留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“双碳”战略背景下农业与农村减排技术路径分析

谢立勇 杨育蓉 赵洪亮 郭李萍 靳泽群 杨扬 何雨桐

谢立勇, 杨育蓉, 赵洪亮, 郭李萍, 靳泽群, 杨扬, 何雨桐. “双碳”战略背景下农业与农村减排技术路径分析[J]. 中国生态农业学报 (中英文), 2022, 30(4): 527−534 doi: 10.12357/cjea.20210599
引用本文: 谢立勇, 杨育蓉, 赵洪亮, 郭李萍, 靳泽群, 杨扬, 何雨桐. “双碳”战略背景下农业与农村减排技术路径分析[J]. 中国生态农业学报 (中英文), 2022, 30(4): 527−534 doi: 10.12357/cjea.20210599
XIE L Y, YANG Y R, ZHAO H L, GUO L P, JIN Z Q, YANG Y, HE Y T. Technical pathways of mitigating greenhouse gases emission from agriculture and rural areas under double-carbon strategy[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 527−534 doi: 10.12357/cjea.20210599
Citation: XIE L Y, YANG Y R, ZHAO H L, GUO L P, JIN Z Q, YANG Y, HE Y T. Technical pathways of mitigating greenhouse gases emission from agriculture and rural areas under double-carbon strategy[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 527−534 doi: 10.12357/cjea.20210599

“双碳”战略背景下农业与农村减排技术路径分析

doi: 10.12357/cjea.20210599
基金项目: 国家自然科学基金项目(41875141, 41175097)和辽宁省教育厅2019年度科学研究经费项目资助
详细信息
    作者简介:

    谢立勇, 主要从事气候变化与低碳农业、农村发展与管理研究。E-mail: xly0910@163.com

  • 中图分类号: S162.3

Technical pathways of mitigating greenhouse gases emission from agriculture and rural areas under double-carbon strategy

Funds: The study was supported by the National Natural Science Foundation of China (41875141, 41175097) and 2019 Science Research Project of Department of Education in Liaoning Province.
  • 摘要: 实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革。这不仅是人类应对气候变化的客观需求, 也是国内产业转型升级的现实需求。必须从高耗能、高污染向高质量的发展模式转变, 向绿色低碳经济转型, 实现经济社会可持续发展。随着现代农业的发展和农业现代化的推进, 农业与农村领域蕴含着巨大的减排潜力和减排需求。本文梳理了农业与农村领域主要温室气体排放源, 包括农田系统、畜牧业系统、垃圾废物以及日常生活。非二氧化碳温室气体是这个领域的排放重点, 并且排放量相对稳定。着重分析了农业与农村温室气体源汇关系和减排潜力。汇总了农业与农村领域温室气体的主要减排路径, 包括农田系统减排、畜牧系统减排、二次资源减排及绿色生活减排, 其中稻田甲烷减排、旱地氧化亚氮减排以及反刍动物甲烷减排是关键。讨论了农业与农村领域减排的特殊性和科学性, 提倡遵循农业与农村温室气体减排的内在潜力和客观规律, 开展科技创新、技术推广, 避免盲目减排、过度减排, 反对单纯追求农业与农村系统内部的碳中和。明确了农业与农村领域的固碳减排必须保障食物安全不受影响, 必须与农业减污降碳、绿色发展同步推进, 与适应气候变化协同进行, 建立完善的创新和保障体系, 实现生产、生活、生态的协调发展, 为生态文明建设提供支持, 为乡村振兴提供助力。
  • 表  1  农业与农村主要温室气体排放源及减排措施

    Table  1.   Key greenhouse gases emission resources and key mitigation technologies from agriculture and rural region

