Effect of iron plaque controlling techniques on iron plaque formation on rice (Oryza sativa) root surface and accumulation of selenium in grains under acidic soil condition
-
摘要: 铁膜是水稻根系表面形成的铁(氢)氧化物胶膜。它不仅增强根系对水生环境的适应, 而且显著影响植株养分吸收。但如何通过调控根表铁膜形成, 提高水稻籽粒硒含量还有待进一步探索。本研究在弱酸性(pH 6.1)土壤盆栽条件下, 对水稻植株进行不同水平的磷铁比、过氧化尿素及干湿交替处理, 研究了上述3种铁膜调控技术对水稻根表铁膜形成及籽粒硒累积的影响。结果表明: 与常规施肥处理相比, 磷铁比1∶5处理的根表铁膜含量和籽粒硒含量均有显著提高。90 kg∙hm−2过氧化尿素处理的根表铁膜含量和籽粒硒含量明显高于不施用过氧化尿素处理。另外, 持续淹水处理的根表铁膜含量和籽粒硒含量显著高于对照和干湿交替处理。相关分析表明, 磷铁比和过氧化尿素处理试验条件下, 非结晶态和结晶态铁膜含量与籽粒硒含量都显著线性相关。正交试验当中, 根表铁膜形成量最高且籽粒硒含量增加最显著的铁膜调控技术是磷铁比 为1∶1、过氧化尿素用量为90 kg∙hm−2、持续淹水组合处理, 该条件下籽粒硒含量为0.116 μg∙g−1, 是对照的2.01倍。方差分析表明, 3种调控技术对根表铁膜含量和水稻籽粒硒含量影响程度顺序为过氧化尿素处理>干湿交替处理>磷铁比处理。综上所述, 铁膜调控技术能促进水稻根表铁膜形成及硒在根系累积, 从而增加水稻籽粒硒累积, 该研究结果对富硒水稻生产具有科学意义。Abstract: Iron plaque (IP) is a colloidal membrane consisting of iron (hydr)oxides formed on the root surface of rice (Oryza sativa), which not only enhances the adaptation of roots to the surrounding waterlogging but also affects nutrient uptake by rice. However, further exploration of methods to increase the Se accumulation in rice grains by regulating IP formation on the rice root surface is needed. Experiments on rice plants with different levels of phosphate-iron ratios (P/Fe), urea peroxide (UP), and alternation of wetting and drying (AWD) treatments were conducted under pot cultivation with mildly acidic (pH = 6.1) soil conditions to investigate the effects of these three IP-controlling techniques on IP formation and Se accumulation in grains. The results indicated that the IP content on the root surface and the grain Se content after a 1∶5 P/Fe treatment were significantly higher than that after a 1∶0 P/Fe treatment. The IP content and grain Se content after 90 kg∙hm−2 UP treatment were significantly higher than that without UP. When P/Fe was less than 1∶3 or the UP dose was greater than 60 kg∙hm−2, the variation trend of the grain Se content became steady. In addition, the IP content and grain Se content after long-term waterlogging treatment were remarkably higher than those of the control (irrigation to maintain a shallow water layer on the soil surface before naturally drying at the grain-filling stage) and AWD treatments. Although the IP content after one cycle of AWD treatment was lower than that after long-term waterlogging, the grain Se contents were similar. Correlation analysis suggested that both amorphous and crystalline IP contents presented a significant linear correlation with the grain Se content under the P/Fe and UP treatments, whereas this phenomenon did not occur under the AWD treatment. However, the linear coefficient of the correlation between the grain Se content and crystalline IP content was higher than that between the grain Se content and amorphous IP content under the P/Fe treatment, whereas the result was the opposite in the UP treatment. In orthogonal experiments, the IP controlling techniques harvesting the highest IP formation and the most remarkable increase in the grain Se content were the treatment combination of P/Fe of 1∶1, UP of 90 kg∙hm−2, and long-term waterlogging. The grain Se content after this treatment combination was 0.116 μg∙g−1, which was 2.01 times greater than that of the control (1∶0 P/Fe, no UP application, and conventional water management). The analysis of variation indicated that the effect sequence of the three controlling techniques on the IP content and grain Se content was UP>AWD>P/Fe. The effect of the P/Fe ratio on the IP content and grain Se content under this combination treatment could be neglected. In summary, IP controlling techniques, including regulating P/Fe, applying UP, and conducting AWD treatment, can promote IP formation on the root surface and Se accumulation in roots, thereby increasing Se accumulation in rice grains. The results of this study are scientifically relevant for Se-enriched rice production.
