留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响

叶盛嘉 郑晨萌 张影 刘星

叶盛嘉, 郑晨萌, 张影, 刘星. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658
引用本文: 叶盛嘉, 郑晨萌, 张影, 刘星. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658
YE S J, ZHENG C M, ZHANG Y, LIU X. Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658
Citation: YE S J, ZHENG C M, ZHANG Y, LIU X. Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658

氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响

doi: 10.12357/cjea.20210658
基金项目: 国家自然科学基金项目(41601250)、河南省大学生创新训练计划项目(S202110467023)和河南科技学院大学生创新训练计划项目(2021CX45)资助
详细信息
    作者简介:

    叶盛嘉, 主要从事作物养分资源管理方面的研究。E-mail: 347335020@qq.com

    通讯作者:

    刘星, 主要从事土壤微生物生态学方向研究。E-mail: liux@hist.edu.cn

  • 中图分类号: S156

Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan Province

Funds: The study was supported by the National Natural Science Foundation of China (41601250), the Innovation Training Project for Undergraduates of Henan Province (S202110467023) and the Innovation Training Project for Undergraduates of Henan Institute of Science and Technology (2021CX45).
More Information
  • 摘要: 为了探索豫中地区冬小麦-夏玉米轮作的减氮潜力, 构建适宜的作物养分管理体系, 通过连续3年的田间定位试验, 研究了化学氮肥减量配施有机肥对冬小麦-夏玉米轮作系统生产力和土壤性质的影响。田间试验设置10个处理, 包括完全不施肥(CK)、农户常规施氮量(100%CNF)、农户常规施氮量递减20% (80%CNF、60%CNF和40%CNF)、单施有机肥(OF)、农户常规施氮量配施有机肥(100%CNF+OF)及氮肥减量配施有机肥(80%CNF+OF、60%CNF+OF和40%CNF+OF)。分析各处理间小麦、玉米籽粒产量和地上部生物量以及土壤理化性质、酶活性和细菌群落的差异。结果表明, 不配施有机肥条件下, 小麦和玉米籽粒产量和地上部生物量均以80%CNF处理最高。与100%CNF相比, 80%CNF处理小麦籽粒产量和地上部生物量分别增加9.67%~10.55%和30.53%~35.76%, 玉米籽粒产量和地上部生物量分别增加28.06%~51.42%和29.62%~41.27%。有机肥施用进一步扩大氮肥减量空间, 60%CNF+OF和40%CNF+OF处理小麦产量较80%CNF处理无差异, 60%CNF+OF处理玉米产量较80%CNF处理无差异。减氮及其配施有机肥并不影响土壤有机质、易氧化有机碳和全氮含量以及pH, 但大幅降低硝态氮含量, 对铵态氮、速效磷和速效钾含量的影响因处理不同而异。与100%CNF相比, 减氮配施有机肥增加土壤脲酶和芳基硫酸酯酶活性, 但降低了β-葡萄糖苷酶活性, 对蔗糖酶、碱性磷酸酶和脱氢酶活性无显著影响。减氮配施有机肥处理能够改善土壤细菌群落α多样性, 60%CNF+OF和40%CNF+OF处理辛普森指数和均匀度指数较100%CNF均显著增加。减氮配施有机肥也显著影响土壤细菌群落β多样性, 且氮肥减量相较有机肥施用效果更为突出。在门水平, 变形菌门、放线菌门和酸杆菌门是细菌群落优势成员, 减氮配施有机肥较100%CNF处理显著降低放线菌门平均相对丰度为10.92%~14.39%; 在属水平, 减氮配施有机肥处理显著增加unclassified Gp6和Sphingomonas平均相对丰度, 但降低了NocardioidesKribbellaLechevalieriaPromicromonosporaMassiliaGlycomycesDongia平均相对丰度。冗余分析表明, 速效钾和硝态氮含量是影响细菌群落结构最重要的2个土壤理化因子。共发生网络分析也证实, 化学氮肥减施增强了细菌群落成员的互作强度, 提高了细菌互作网络的复杂性和连通性。本试验条件下, 小麦和玉米季农户常规施氮量分别减少60%和40%并各配施3000 kg∙hm−2有机肥能够维持相对较高的轮作生产力, 这不仅能够实现最大减氮潜力, 同时还能改善土壤微生物多样性和群落结构。
  • 图  1  2019年玉米收获时各施肥处理下土壤细菌群落β多样性的比较

    A: 所有供试处理间的土壤细菌群落β多样性比较; B: 施用有机肥与不施用有机肥处理间的土壤细菌群落β多样性比较; C: 不施用有机肥处理间的土壤细菌群落β多样性比较; D: 施用有机肥处理间的土壤细菌群落β多样性比较; E: 剔除CK后不施用有机肥处理间土壤细菌群落β多样性比较; F: 剔除OF后施用有机肥处理间土壤细菌群落β多样性比较。Comparison of the β diversity of soil bacterial community under all tested treatments (A), between the treatments with and without organic fertilization (B), among treatments without organic fertilization (C), among treatments with organic fertilization (D), among treatments without organic fertilization after removing CK (E), and among treatments with organic fertilization after removing OF (F).