    主要排放源
    Key emission source
    主要排放形式
    Key emission content
    具体减排路径/措施
    Mitigation pathway / technology
    种植业系统
    Farmland system
    水田CH4
    CH4 from paddy field
    灌水管理(干湿交替、适时晒田)
    Irrigation management (alternating wet and dry, drain and sun the paddy field)
    品种选择
    Variety selection
    施加生物炭
    Biochar application
    旱田N2O
    N2O from dry farmland
    适当轮作(引入豆科作物、种植填闲作物)
    Rotation with legume or fallow crop
    施加生物炭
    Biochar application
    保护性耕作(秸秆还田、减免耕)
    Conservation tillage (straw return, less tillage)
    施肥管理(4R技术)
    Fertilizer management (4R technology)
    施用缓释肥或抑制剂
    Slow-release fertilizer or inhibitor application
    农机农膜等
    Agricultural machine and plastic film
    节能(减少柴油机械、农药农膜等投入)
    Energy saving from diesel, plastic film and pesticide
    养殖业系统
    Husbandry system
    反刍动物CH4
    CH4 from ruminant animal
    生理调节
    Physiological regulation
    饲料工艺
    Feed technology
    粪便废弃物
    Animal waste
    燃烧发电
    Power generation by combustion
    发酵还田
    Return after fermentation
    农村垃圾废物
    Rural waste
    生活与生产垃圾
    Daily and producing waste
    无害化回收
    Harmless recovery
    分类处理
    Classification processing
    农林废弃物
    Agricultural & forestry waste
    资源利用(肥料化、饲料化、就地还田)
    Second resources utilization as fertilizer, feeding, or return to land
    日常生活
    Daily life
    生活用能
    Daily energy
    绿色生活
    Green life
    生产用能
    Production energy
    低碳出行
    Low carbon travel
    节能节电
    Save energy and electricity
    清洁能源(光伏发电、风能发电等)
    Clean energy (photovoltaic generation, wind generation)
    其他来源
    Others
    氮沉降
    Nitrogen deposition
    综合治理
    Comprehensive treatment
    植树造林
    Afforestation
    异地面源污染
    Off-site non-point source pollution
    保护生态
    Ecology protection
    下载: 导出CSV
  • [1] IPCC. Climate change 2021: the Scientific Basis, Contribution of Working Group Ⅰ to the Sixth Assessment Report of Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021
    [2] IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York: Cambridge University Press, 2014
    [3] TIAN H Q, LU C Q, CIAIS P, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 2016, 531(7593): 225−228 doi: 10.1038/nature16946
    [4] 赵宁, 周蕾, 庄杰, 等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19): 7648−7658

    ZHAO N, ZHOU L, ZHUANG J, et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems, China[J]. Acta Ecologica Sinica, 2021, 41(19): 7648−7658
    [5] 生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报[R/OL]. 2019. http://www.ccchina.org.cn/Detail.aspx?newsId=71964&TId=57  

    Climate Change Division of the Ministry of Ecology and Environment of the People’s Republic of China. The third national information report on climate change from the People’s Republic of China[R/OL]. 2019. http://www.ccchina.org.cn/Detail.aspx?newsId=71964&TId=57
    [6] 董文娟, 孙铄, 李天枭, 等. 欧盟甲烷减排战略对我国碳中和的启示[J]. 环境与可持续发展, 2021, 46(2): 37−43

    DONG W J, SUN S, LI T X, et al. European union methane strategy and its implications on China’s 2060 carbon neutrality[J]. Environment and Sustainable Development, 2021, 46(2): 37−43
    [7] 谢立勇, 许婧, 郭李萍, 等. 水肥管理对稻田CH4排放及其全球增温潜势影响的评估[J]. 中国生态农业学报, 2017, 25(7): 958−967

    XIE L Y, XU J, GUO L P, et al. Impact of water / fertilizer management on methane emission in paddy fields and on global warming potential[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7): 958−967
    [8] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 2020, 39(4): 842−851 doi: 10.11654/jaes.2020-0245

    LI Y, JU X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro-Environment Science, 2020, 39(4): 842−851 doi: 10.11654/jaes.2020-0245
    [9] 谢立勇, 叶丹丹, 张贺, 等. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象, 2011, 32(4): 481−487 doi: 10.3969/j.issn.1000-6362.2011.04.001

    XIE L Y, YE D D, ZHANG H, et al. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 481−487 doi: 10.3969/j.issn.1000-6362.2011.04.001
    [10] 曾泽, 张华琦, 桂干北, 等. 反刍动物甲烷排放的测量及其调控研究进展[J]. 家畜生态学报, 2020, 41(5): 1−7 doi: 10.3969/j.issn.1673-1182.2020.05.001

    ZENG Z, ZHANG H Q, GUI G B, et al. Advances on measurement and regulation of methane emission in ruminant[J]. Journal of Domestic Animal Ecology, 2020, 41(5): 1−7 doi: 10.3969/j.issn.1673-1182.2020.05.001
    [11] 万文玉, 赵雪雁, 王伟军, 等. 我国农村居民生活能源碳排放的时空特征分析[J]. 生态学报, 2017, 37(19): 6390−6401

    WAN W Y, ZHAO X Y, WANG W J, et al. Analysis of spatio-temporal patterns of carbon emission from energy consumption by rural residents in China[J]. Acta Ecologica Sinica, 2017, 37(19): 6390−6401
    [12] XUE Z S, JIANG M, ZHANG Z S, et al. Simulating potential impacts of climate changes on distribution pattern and carbon storage function of high-latitude wetland plant communities in the Xing’anling Mountains, China[J]. Land Degradation & Development, 2021, 32(9): 2704−2714
    [13] 赵永强, 罗丽丽, 周庆生, 等. 中国生活源固体垃圾产生和处理及其N2O排放[J]. 环境科学学报, 2021, 41(6): 2487−2497

