养殖
    Livestock and poultry breeding
    化肥
    Chemical
    fertilizer
    农药
    Pesticides
    农膜
    Plastic
    sheeting
    农用柴油
    Agricultural
    diesel oil
    农业灌溉
    Agricultural
    irrigation
    水稻
    Rice
    冬小麦
    Winter
    wheat
    大豆
    Soybean
    玉米
    Corn
    棉花
    Cotton
    蔬菜
    Vegetables

    Pig

    Cattle

    Sheep
    家禽
    Poultry
    2000 24.3 4.4 7.5 6.0 8.2 1.6 4.2 0.2 3.5 0.1 4.5 8.7 9.1 16.0 1.6
    2001 24.1 4.5 8.4 6.0 8.1 1.6 3.7 0.2 3.2 0.2 4.0 8.9 9.4 16.2 1.7
    2002 23.2 4.8 9.0 6.0 7.6 1.3 3.4 0.1 3.1 0.2 4.7 9.0 9.7 16.2 1.7
    2003 22.7 4.9 9.3 6.0 7.4 1.0 3.0 0.1 2.9 0.2 4.7 9.3 10.0 16.6 1.8
    2004 23.1 4.3 9.7 5.7 7.3 1.0 3.0 0.1 2.9 0.2 3.9 9.8 10.2 16.9 1.9
    2005 23.1 4.2 9.5 6.1 7.0 1.0 3.0 0.1 3.1 0.2 3.5 9.9 10.2 17.0 2.1
    2006 23.4 4.5 9.5 6.1 6.9 1.0 3.0 0.1 3.0 0.2 3.2 9.9 10.1 16.9 2.1
    2007 24.2 4.4 9.5 6.2 7.0 1.0 3.2 0.1 3.2 0.2 3.1 8.4 10.4 17.1 2.0
    2008 23.3 4.7 9.1 5.9 7.1 1.0 3.2 0.1 3.2 0.2 3.2 9.2 10.6 17.0 2.3
    2009 23.2 4.6 8.9 5.8 7.2 1.1 3.2 0.1 3.3 0.2 3.3 9.8 10.4 16.6 2.3
    2010 23.3 4.5 9.2 6.1 7.2 1.0 3.2 0.1 3.3 0.2 3.3 10.2 10.1 15.9 2.5
    2011 23.5 4.5 9.1 6.1 7.4 1.0 3.3 0.1 3.4 0.2 3.4 10.3 9.8 15.3 2.7
    2012 23.6 4.4 9.1 5.9 7.4 1.0 3.3 0.1 3.4 0.1 3.4 11.2 9.4 14.6 2.9
    2013 23.4 4.3 9.1 5.7 7.4 1.0 3.4 0.1 3.5 0.1 3.5 11.8 9.4 14.4 2.9
    2014 23.3 4.3 8.8 5.5 7.5 1.0 3.5 0.1 3.6 0.1 3.5 12.3 9.2 14.6 2.7
    2015 23.2 4.2 8.7 5.5 7.6 0.9 3.5 0.0 3.6 0.1 3.6 12.2 9.1 14.8 2.8
    2016 22.9 4.1 8.7 5.4 7.7 0.9 3.6 0.0 3.7 0.1 3.6 12.1 9.0 14.9 3.2
    2017 22.3 3.9 8.4 5.3 7.8 0.9 3.8 0.0 4.7 0.0 2.8 12.4 9.0 15.3 3.3
    2018 21.6 3.7 8.2 5.0 8.0 0.9 3.9 0.1 4.7 0.0 2.9 12.4 9.2 16.0 3.3
    2019 21.8 3.7 8.5 5.0 8.6 1.0 4.1 0.1 4.9 0.0 3.1 8.3 9.6 17.4 3.8
    2020 21.5 3.6 8.7 4.7 8.9 1.0 4.1 0.1 5.0 0.0 3.2 8.9 8.6 17.2 4.2
    平均
    Average
    23.1 4.3 8.9 5.7 7.6 1.1 3.5 0.1 3.6 0.1 3.5 10.2 9.7 16.1 2.6
    下载: 导出CSV

    表  5  2000—2020年山东省各地市逐年农业碳排放量及其变异系数

    Table  5.   Agricultural carbon emissions and coefficients of variation in cities of Shandong Province from 2000 to 2020