    Figure  1.  The β diversity of soil bacterial community under different fertilization treatments at maize harvest in 2019

    图  2  2019年玉米收获时土壤细菌群落中最丰富的50个属在不同施肥处理下的平均相对丰度变化

    同行不同小写字母表示不同处理间差异显著(P<0.05), 括号中数字表示该细菌属在30个供试土壤样本中的平均相对丰度, 比例尺表示平均相对丰度。Within a row, different lowercase letters mean significant differences at P<0.05 level among treatments. The number in brackets indicates the mean of average relative abundance of this genus across 30 tested soil samples, and the scale represents average relative abundance.

    Figure  2.  Average relative abundances of top 50 abundant genera in soil bacterial community under different fertilization treatments at maize harvest in 2019

    图  3  土壤理化性质与细菌群落结构的关系

    SOM: 土壤有机质; TN: 全氮; EOOC: 易氧化有机碳; AN: 铵态氮; NN: 硝态氮; AP: 速效磷; AK: 速效钾。SOM: organic matter; TN: total nitrogen; EOOC: easily oxidized organic carbon; AN: NH4+-N; NN: NO3-N; AP: available phosphorus; AK: available potassium.

    Figure  3.  Relationship of soil physicochemical properties and bacterial community structure

    表  1  田间试验各处理施肥量

    Table  1.   Fertilization rates in different treatments employed in the present study

    处理
    Treatment
    小麦 Wheat玉米 Maize小麦+玉米(全年) Wheat + maize (annual)
    化肥 Chemical fertilizer有机肥
    Organic fertilizer
    化肥 Chemical fertilizer有机肥
    Organic fertilizer
    化肥 Chemical fertilizer有机肥
    Organic fertilizer
    NP2O5K2ONP2O5K2ONP2O5K2O
    kg∙hm−2  
    CK000000000000
    100%CNF225120120027012012004952402400
    80%CNF180120120021612012003962402400
    60%CNF135120120016212012002972402400
    40%CNF90120120010812012001982402400
    OF000300000030000006000
    100%CNF+OF225120120300027012012030004952402406000
    80%CNF+OF180120120300021612012030003962402406000
    60%CNF+OF135120120300016212012030002972402406000
    40%CNF+OF90120120300010812012030001982402406000
      有机肥用量基于肥料生产商推荐。The application rate of organic fertilizer is recommended by the fertilizer manufacturer.
    下载: 导出CSV

    表  2  2017—2019年各施肥处理下小麦、玉米的籽粒产量和地上部生物量

    Table  2.   Grain yields and aboveground biomasses of wheat and maize under different fertilization treatments from 2017 to 2019