-
图 1 磷铁比对水稻根表铁膜成分含量(a)和铁膜结晶比(b)的影响
数据以平均值±标准误形式表示(n=3), 同一指标不同小写字母表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same parameter with different letters are significantly different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 1. Effect of phosphate-iron ratio on components contents (a) and crystalline ratio (b) of iron plaque on rice root surface
图 2 磷铁比对水稻各部位硒含量的影响
数据以平均值±标准误形式表示(n=3), 同一指标不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same organ with different letters are significantly different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 2. Effect of phosphate-iron ratio on Se contents of rice organs
图 3 过氧化尿素对根表铁膜成分含量(a)和结晶比(b)的影响
数据以平均值±标准误形式表示(n=3), 同一指标不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same parameter with different letters are significantly different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 3. Effect of urea peroxide to components contents (a) and crystalline ratio (b) of iron plaque on rice root surface
图 4 过氧化尿素对水稻各部位硒含量的影响
数据以平均值±标准误形式表示(n=3), 同器官不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same organ with different letters are significantly different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 4. Effect of urea peroxide on Se contents of rice organs
图 5 干湿交替对根表铁膜成分含量(a)和结晶比(b)的影响
数据以平均值±标准误形式表示(n=3), 同一指标不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same parameter with different letters are significantly different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 5. Effect of alternation of wetting and drying (AWD) to components contents (a) and crystalline ratio (b) of iron plaque on rice root surface
图 6 干湿交替对水稻各部位硒含量的影响
数据以平均值±标准误形式表示(n=3), 同一指标不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). Data of the same organ with different letters are significant different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 6. Effect of alternation of wetting and drying (AWD) to Se contents of rice organs
图 7 不同磷铁比(a, d)、过氧化尿素(b, e)及干湿交替(c, f)处理下铁膜含量与水稻籽粒硒含量的相关性
NS: 相关不显著; **: 相关极显著(P<0.01)。NS: no significant; **: extremely significant (P<0.01).
Figure 7. Correlation between grain Se content and contents of iron plaque forming under different phosphate-iron ratios (a, d), urea peroxide (b, e) and alternation of wetting and drying (AWD) (c, f) treatments
图 8 不同处理组合对根表铁膜成分含量和结晶比的影响
各处理说明见表1。数据以平均值±标准误形式表示(n=3), 同一指标不同字母的数据表示以Duncan检验进行多重比较差异显著(P<0.05)。The description of each treatment is shown in the table 1. Data are presented in forms of mean±standard error (n=3). Data with different letters are significant different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 8. Effect of different treatment combinations on components and crystalline ratios of iron plaque on rice root surface
图 9 不同处理组合对水稻籽粒硒含量的影响
各处理说明见表1。数据以平均值±标准误形式表示(n=3), 不同字母表示以Duncan检验进行多重比较差异显著(P<0.05)。Data are presented in forms of mean±standard error (n=3). The description of each treatment is shown in the table 1. Data with different letters are significant different (P<0.05) by Duncan’s Multiple Analysis Test.