    年度
    Year
    农业碳排放量 Agricultural carbon emission (×104 t)CV
    (%)
    济南
    Jinan
    青岛
    Qingdao
    淄博
    Zibo
    枣庄
    Zaozhuang
    东营
    Dongying
    烟台
    Yantai
    潍坊
    Weifang
    济宁
    Jining
    泰安
    Tai’an
    威海
    Weihai
    日照
    Rizhao
    临沂
    Linyi
    德州
    Dezhou
    聊城
    Liaocheng
    滨州
    Binzhou
    菏泽
    Heze
    2000107.3115.737.548.240.884.5184.2158.777.041.853.7142.5122.5131.174.6155.848.5
    2001108.4117.041.849.741.485.1187.4164.081.441.653.9148.9124.3134.880.7165.748.5
    2002113.7120.643.053.145.087.4193.0181.087.143.254.1155.2143.1152.783.6186.149.8
    2003118.5125.244.556.249.992.9202.6182.492.844.056.7156.8142.7160.187.2199.449.3
    2004124.8126.345.659.855.193.8211.4197.4100.946.260.8162.9158.1158.489.3212.249.5
    2005131.0133.647.363.359.7101.0225.3220.7102.953.460.5167.3171.7164.094.1232.550.6
    2006134.2134.343.368.265.2109.8226.5214.4101.254.162.6173.6172.7159.997.0247.950.3
    2007123.0119.741.765.563.5111.3208.2179.696.753.557.9166.2160.8132.690.3243.849.5
    2008116.6104.841.764.662.0114.4193.6171.593.253.652.4172.0167.9132.893.6242.849.9
    2009118.8101.144.667.764.4111.6204.3186.194.452.553.7176.8171.1139.194.1249.050.9
    2010122.8101.045.269.565.8111.3209.9192.596.450.660.4183.3172.8145.097.7254.851.0
    2011125.9101.245.669.263.6111.0214.6191.399.751.660.8185.6177.3143.198.6257.951.3
    2012127.3100.245.970.864.6107.6217.6187.9102.752.860.1185.8181.8141.998.2261.151.6
    2013128.099.545.972.566.1106.3213.7187.2105.051.457.5185.2185.4142.2101.1268.151.9
    2014127.498.444.073.761.8105.9209.6174.6107.549.459.0179.3184.9144.0101.7270.652.0
    2015124.394.840.974.152.5104.2208.9163.6109.547.758.6177.5173.0143.198.8266.852.8
    2016120.093.039.872.948.6103.9209.0155.0107.147.158.1175.4157.3139.994.0253.152.3
    2017107.391.337.665.353.7103.4197.0150.291.546.452.7177.4162.4132.794.9232.151.7
    201896.390.937.260.955.4103.1189.1148.983.745.348.8171.7165.8121.091.4220.351.9
    201987.087.435.958.248.897.8178.2138.979.343.545.6156.0154.4114.088.9217.452.6
    202076.283.434.650.850.791.0168.1124.768.140.438.3155.7135.2110.681.1184.151.7
      CV: 变异系数。CV: coefficients of variation.
    下载: 导出CSV

    表  6  2000—2020年山东省各地市逐年农业碳排放强度及其变异系数

    Table  6.   Agricultural carbon emission intensities and coefficients of variation in cities of Shandong Province from 2000 to 2020