    作物
    Crop
    处理
    Treatment
    籽粒产量 Grain yield地上部生物量 Aboveground biomass
    201720182019201720182019
    t∙hm−2  
    小麦 WheatCK8.03±0.30e7.14±0.77c7.48±0.61f 22.83±2.89f24.57±3.31e23.98±3.43d
    100%CNF12.41±0.22bcd12.23±0.18ab12.23±0.71bcd33.47±1.77e33.57±3.65d34.06±2.68c
    80%CNF13.61±0.68a13.52±0.63a13.46±0.12ab45.44±1.22ab44.97±0.63ab44.46±1.44ab
    60%CNF13.38±0.32ab12.76±0.57ab12.74±0.17abcd35.95±2.34de40.49±2.05bc37.93±1.19bc
    40%CNF11.73±0.54d12.00±0.75b11.80±0.14d35.16±2.08de36.45±2.45cd34.00±1.94c
    OF8.57±0.70e8.14±0.70c8.72±1.27e24.55±2.88f26.96±4.68e26.52±3.85d
    100%CNF+OF12.13±1.11cd11.95±0.33b12.16±0.61cd37.89±3.23cde36.37±3.83cd36.80±3.09c
    80%CNF+OF13.65±0.43a13.50±1.11a13.49±0.66a48.74±4.45a48.21±3.11a46.89±5.95a
    60%CNF+OF13.10±0.70abc13.30±0.43ab12.71±0.42abcd39.62±1.46cd41.20±1.61bc39.62±3.32bc
    40%CNF+OF13.32±0.56ab12.75±1.11ab13.13±0.90abc42.72±3.12bc41.00±1.58bc44.30±5.52ab
    玉米 MaizeCK7.44±0.76d7.80±0.62e7.70±1.08d20.05±2.32d20.42±2.39e20.31±2.49f
    100%CNF10.25±0.42c10.94±0.50cd9.53±1.13cd28.55±2.12bc29.24±1.37cd27.84±2.82cde
    80%CNF13.57±1.41ab14.01±1.52a14.43±2.91a37.46±2.23a37.90±1.53a39.33±3.58a
    60%CNF12.30±1.05ab12.26±0.75abcd11.72±1.39bc31.40±5.40abc31.35±5.23bcd30.81±5.89bcde
    40%CNF10.33±0.93c10.61±1.43d9.42±0.69cd26.20±2.46c26.48±1.87d25.29±2.34ef
    OF7.50±0.63d7.94±0.23e8.02±1.50d25.84±3.45c26.28±2.60d26.36±4.22def
    100%CNF+OF11.85±0.12bc11.91±1.33bcd12.42±1.10b31.93±3.74abc31.99±4.32bcd32.50±4.61abcd
    80%CNF+OF12.74±1.30ab13.46±0.54ab13.19±0.40ab35.61±3.97a36.33±2.88ab35.39±3.71ab
    60%CNF+OF13.92±1.05a13.65±1.24ab13.47±1.37ab34.77±4.25ab34.50±4.23abc34.31±4.44abc
    40%CNF+OF12.04±0.66b12.58±0.76abc12.19±0.45b33.34±0.16ab33.88±1.23abc33.49±0.13abc
      同列不同小写字母表示同一作物不同处理间差异显著(P<0.05)。Within a column, different lowercase letters mean significant differences at P<0.05 level among treatments for the same crop.
    下载: 导出CSV

    表  3  2019年玉米收获时各施肥处理下土壤理化性质

    Table  3.   Soil physicochemical properties under different fertilization treatments at maize harvest in 2019

    处理
    Treatment
    有机质Organic matter
    (g∙kg−1)
    易氧化有机碳Easily oxidized organic carbon
    (g∙kg−1)
    全氮Total nitrogen
    (g∙kg−1)
    铵态氮
    NH4+-N (mg∙kg−1)
    硝态氮
    NO3-N (mg∙kg−1)
    速效磷
    Available phosphorus (mg∙kg−1)
    速效钾Available potassium
    (mg∙kg−1)
    pH
    CK26.09±0.73a8.78±2.16a1.44±0.15a4.00±1.41bc1.89±0.98c3.50±0.99c162.67±3.79c7.93±0.13a
    100%CNF25.46±2.02a8.01±1.13a1.45±0.18a4.05±1.58bc19.05±7.62a13.74±1.59ab209.67±43.29bc7.76±0.14a
    80%CNF28.66±1.65a9.26±3.03a1.35±0.16a4.71±1.17abc4.35±1.60bc10.51±4.89bc288.00±22.52a7.89±0.11a
    60%CNF28.37±1.71a8.77±0.61a1.41±0.03a2.79±0.80c2.23±0.57c10.51±6.75bc197.33±23.97bc7.90±0.05a
    40%CNF25.89±2.23a9.43±1.99a1.35±0.09a4.54±0.38abc2.63±0.71bc10.02±3.37bc245.33±34.08ab7.82±0.04a
    OF26.55±2.95a8.83±3.02a1.35±0.16a3.38±0.76bc1.62±0.76c5.06±4.71c191.33±31.47bc7.89±0.11a
    100%CNF+OF27.34±2.47a9.33±1.81a1.40±0.08a4.70±0.45abc8.82±2.72b13.98±2.06ab218.33±32.72bc7.75±0.15a
    80%CNF+OF28.20±0.51a10.73±3.65a1.40±0.10a4.32±0.86abc7.28±3.83bc20.09±0.76a235.67±37.31ab7.84±0.15a
    60%CNF+OF26.71±1.68a8.21±1.54a1.24±0.10a4.98±1.16ab6.04±4.92bc13.32±7.79ab243.00±36.51ab7.84±0.05a
    40%CNF+OF27.92±1.93a9.42±0.76a1.33±0.11a6.25±1.41a3.56±0.45bc6.88±3.25bc206.33±46.01bc7.85±0.06a
      同列不同小写字母表示不同处理间差异显著(P<0.05)。Within a column, different lowercase letters mean significant differences at P<0.05 level among treatments.
    下载: 导出CSV