Figure 9. Effect of different treatment combinations on rice grain Se content
表 1 水稻铁膜调控技术正交试验处理
Table 1. Orthogonal experiment treatments of rice iron plaque controlling techniques
处理号
Treatment No.因素 Factor 磷铁比
Phosphate-iron ratio (A)过氧化尿素
Urea peroxide (kg∙hm−2) (B)干湿交替
Alternation of wetting and drying (AWD) (C)1 1∶1 30 干湿交替1次 One cycle of AWD 2 1∶3 30 干湿交替3次 Three cycles of AWD 3 1∶5 30 持续淹水 Long-term waterlogging 4 1∶1 60 干湿交替3次 Three cycles of AWD 5 1∶3 60 持续淹水 Long-term waterlogging 6 1∶5 60 干湿交替1次 One cycle of AWD 7 1∶1 90 持续淹水 Long-term waterlogging 8 1∶3 90 干湿交替1次 One cycle of AWD 9 1∶5 90 干湿交替3次 Three cycles of AWD 表 2 不同处理组合对铁膜含量和籽粒硒含量影响的方差分析(F值)
Table 2. Analysis of variances (F values) of the effect of treatment combinations on iron plaque contents and grain Se content
磷铁比
Phosphate-iron ratio过氧化尿素
Urea peroxide干湿交替
Alternation of wetting and drying交互作用
Interaction非结晶态铁膜含量
Amorphous iron plaque content1.33NS 20.72** 10.83** 11.87** 结晶态铁膜含量
Crystalline iron plaque content27.21** 265.24** 66.52** 0.60NS 籽粒硒含量
Grain Se content0.54NS 60.13** 21.81** 10.84** NS: 不显著; *: 显著(P<0.05); **: 极显著(P<0.01)。NS: no significant; *: significant (P<0.05); **: extremely significant (P<0.01). -
[1] 刘宇. 广西富硒水稻产业及硒肥施用技术研究[D]. 南宁: 广西大学, 2019: 1–2LIU Y. Study on selenium-enriched paddy industry and application technology of selenium fertilizer in Guangxi[D]. Nanning: Guangxi University, 2019: 1–2 [2] METERE A, FREZZOTTI F, GRAVES C E, et al. A possible role for selenoprotein glutathione peroxidase (GPx1) and thioredoxin reductases (TrxR1) in thyroid cancer: our experience in thyroid surgery[J]. Cancer Cell International, 2018, 18: 7 doi: 10.1186/s12935-018-0504-4 [3] ULLAH H, LIU G J, YOUSAF B, et al. Developmental selenium exposure and health risk in daily foodstuffs: a systematic review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2018, 149: 291−306 doi: 10.1016/j.ecoenv.2017.11.056 [4] HOFFMANN P R, BERRY M J. The influence of selenium on immune responses[J]. Molecular Nutrition & Food Research, 2008, 52(11): 1273−1280 [5] 吴军, 刘秀芳, 徐汉生. 硒在植物生命活动中的作用[J]. 植物生理学通讯, 1999, 35(5): 417−423WU J, LIU X F, XU H S. Functions of selenium in plants[J]. Plant Physiology Communications, 1999, 35(5): 417−423 [6] SEPPÄNEN M, TURAKAINEN M, HARTIKAINEN H. Selenium effects on oxidative stress in potato[J]. Plant Science, 2003, 165(2): 311−319 doi: 10.1016/S0168-9452(03)00085-2 [7] CHEN T F, ZHENG W J, WONG Y S, et al. Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis[J]. Journal of Integrative Plant Biology, 2008, 50(1): 40−48 doi: 10.1111/j.1744-7909.2007.00600.x [8] 孙亚波. 外源施硒对水稻硒含量、产量及品质的影响[D]. 凤阳县: 安徽科技学院, 2018: 3–6SUN Y B. Effects of exogenous selenium application on selenium content, yield and quality of rice[D]. Fengyang: Anhui Science and Technology University, 2018: 3–6 [9] TAYLOR J B, MARCHELLO M J, FINLEY J W, et al. Nutritive value and display-life attributes of selenium-enriched beef-muscle foods[J]. Journal of Food Composition and Analysis, 2008, 21(2): 183−186 doi: 10.1016/j.jfca.2007.08.001 [10] 国家卫生计生委疾病预防控制局. 中国居民营养与慢性病状况报告(2015年)[M]. 北京: 人民卫生出版社, 2015: 11–12Bureau of Disease Prevention and Control, National Health and Family Planning Commission. Report on Chinese Residents’ Chronic Diseases and Nutrition (2015)[M]. Beijing: People’s Medical Publishing House Co. Ltd. , 2015: 11–12 [11] 中国营养学会. 中国居民膳食营养素参考摄入量: 2013版[M]. 