    年度
    Year
    农业碳排放强度 Agricultural carbon emission intensity [t∙(104 ¥)−1]CV
    (%)
    济南
    Jinan
    青岛
    Qingdao
    淄博
    Zibo
    枣庄
    Zaozhuang
    东营
    Dongying
    烟台
    Yantai
    潍坊
    Weifang
    济宁
    Jining
    泰安
    Tai’an
    威海
    Weihai
    日照
    Rizhao
    临沂
    Linyi
    德州
    Dezhou
    聊城
    Liaocheng
    滨州
    Binzhou
    菏泽
    Heze
    20000.6330.6390.5420.7421.0250.5740.7140.8610.6860.8120.9480.7810.7860.8600.7860.95417.9
    20010.6040.6180.5620.7080.9570.5440.6960.8650.6850.7520.9610.7910.7640.8510.8280.96418.3
    20020.6140.6320.5590.7021.0210.5600.7220.8910.7110.7560.9050.7910.8510.9250.8711.03319.4
    20030.6070.6510.5540.7100.9920.5730.6950.8450.6930.7650.9730.7800.7800.9310.7721.05019.5
    20040.5660.5960.5010.6290.9490.4820.6370.7380.6460.7170.8670.6760.7580.7930.7010.94920.0
    20050.5300.5720.4730.5880.9140.4620.6180.7110.5850.7430.7980.6140.7600.7430.6630.89420.4
    20060.5070.5510.4090.5790.8790.4440.5920.6650.5440.6730.7710.5930.7170.6810.6460.88721.5
    20070.4310.4540.3330.4880.7510.4000.4780.4880.4550.6030.6160.4890.5900.4980.5220.79423.1
    20080.3470.3500.3100.3870.6590.3540.3800.3810.3670.4700.4990.4420.4870.4000.4620.73626.3
    20090.3310.3350.3150.3880.6350.3440.3790.3990.3560.4500.4790.4310.4690.3960.4240.72225.8
    20100.2890.2800.2660.3420.5570.2850.3540.3500.3120.3830.4570.4180.4290.3720.3850.69228.9
    20110.2670.2580.2440.3150.4720.2570.3310.3120.2910.3420.4090.3990.4110.3340.3390.67530.3
    20120.2540.2460.2330.3080.4650.2420.3090.2920.2760.3470.3950.3840.3960.3140.3210.64830.9
    20130.2280.2220.2110.2810.4190.2130.2760.2610.2530.2900.3460.3460.3580.2840.3040.63033.8
    20140.2200.2110.1940.2750.3750.2010.2580.2300.2500.2590.3310.3210.3400.2660.2940.61535.0
    20150.2080.1900.1750.2650.3140.1920.2470.2030.2440.2370.3100.3040.3010.2520.2760.58635.7
    20160.1950.1830.1610.2460.2840.1800.2360.1820.2300.2240.2960.2860.2620.2310.2460.53434.8
    20170.1960.1960.1650.2690.3310.1950.2490.2040.1990.2920.2920.3180.2920.2590.2990.51031.2
    20180.1720.1850.1580.2400.3260.1860.2340.1970.1760.2850.2560.2920.3010.2300.2880.46531.2
    20190.1530.1660.1500.2280.2820.1570.2200.1790.1670.2740.2340.2400.2940.2130.2910.42531.7
    20200.1280.1510.1370.1900.2720.1380.1990.1520.1370.2470.1920.2210.2430.1960.2480.33429.5
      CV: 变异系数。CV: coefficients of variation.
    下载: 导出CSV

    表  7  2001—2020年山东省碳排放的影响因素

    Table  7.   Driving factors decomposition of agricultural carbon emission in Shandong Province from 2001 to 2020