    ZHAO Y Q, LUO L L, ZHOU Q S, et al. The generation, treatment and N2O emission of municipal solid waste in China[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2487−2497
    [14] 林成淼, 陈丽君, 吴洁珍. 生活垃圾分类对固体废弃物和温室气体协同减排的影响研究−以浙江省为例[J]. 环境与可持续发展, 2021, 46(1): 90−94

    LIN C M, CHEN L J, WU J Z. Research on the impact of domestic waste classification on synergistic emission reduction of solid waste and greenhouse gases: a case study of Zhejiang Province[J]. Environment and Sustainable Development, 2021, 46(1): 90−94
    [15] 吴一鸣, 周怡静, 田贺忠, 等. 我国城市生活垃圾处理处置全过程大气排放研究进展[J]. 环境科学研究, 2018, 31(6): 991−999

    WU Y M, ZHOU Y J, TIAN H Z, et al. Research advances of atmospheric emission from the whole process of municipal solid waste treatment and disposal in China[J]. Research of Environmental Sciences, 2018, 31(6): 991−999
    [16] WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9), DOI: 10.1093/nsr/nwaa296
    [17] WANG J, FENG L, PALMER P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720−723 doi: 10.1038/s41586-020-2849-9
    [18] 何炯英, 刘梅娟, 李婷. 森林碳汇会计核算研究的回顾与展望[J]. 林业经济问题, 2021, 41(5): 552−560

    HE J Y, LIU M J, LI T. A review and prospect on accounting study of forest carbon sinks[J]. Issues of Forestry Economics, 2021, 41(5): 552−560
    [19] 王穗子, 樊江文, 刘帅. 中国草地碳库估算差异性综合分析[J]. 草地学报, 2017, 25(5): 905−913

    WANG S Z, FAN J W, LIU S. A comprehensive analysis of difference in carbon stock estimation in the grasslands of China[J]. Acta Agrestia Sinica, 2017, 25(5): 905−913
    [20] 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究[J]. 草业学报, 2011, 20(2): 1−22 doi: 10.11686/cyxb20110201

    REN J Z, LIANG T G, LIN H L, et al. Study on grassland’s responses to global climate change and its carbon sequestration potentials[J]. Acta Prataculturae Sinica, 2011, 20(2): 1−22 doi: 10.11686/cyxb20110201
    [21] 王志印, 曹建生. 中国北方土石山区植被恢复及其生态效应研究进展[J]. 中国生态农业学报(中英文), 2019, 27(9): 1319−1331

    WANG Z Y, CAO J S. Research advances in vegetation restoration and its ecological effects in earth-rock mountain areas of North China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1319−1331
    [22] 张翰林, 白娜玲, 郑宪清, 等. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 531−539

    ZHANG H L, BAI N L, ZHENG X Q, et al. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 531−539
    [23] 王克, 刘芳名, 尹明健, 等. 1.5 ℃温升目标下中国碳排放路径研究[J]. 气候变化研究进展, 2021, 17(1): 7−17

    WANG K, LIU F M, YIN M J, et al. Research on China’s carbon emissions pathway under the 1.5 ℃ target[J]. Advances in Climate Change Research, 2021, 17(1): 7−17
    [24] 王志强, 缪建群, 刘英, 等. 长江中游双季稻田不同轮作方式对土壤质量的影响[J]. 中国生态农业学报(中英文), 2020, 28(11): 1703−1714

    WANG Z Q, MIAO J Q, LIU Y, et al. Effect of various crops rotations on soil quality in double cropping rice field in the middle reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1703−1714
    [25] 李悦, 郭李萍, 谢立勇, 等. 不同农作管理措施对东北地区农田土壤有机碳未来变化的模拟研究[J]. 中国农业科学, 2015, 48(3): 501−513 doi: 10.3864/j.issn.0578-1752.2015.03.10

    LI Y, GUO L P, XIE L Y, et al. Modeling the future changes of soil organic carbon under different management practices in upland soils of Northeast China[J]. Scientia Agricultura Sinica, 2015, 48(3): 501−513 doi: 10.3864/j.issn.0578-1752.2015.03.10
    [26] 郑循华, 王明星, 王跃思, 等. 稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J]. 应用生态学报, 1996, 7(3): 273−279

    ZHENG X H, WANG M X, WANG Y S, et al. Impact of soil humidity on N2O production and emission from a rice-wheat rotation ecosystem[J]. Chinese Journal of Applied Ecology, 1996, 7(3): 273−279
    [27] 倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327

    NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327
    [28] 邹梦圆, 董红敏, 朱志平, 等. 畜禽场沼液处理及资源化利用的研究进展与展望[J]. 中国家禽, 2020, 42(9): 103−109