北京: 科学出版社, 2014: 250–257Chinese Nutrition Society. Chinese Dietary Reference Intakes 2013[M]. Beijing: Science Press, 2014: 250–257 [12] BAZRKAR-KHATIBANI L, FAKHERI B A, HOSSEINI-CHALESHTORI M, et al. Genetic mapping and validation of quantitative trait loci (QTL) for the grain appearance and quality traits in rice (Oryza sativa L. ) by using recombinant inbred line (RIL) population[J]. International Journal of Genomics, 2019, 2019: 3160275 [13] WILLIAMS P N, LOMBI E, SUN G X, et al. Selenium characterization in the global rice supply chain[J]. Environmental Science & Technology, 2009, 43(15): 6024−6030 [14] 张现伟, 郑家奎, 张涛, 等. 富硒水稻的研究意义与进展[J]. 杂交水稻, 2009, 24(2): 5−9 doi: 10.3969/j.issn.1005-3956.2009.02.002ZHANG X W, ZHENG J K, ZHANG T, et al. Research progress of selenium-enriched rice[J]. Hybrid Rice, 2009, 24(2): 5−9 doi: 10.3969/j.issn.1005-3956.2009.02.002 [15] CURTIN D, HANSON R, LINDLEY T N, et al. Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application[J]. New Zealand Journal of Crop and Horticultural Science, 2006, 34(4): 329−339 doi: 10.1080/01140671.2006.9514423 [16] WANG J, LI H R, LI Y H, et al. Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau kashin-beck disease area — A case study in Songpan County, Sichuan Province, China[J]. Biological Trace Element Research, 2013, 156(1/2/3): 367−375 [17] BOLDRIN P F, FAQUIN V, RAMOS S J, et al. Soil and foliar application of selenium in rice biofortification[J]. Journal of Food Composition and Analysis, 2013, 31(2): 238−244 doi: 10.1016/j.jfca.2013.06.002 [18] CHEN X P, KONG W D, HE J Z, et al. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(2): 193−199 doi: 10.1002/jpln.200700018 [19] WANG T G, PEVERLY J H. Iron oxidation states on root surfaces of a wetland plant (Phragmites australis)[J]. Soil Science Society of America Journal, 1999, 63(1): 247−252 doi: 10.2136/sssaj1999.03615995006300010036x [20] ZHOU X B, SHI W M, ZHANG L H. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture[J]. Plant and Soil, 2007, 290(1/2): 17−28 [21] 傅友强, 杨旭健, 吴道铭, 等. 磷素对水稻根表红棕色铁膜的影响及营养效应[J]. 中国农业科学, 2014, 47(6): 1072−1085 doi: 10.3864/j.issn.0578-1752.2014.06.004FU Y Q, YANG X J, WU D M, et al. Effect of phosphorus on reddish brown iron plaque on root surface of rice seedlings and their nutritional effects[J]. Scientia Agricultura Sinica, 2014, 47(6): 1072−1085 doi: 10.3864/j.issn.0578-1752.2014.06.004 [22] 丁汉卿, 赖聪玲, 沈宏. 干湿交替和过氧化物对水稻根表铁膜及养分吸收的影响[J]. 生态环境学报, 2015, 24(12): 1983−1988DING H Q, LAI C L, SHEN H. Influence of alternative wetting and drying and peroxides on the formation of iron plaque on rice root surface and nutrient uptake[J]. Ecology and Environmental Sciences, 2015, 24(12): 1983−1988 [23] 于晓莉, 傅友强, 甘海华, 等. 干湿交替对作物根际特征及铁膜形成的影响研究进展[J]. 土壤, 2016, 48(2): 225−234YU X L, FU Y Q, GAN H H, et al. Impacts of drying-wetting cycles on changes of rhizosphere characteristic and the formation of iron plaque: a review[J]. Soils, 2016, 48(2): 225−234 [24] 张静, 刘娟, 陈浩, 等. 干湿交替条件下稻田土壤氧气和水分变化规律研究[J]. 中国生态农业学报, 2014, 22(4): 408−413ZHANG J, LIU J, CHEN H, et al. Change in soil oxygen and water contents under alternate wetting and drying in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 408−413 [25] XIAO W D, YE X Z, YANG X E, et al. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils[J]. Ecotoxicology and Environmental Safety, 2015, 113: 439−445 doi: 10.1016/j.ecoenv.2014.12.030 [26] 张城铭, 周鑫斌, 高阿祥. 水稻不同生育期对硒吸收累积及铁膜的吸附特性[J]. 