    年份
    Year
    贡献值 Contribution value (×104 t)
    ΔCIΔAIΔISΔEDLΔURBΔPΔC
    2001 −89.0 18.7 −39.1 136.6 22.8 −14.2 35.8
    2002 −59.6 21.4 −162.3 301.0 49.4 −32.6 117.4
    2003 −255.6 18.6 −65.8 425.3 97.9 −73.9 146.5
    2004 −519.7 31.4 −108.5 749.4 125.7 −91.5 186.8
    2005 −600.8 32.8 −280.4 1059.9 177.2 −133.3 255.4
    2006 −636.6 −26.5 −442.6 1360.6 196.1 −138.6 312.5
    2007 −933.3 −12.3 −478.6 1648.7 248.3 −179.4 293.3
    2008 −1215.3 −16.4 −502.0 1929.9 269.3 −192.5 273.1
    2009 −1323.4 −20.5 −538.1 2061.1 266.9 −180.0 266.0
    2010 −1491.7 −18.0 −604.7 2281.1 342.1 −239.6 269.1
    2011 −1669.1 −30.9 −659.2 2493.2 364.8 −253.4 245.5
    2012 −1727.3 −83.8 −706.8 2657.1 389.3 −279.7 248.8
    2013 −1880.8 −86.2 −714.4 2814.6 418.3 −303.1 248.4
    2014 −1953.9 −94.3 −751.7 2902.7 446.9 −308.5 241.3
    2015 −2010.7 −94.4 −838.2 3025.5 566.9 −416.1 233.0
    2016 −1954.4 −116.3 −975.2 3101.5 603.0 −435.8 222.6
    2017 −1934.1 −152.4 −1076.2 3192.4 639.3 −458.1 210.9
    2018 −1994.1 −148.3 −1113.5 3242.7 658.4 −464.5 180.6
    2019 −2083.2 −141.4 −1119.6 3212.9 603.6 −408.2 64.1
    2020 −2182.6 −135.5 −1080.3 3226.2 610.1 −413.4 24.5
    合计 Total −26 515.2 −1054.3 −12 257.0 41 822.4 7096.4 −5016.5 4075.8
      ΔCI、ΔAI、ΔIS、ΔEDL、ΔURB、ΔP分别表示农业生产效率、农业产业结构、地区产业结构、地区经济发展水平、城镇化水平和农村人口对农业碳排放在基期到t时间的变化量的贡献值。ΔC表示基期到t时间农业碳排放变化量。ΔCI, ΔAI, ΔIS, ΔEDL, ΔURB and ΔP respectively stand for the contribution values of agricultural production efficiency, agricultural structure, regional industry structure, regional economic development level, urbanization rate and rural population to carbon emission variation. ΔC stands for carbon emission variation during study period.
    下载: 导出CSV

    表  8  2000—2020年山东省各地市碳排放的影响因素

    Table  8.   Driving factors decomposition of agricultural carbon emission in each city of Shandong Province from 2000 to 2020

    城市 City贡献值 Contribution value (×104 t)
    ΔCIΔAIΔISΔEDLΔURBΔPΔC
    济南 Jinan −1604.6 −63.5 −1097.0 2775.0 984.9 −810.2 184.6
    青岛 Qingdao −1522.9 −64.4 −1827.5 3041.0 917.9 −726.0 −181.9
    淄博 Zibo −586.3 −47.0 −407.7 1067.2 207.5 −207.5 26.1
    枣庄 Zaohuang −805.4 −40.1 −536.9 1591.9 250.4 −196.9 263.0
    东营 Dongying −636.1 −140.5 −369.1 1422.7 230.2 −251.7 255.5
    烟台 Yantai −1308.2 −37.0 −1027.5 2698.2 598.4 −583.0 340.8
    潍坊 Weifang −2469.2 −173.6 −2050.8 4981.3 1457.3 −1284.5 460.6
    济宁 Jining −2744.8 −131.4 −1129.7 4185.5 842.5 −633.2 389.0
    泰安 Tai’an −1238.8 −59.5 −779.6 2375.2 392.6 −359.0 330.9
    威海 Weihai −622.5 −4.9 −383.3 1120.1 296.5 −340.1 65.6
    日照 Rizhao −783.7 −4.9 −745.3 1528.2 322.1 −330.7 −14.3
    临沂 Linyi −1877.0 −60.4 −1669.9 3931.4 923.8 −650.5 597.4
    德州 Dezhou −1558.3 −230.3 −1394.4 3859.9 729.5 −578.4 828.0
    聊城 Liaocheng −1991.0 −60.0 −1791.3 3879.9 747.2 −571.3 213.7
    滨州 Binzhou −1061.0 −143.9 −991.3 2500.6 490.9 −464.3 331.0
    菏泽 Heze −1241.8 −0.9 −3366.3 5770.0 1011.6 −574.2 1598.4
      ΔCI、ΔAI、ΔIS、ΔEDL、ΔURB、ΔP分别表示农业生产效率、农业产业结构、地区产业结构、地区经济发展水平、城镇化水平和农村人口对农业碳排放在基期到t时间的变化量的贡献值。ΔC表示基期到t时间农业碳排放变化量。ΔCI, ΔAI, ΔIS, ΔEDL, ΔURB and ΔP respectively stand for the contribution values of agricultural production efficiency, agricultural structure, regional industry structure, regional economic development level, urbanization rate and rural population to carbon emission variation. ΔC stands for carbon emission variation during study period.
    下载: 导出CSV