    ZOU M Y, DONG H M, ZHU Z P, et al. Progress and prospect of treatments and resource utilization of biogas slurry on livestock and poultry farms[J]. China Poultry, 2020, 42(9): 103−109
    [29] 张秀敏, 王荣, 马志远, 等. 反刍家畜胃肠道甲烷排放与减排策略[J]. 农业环境科学学报, 2020, 39(4): 732−742 doi: 10.11654/jaes.2020-0105

    ZHANG X M, WANG R, MA Z Y, et al. Enteric methane emissions and mitigation strategies in ruminants[J]. Journal of Agro-Environment Science, 2020, 39(4): 732−742 doi: 10.11654/jaes.2020-0105
    [30] QIAN H Y, JIN Y G, CHEN J, et al. Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment[J]. The Crop Journal, 2021
    [31] 朱志平, 董红敏, 魏莎, 等. 中国畜禽粪便管理变化对温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(4): 743−748 doi: 10.11654/jaes.2020-0095

    ZHU Z P, DONG H M, WEI S, et al. Impact of changes in livestock manure management on greenhouse gas emissions in China[J]. Journal of Agro-Environment Science, 2020, 39(4): 743−748 doi: 10.11654/jaes.2020-0095
    [32] 李科南, 梁天, 张晓东, 等. 反刍动物瘤胃甲烷生成的营养调控研究进展[J]. 饲料研究, 2021, 44(14): 139−144

    LI K N, LIANG T, ZHANG X D, et al. Research advances on nutritional regulation of rumen methanogenesis in ruminants[J]. Feed Research, 2021, 44(14): 139−144
    [33] 许静, 俎昊辰, 丛玉艳. 植物提取物调控反刍动物甲烷排放量的研究进展[J]. 畜牧与兽医, 2020, 52(7): 127−130

    XU J, ZU H C, CONG Y Y. Progress in research on plant extracts in regulation of methane emissions from ruminants[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(7): 127−130
    [34] 姜晓群, 谭灵芝, 孙月阳. 日本食品废物不同资源化技术下的碳排放比较研究[J]. 中国环境科学, 2021, 41(2): 959−966 doi: 10.3969/j.issn.1000-6923.2021.02.050

    JIANG X Q, TAN L Z, SUN Y Y. Comparative study on CO2 emissions under different recycling technologies for food waste in Japan[J]. China Environmental Science, 2021, 41(2): 959−966 doi: 10.3969/j.issn.1000-6923.2021.02.050
    [35] 范建双, 周琳. 中国城乡居民生活消费碳排放变化的比较研究[J]. 中国环境科学, 2018, 38(11): 4369−4383 doi: 10.3969/j.issn.1000-6923.2018.11.048

    FAN J S, ZHOU L. A comparative study on the changes of residential living consumption carbon emissions in urban and rural China[J]. China Environmental Science, 2018, 38(11): 4369−4383 doi: 10.3969/j.issn.1000-6923.2018.11.048
    [36] 谢祖彬, 刘琦. 生物质炭的固碳减排与合理施用[J]. 农业环境科学学报, 2020, 39(4): 901−907 doi: 10.11654/jaes.2020-0034

    XIE Z B, LIU Q. Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: a review[J]. Journal of Agro-Environment Science, 2020, 39(4): 901−907 doi: 10.11654/jaes.2020-0034
    [37] WANG Y, YAO Z S, ZHAN Y, et al. Potential benefits of liming to acid soils on climate change mitigation and food security[J]. Global Change Biology, 2021, 27(12): 2807−2821 doi: 10.1111/gcb.15607
    [38] 戴尔阜, 黄宇, 赵东升. 草地土壤固碳潜力研究进展[J]. 生态学报, 2015, 35(12): 3908−3918

    DAI E F, HUANG Y, ZHAO D S. Review on soil carbon sequestration potential in grassland ecosystems[J]. Acta Ecologica Sinica, 2015, 35(12): 3908−3918
    [39] 方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化[J]. 中国科学: 生命科学, 2010, 40(7): 566−576

    FANG J Y, YANG Y H, MA W H, et al. Ecosystem carbon stocks and their changes in China’s grasslands[J]. Scientia Sinica Life Science, 2010, 40(7): 566−576
    [40] CLARK M A, DOMINGO N G G, COLGAN K, et al. Global food system emissions could preclude achieving the 1.5° and 2℃ climate change targets[J]. Science, 2020, 370(6517): 705−708 doi: 10.1126/science.aba7357
    [41] 董红敏, 左玲玲, 魏莎, 等. 建立畜禽废弃物养分管理制度 促进种养结合绿色发展[J]. 中国科学院院刊, 2019, 34(2): 180−189

    DONG H M, ZUO L L, WEI S, et al. Establish manure nutrient management plan to promote green development of integrated crop-livestock production system[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(2): 180−189
  • 加载中
表(1)
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  143
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 录用日期:  2021-12-20
  • 网络出版日期:  2022-01-25
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回