土壤学报, 2017, 54(3): 693−702ZHANG C M, ZHOU X B, GAO A X. Uptake and accumulation of selenium and iron coating on rice root at different growth stages[J]. Acta Pedologica Sinica, 2017, 54(3): 693−702 [27] 于淑慧. 磷对水稻吸收硒的影响研究[D]. 重庆: 西南大学, 2015: 45–50, 53–59YU S H. The study of phosphorus on rice selenium uptake[D]. Chongqing: Southwest University, 2015: 45–50, 53–59 [28] YANG X J, XU Z H, SHEN H. Drying-submergence alternation enhanced crystalline ratio and varied surface properties of iron plaque on rice (Oryza sativa) roots[J]. Environmental Science and Pollution Research, 2018, 25(4): 3571−3587 doi: 10.1007/s11356-017-0509-x [29] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中硒的测定: GB 5009.93—2017[S]. 北京: 中国标准出版社, 2017National Health and Family Planning Commission, State Food and Drug Administration. National food safety standard Determination of selenium in foods: GB 5009.93—2017[S]. Beijing: Chinese Standards Press, 2017 [30] HUANG G X, DING C F, LI Y S, et al. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2020, 398: 122860 doi: 10.1016/j.jhazmat.2020.122860 [31] 刘梦兰, 高鹏, 姚泽天, 等. 施硒方式及浓度对粳稻品种籽粒硒积累和形态的影响[J]. 中国稻米, 2020, 26(3): 43−47, 53 doi: 10.3969/j.issn.1006-8082.2020.03.010LIU M L, GAO P, YAO Z T, et al. Effects of different selenium fertilizers on selenium concentration and form in various rice grains[J]. China Rice, 2020, 26(3): 43−47, 53 doi: 10.3969/j.issn.1006-8082.2020.03.010 [32] PEAK D, SPARKS D L. Mechanisms of selenate adsorption on iron oxides and hydroxides[J]. Environmental Science & Technology, 2002, 36(7): 1460−1466 [33] NAWAZ F, AHMAD R, ASHRAF M Y, et al. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress[J]. Ecotoxicology and Environmental Safety, 2015, 113: 191−200 doi: 10.1016/j.ecoenv.2014.12.003 [34] SCHIAVON M, PILON-SMITS E A H. The fascinating facets of plant selenium accumulation — biochemistry, physiology, evolution and ecology[J]. The New Phytologist, 2017, 213(4): 1582−1596 doi: 10.1111/nph.14378 [35] EL MEHDAWI A F, JIANG Y, GUIGNARDI Z S, et al. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae[J]. The New Phytologist, 2018, 217(1): 194−205 doi: 10.1111/nph.14838 [36] 耿建梅, 王文斌, 吴露露, 等. 两个水稻品种富硒特性比较研究[J]. 土壤, 2014, 46(1): 66−69GENG J M, WANG W B, WU L L, et al. Comparative study on characteristics of selenium uptake and distribution between two rice cultivars[J]. Soils, 2014, 46(1): 66−69 [37] JIANG F Y, CHEN X, LUO A C. Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake[J]. Aquatic Ecology, 2009, 43(4): 879−890 doi: 10.1007/s10452-009-9241-z [38] MEI X Q, WONG M H, YANG Y, et al. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere[J]. Environmental Pollution, 2012, 165: 109−117 doi: 10.1016/j.envpol.2012.02.018 [39] XU B, YU S. Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa)[J]. Annals of Botany, 2013, 111(6): 1189−1195 doi: 10.1093/aob/mct072 [40] 丁汉卿. 土壤磷铁比和过氧化尿素对水稻根表铁膜形成和水稻镉吸收的影响[D]. 广州: 华南农业大学, 2016: 37–38DING H Q. Effect of phosphorus iron ratio of soil and urea peroxide on formation of iron plaque on rice root surface and cadmium uptake of rice grains[D]. Guangzhou: South China Agricultural University, 2016: 37–38 [41] FRANKENBERGER J. Factors affecting the fate of urea peroxide added to soil[J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(1): 50−57 doi: 10.1007/s001289900442 [42] 肖元松, 彭福田, 束怀瑞, 等. 过氧化尿素对桃幼树淹水胁迫的缓解效果研究[J]. 