    表  9  2025年、2030年和2045年山东省及16地市农业碳排放量预测值

    Table  9.   Forecasted agricultural carbon emissions in Shandong Province and 16 cities in 2025, 2030 and 2045 ×104 t 

    区域 Region202520302045区域 Region202520302045区域 Region202520302045
    山东省 Shandong174217361715烟台 Yantai107109114临沂 Linyi180183193
    济南 Jinan1009582潍坊 Weifang191187176德州 Dezhou173176187
    青岛 Qingdao766849济宁 Jining141131105聊城 Liaocheng11811193
    淄博 Zibo373531泰安 Tai’an919087滨州 Binzhou9798103
    枣庄 Zaozhuang707278威海 Weihai474645菏泽 Heze256264291
    东营 Dongying585859日照 Rizhao494741
    下载: 导出CSV
  • [1] IPCC. Climate change 2021: the physical science basis[EB/OL]. IPCC, (2021-08-09) [2022-01-12]. https://www.ipcc.ch/report/ar6/wg1/
    [2] 郎慧, 肖诗顺, 王艳. 四川省农业碳排放与经济增长的脱钩效应分析[J]. 山东农业大学学报: 社会科学版, 2019(2): 70−78

    LANG H, XIAO S S, WANG Y. Decoupling analysis of agricultural carbon emissions and economic development in Sichuan Province[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2019(2): 70−78
    [3] 郝小雨. 黑龙江省30年来农田生态系统碳源/汇强度及碳足迹变化[J]. 黑龙江农业科学, 2021(8): 97−104

    HAO X Y. Changes of carbon source/sink intensity and carbon footprint of farmland ecosystem in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2021(8): 97−104
    [4] 程琳琳. 中国农业碳生产率时空分异: 机理与实证[D]. 武汉: 华中农业大学, 2018

    CHENG L L. Spatial and temporal differentiation of China’s agricultural carbon productivity mechanism and demonstration[D]. Wuhan: Huazhong Agricultural University, 2018
    [5] 孙英. 山东省农业碳排放时空特征及其影响因素分析[D]. 兰州: 西北师范大学, 2018

    SUN Y. Spatial and temporal characteristics of agricultural carbon emission and its influencing factors in Shandong Province[D]. Lanzhou: Lanzhou University, 2018
    [6] 吴昊玥, 黄瀚蛟, 何宇, 等. 中国农业碳排放效率测度、空间溢出与影响因素[J]. 中国生态农业学报(中英文), 2021, 29(10): 1762−1773

    WU H Y, HUANG H J, HE Y, et al. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1762−1773
    [7] 杨滨键, 孙红雨. 低碳绩效测度与动态效应研究−以山东省种植业为例[J]. 中国生态农业学报(中英文), 2021, 29(3): 581−589

    YANG B J, SUN H Y. Low carbon performance measurement and dynamic effects: A case study of the planting industry in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 581−589
    [8] 张丽琼, 何婷婷. 1997—2018年中国农业碳排放的时空演进与脱钩效应−基于空间和分布动态法的实证研究[J]. 云南农业大学学报: 社会科学, 2022, 16(1): 78−90

    ZHANG L Q, HE T T. Spatio-temporal of agricultural carbon emission and decoupling in China during 1997−2018: an empirical research based on spatial and distribution dynamics method[J]. Journal of Yunnan Agricultural University: Social Science, 2022, 16(1): 78−90
    [9] 伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力[J]. 中国人口·资源与环境, 2021, 31(10): 69−78

    WU G Y, LIU J D, YANG L S. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential[J]. China Population, Resources and Environment, 2021, 31(10): 69−78
    [10] 蒋添诚, 胡纯, 王巧稚, 等. 湖北省农业碳排放时空特征及脱钩研究[J]. 环境污染与防治, 2021, 43(11): 1476−1480

    JIANG T C, HU C, WANG Q Z, et al. Research on spatial-temporal characteristics and decoupling of agricultural carbon emissions in Hubei[J]. Environmental Pollution & Control, 2021, 43(11): 1476−1480
    [11] 李阳, 陈敏鹏. 中国省域农业源非CO2温室气体排放的影响因素分析与峰值预测[J]. 环境科学学报, 2021, 41(12): 5174−5189

    LI Y, CHEN M P. Analysis of influencing factors and peak forecast of non-CO2 greenhouse gas emissions from provincial agricultural sources in China[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 5174−5189
    [12] 朱通雅. 农业碳排放的驱动因素与退耦效应研究−以长江经济带为例[J]. 安徽农业科学, 2021, 49(24): 118−121 doi: 10.3969/j.issn.0517-6611.2021.24.027

    ZHU T Y. Research on driving factors and decoupling effects of agricultural carbon emissions — Taking the Yangtze River Economic Belt as an example[J]. Journal of Anhui Agricultural Sciences, 2021, 49(24): 118−121 doi: 10.3969/j.issn.0517-6611.2021.24.027
    [13] 吕斯涵, 张小平. 山东省农业净碳汇时空演化特征分析[J]. 水土保持学报, 2019, 33(2): 227−234

    LYU S H, ZHANG X P. Spatial-temporal characteristics of agricultural net carbon sink in Shandong Province[J]. Journal of Soil and Water Conservation, 2019, 33(2): 227−234
    [14] 王梁, 赵杰, 陈守越. 山东省农田生态系统碳源、碳汇及其碳足迹变化分析[J]. 中国农业大学学报, 2016, 21(7): 133−141 doi: 10.11841/j.issn.1007-4333.2016.07.17

    WANG L, ZHAO J, CHEN S Y. Analysis of ecosystem carbon sources/sinks and carbon footprint in farmland ecosystem of Shandong Province[J]. Journal of China Agricultural University, 2016, 21(7): 133−141 doi: 10.11841/j.issn.1007-4333.2016.07.17
    [15] 田云, 张俊飚. 中国省级区域农业碳排放公平性研究[J]. 中国人口·资源与环境, 2013, 23(11): 36−44 doi: 10.3969/j.issn.1002-2104.2013.11.006

    TIAN Y, ZHANG J B. Fairness research of agricultural carbon emissions between provincial regions in China[J]. China Population, Resources and Environment, 2013, 23(11): 36−44 doi: 10.3969/j.issn.1002-2104.2013.11.006
    [16] 张晓荟. 中国秸秆焚烧大气污染物高分辨率排放特征研究[D]. 南京: 南京大学, 2019

    ZHANG X H. High-resolution characteristics of air pollutant emissions from crop residue burning in China[D]. Nanjing: Nanjing University, 2019
    [17] 许清涛, 李玉波, 杨淑杰. 吉林省农业现代化进程中碳排放测算与分解[J]. 中国农机化学报, 2018, 39(7): 103−109

    XU Q T, LI Y B, YANG S J. Measurement and decomposition of carbon emission by the process of agricultural modernization in Jilin Province[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(7): 103−109
    [18] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004
    [19] 冉锦成, 马惠兰, 苏洋. 西北五省农业碳排放测算及碳减排潜力研究[J]. 江西农业大学学报, 2017, 39(3): 623−632

    RAN J C, MA H L, SU Y. A study on agricultural carbon emission and carbon emission reduction potential in five provinces in Northwest China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(3): 623−632
    [20] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247−252 doi: 10.3969/j.issn.1002-6819.2010.10.042

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 247−252 doi: 10.3969/j.issn.1002-6819.2010.10.042
    [21] 章胜勇, 尹朝静, 贺亚亚, 等. 中国农业碳排放的空间分异与动态演进−基于空间和非参数估计方法的实证研究[J]. 中国环境科学, 2020, 40(3): 1356−1363 doi: 10.3969/j.issn.1000-6923.2020.03.046

    ZHANG S Y, YIN Z J, HE Y Y, et al. Spatial differentiation and dynamic evolution of agricultural carbon emission in China — Empirical research based on spatial and non-parametric estimation methods[J]. China Environmental Science, 2020, 40(3): 1356−1363 doi: 10.3969/j.issn.1000-6923.2020.03.046
    [22] 张小平, 王龙飞. 甘肃省农业碳排放变化及影响因素分析[J]. 干旱区地理, 2014, 37(5): 1029−1035

    ZHANG X P, WANG L F. Variations and influential factors of agricultural carbon emissions in Gansu Province[J]. Arid Land Geography, 2014, 37(5): 1029−1035
    [23] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020(5): 56−61

    HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020(5): 56−61
    [24] 赵宇. 江苏省农业碳排放动态变化影响因素分析及趋势预测[J]. 中国农业资源与区划, 2018, 39(5): 97−102

    ZHAO Y. Influencing factors and trend prediction on dynamic change of agricultural carbon emissions in Jiangsu Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(5): 97−102
    [25] 旷爱萍, 胡超. 广西农业碳排放影响因素和趋势预测[J]. 西南林业大学学报: 社会科学, 2020, 4(2): 5−13

    KUANG A P, HU C. Influencing factors and trend forecast of agricultural carbon emission in Guangxi[J]. Journal of Southwest Forestry University: Social Science Edition, 2020, 4(2): 5−13
    [26] 何慧爽, 付帮杰. 我国粮食主产区农业碳排放测度与减排压力研究[J]. 生态经济, 2019, 35(11): 99−104

    HE H S, FU B J. Measurement of agricultural carbon emission and pressure of emission reduction in main grain-producing areas of China[J]. Ecological Economy, 2019, 35(11): 99−104
    [27] 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价−基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 359−410

    TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 359−410
    [28] 王先锋. 改革开放以来中国共产党的惠农政策研究[D]. 济南: 山东师范大学, 2012

    WANG X F. Since the reform and opening up agricultural policy of the Communist Party of China[D]. Jinan: Shandong Normal University, 2012
    [29] 杨滨键, 田景仁, 孙红雨. 农业生产碳足迹影响因素研究−基于SVAR模型[J]. 生态经济, 2019, 35(8): 120−127

    YANG B J, TIAN J R, SUN H Y. Study on the factors affecting the carbon footprint of agricultural production based on the SVAR model[J]. Ecological Economy, 2019, 35(8): 120−127
    [30] 李明杰. 山东省种植业-养殖业时空变化分析及其驱动力研究[D]. 青岛: 山东科技大学, 2019

    LI M J. Analysis of spatio-temporal changes and diving force research of crop farming and aquaculture in Shandong Province[D]. Qingdao: Shandong University of Science and Technology, 2019
    [31] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分析[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013
    [32] 曹俐, 王莹, 雷岁江. 山东省农业碳排放的时空特征与脱钩弹性研究[J]. 江苏农业科学, 2020, 48(17): 250−256

    CAO L, WANG Y, LEI S J. Study on spatial-temporal characteristics and decoupling elasticity of agricultural carbon emissions in Shandong Province[J]. Jiangsu Agricultural Sciences, 2020, 48(17): 250−256
    [33] 黄锐, 周玉玺, 周霞. 山东省农业碳排放强度的时空特征与趋势演进[J]. 山东农业大学学报: 社会科学版, 2021, 23(2): 57−63

    HUANG R, ZHOU Y X, ZHOU X. Space and temporal characteristics and trend evolution of agricultural carbon emission intensity in Shandong Province[J]. Journal of Shandong Agricultural University: Social Science Edition, 2021, 23(2): 57−63
    [34] 魏振香, 吴晓娟. 山东省农业低碳发展及驱动因素分析[J]. 河南科学, 2021, 39(11): 1878−1886 doi: 10.3969/j.issn.1004-3918.2021.11.024

    WEI Z X, WU X J. Low-carbon agricultural development and driving factors in Shandong Province[J]. Henan Science, 2021, 39(11): 1878−1886 doi: 10.3969/j.issn.1004-3918.2021.11.024
    [35] 梁青青. 基于经典环境库茨涅茨曲线的我国农业碳排放拐点预测及区域比较[J]. 科技与经济, 2017, 30(177): 106−110

    LIANG Q Q. Prediction and regional comparison of China’s agriculture carbon emissions based on classical environmental Kuznets curves[J]. Science & Technology and Economy, 2017, 30(177): 106−110
    [36] 付帮杰. 粮食主产区农业碳排放动态变化与减排潜力研究[D]. 郑州: 华北水利水电大学, 2020

    FU B J. Dynamic change of agricultural carbon emission and its emission reduction potential in major grain producing areas[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2020
  • 加载中
图(1) / 表(9)
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  76
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 录用日期:  2022-01-28
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回