植物营养与肥料学报, 2016, 22(2): 502−510 doi: 10.11674/zwyf.14479XIAO Y S, PENG F T, SHU H R, et al. Alleviation of urea peroxide to waterlogging damage in young peach trees[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 502−510 doi: 10.11674/zwyf.14479 [43] 杜宏儒, 刘利, 李勃, 等. 过氧化尿素对葡萄幼树淹水胁迫的缓解效果[J]. 北方园艺, 2020(1): 21–26DU H R, LIU L, LI B, et al. Effect of urea peroxide on the relief of submergence stress in grape seedlings[J]. Northern Horticulture, 2020(1): 21–26 [44] 高阿祥. 硒与根表铁膜对水稻吸收汞的调控效应[D]. 重庆: 西南大学, 2018: 35–36GAO A X. Regulation effect of selenium and iron plaque on the absorption of mercury in rice[D]. Chongqing: Southwest University, 2018: 35–36 [45] 曹小闯, 吴龙龙, 朱春权, 等. 不同灌溉和施肥模式对水稻产量、氮利用和稻田氮转化特征的影响[J]. 中国农业科学, 2021, 54(7): 1482−1498 doi: 10.3864/j.issn.0578-1752.2021.07.013CAO X C, WU L L, ZHU C Q, et al. Effects of different irrigation and nitrogen application regimes on the yield, nitrogen utilization of rice and nitrogen transformation in paddy soil[J]. Scientia Agricultura Sinica, 2021, 54(7): 1482−1498 doi: 10.3864/j.issn.0578-1752.2021.07.013 [46] 褚光, 徐冉, 陈松, 等. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础[J]. 中国农业科学, 2021, 54(7): 1499−1511 doi: 10.3864/j.issn.0578-1752.2021.07.014CHU G, XU R, CHEN S, et al. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-Japonica hybrid rice and its physiological bases[J]. Scientia Agricultura Sinica, 2021, 54(7): 1499−1511 doi: 10.3864/j.issn.0578-1752.2021.07.014 [47] WANG S S, LIANG D L, WANG D, et al. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China[J]. Science of the Total Environment, 2012, 427/428: 159−164 doi: 10.1016/j.scitotenv.2012.03.091 [48] 王瑞昕, 杨静, 方正, 等. 水分管理对水稻籽粒硒积累及根际土壤细菌群落多样性的影响[J]. 土壤学报, 2021, 58(6): 1574−1584WANG R X, YANG J, FANG Z, et al. Effects of water management on selenium accumulation in rice grains and bacterial community diversity in rhizosphere soil[J]. Acta Pedologica Sinica, 2021, 58(6): 1574−1584 [49] 张联合, 李友军, 苗艳芳, 等. pH对水稻离体根系吸收亚硒酸盐生理机制的影响[J]. 土壤学报, 2010, 47(3): 523−528 doi: 10.11766/trxb200904020143ZHANG L H, LI Y J, MIAO Y F, et al. Effects of pH on the physiological mechanism of selenite uptake by excised rootsofrice seedlings[J]. Acta Pedologica Sinica, 2010, 47(3): 523−528 doi: 10.11766/trxb200904020143 [50] SHARMA V K, MCDONALD T J, SOHN M, et al. Biogeochemistry of selenium. A review[J]. Environmental Chemistry Letters, 2015, 13(1): 49−58 doi: 10.1007/s10311-014-0487-x [51] WANG Y Q, WANG K, WANG Q, et al. Selenite uptake and transformation in rice seedlings (Oryza sativa L.): Response to phosphorus nutrient status[J]. Frontiers in Plant Science, 2020, 11: 874 doi: 10.3389/fpls.2020.00874 [52] LIU S G, SALHI E, HUANG W T, et al. Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide[J]. Water Research, 2019, 164: 114876 doi: 10.1016/j.watres.2019.114876 [53] RASHID M, KANG Y M, SAKURAI K. Selenium in amorphous iron (hydr)oxide-applied soil as affected by air-drying and pH[J]. Soil Science and Plant Nutrition, 2002, 48(2): 243−250 doi: 10.1080/00380768.2002.10409197 [54] JACKSON B P, MILLER W P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides[J]. Soil Science Society of America Journal, 2000, 64(5): 1616−1622 doi: 10.2136/sssaj2000.6451616x [55] WANG D, ZHOU F, YANG W X, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors[J]. Chemosphere, 2017, 182: 284−292 doi: 10.1016/j.chemosphere.2017.05.014 [56] SCHIAVON M, NARDI S, DALLA VECCHIA F, et al. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition[J]. Plant and Soil, 2020, 453(1/2): 245−270 -