    表  4  2019年玉米收获时各施肥处理下土壤酶活性的比较

    Table  4.   Soil enzymes activities under different fertilization treatments at maize harvest in 2019

    处理
    Treatment
    脲酶 UA[µg(NH4+-N)∙g−1∙h−1]蔗糖酶 SU
    [mg(glucose)∙g−1∙h−1]
    碱性磷酸酶 ALP
    [µg(phenol)∙g−1∙h−1]
    芳基硫酸酯酶 ARL
    [µg(n-nitrophenol)∙g−1∙h−1]
    脱氢酶 DA
    [μg(TPF)∙g−1∙h−1]
    β-葡萄糖苷酶 GLU
    [µg(glucose)∙g−1∙h−1]
    CK97.27±19.63b1.81±0.26b0.27±0.18abc23.37±0.91bc2.78±0.51ab49.16±11.97bc
    100%CNF97.66±14.38b1.78±0.15b0.28±0.18abc23.03±2.24bc2.57±0.64ab72.05±15.62a
    80%CNF95.81±8.95b1.79±0.11b0.16±0.07c21.05±1.09c2.93±0.38ab70.27±3.79ab
    60%CNF97.75±23.27b1.78±0.29b0.20±0.07c22.48±2.62bc3.53±0.49a62.84±2.92ab
    40%CNF97.17±5.23b1.91±0.18b0.24±0.12bc20.97±3.03c2.03±0.27b56.59±17.45abc
    OF82.95±20.50b1.72±0.23b0.39±0.07abc22.39±4.60bc2.77±0.38ab38.16±12.59c
    100%CNF+OF105.83±15.12ab2.28±0.15a0.52±0.07a35.26±17.23ab3.03±1.36ab62.54±9.54ab
    80%CNF+OF109.34±10.23ab1.94±0.13b0.48±0.20ab31.39±5.34abc3.13±0.40ab63.28±4.64ab
    60%CNF+OF107.20±18.99ab1.88±0.12b0.40±0.07abc39.78±10.52a2.76±0.59ab40.76±9.59c
    40%CNF+OF132.90±15.48a1.81±0.06b0.36±0.12abc23.76±6.12bc2.79±0.19ab52.73±15.32abc
      同列不同小写字母表示不同处理间差异显著(P<0.05)。Within a column, different lowercase letters mean significant differences at P<0.05 level among treatments. UA: urease; SU: sucrase; ALP: alkaline phosphatase; ARL: arylsulphatase; DA: dehydrogenase; GLU: β-glucosidase.
    下载: 导出CSV

    表  5  2019年玉米收获时各施肥处理下土壤细菌群落α多样性的比较

    Table  5.   The α diversity of soil bacterial community under different fertilization treatments at maize harvest in 2019

    处理
    Treatment
    物种数
    Observed species
    丰富度
    Chao1 index
    香农指数
    Shannon index
    辛普森指数
    Simpson index
    均匀度指数
    Pielou index
    谱系多样性指数
    Faith index
    CK6191.7±239.4a6957.3±297.3a11.45±0.07a0.9993±0.0001a0.9807±0.0013a430.6±28.2a
    100%CNF6247.5±82.7a7076.3±95.4a11.30±0.03bc0.9990±0.0001bc0.8960±0.0013d433.9±11.4a
    80%CNF6418.9±386.4a7237.3±395.4a11.39±0.07abc0.9991±0.0001abc0.9003±0.0039bcd446.6±19.6a
    60%CNF6251.4±265.9a7038.9±375.9a11.40±0.06abc0.9992±0.0001a0.9037±0.0016ab447.2±31.2a
    40%CNF6166.2±225.5a6984.9±182.1a11.28±0.07c0.9990±0.0001c0.8962±0.0025d434.6±22.1a
    OF6423.8±131.3a7210.5±113.7a11.43±0.08ab0.9992±0.0001ab0.9036±0.0044ab451.6±16.3a
    100%CNF+OF6559.1±363.6a7437.4±395.3a11.38±0.10abc0.9991±0.0001abc0.8975±0.0032cd462.3±23.1a
    80%CNF+OF6369.5±335.5a7232.4±396.0a11.40±0.09abc0.9992±0.0001ab0.9019±0.0019bc450.9±31.0a
    60%CNF+OF6414.7±178.0a7258.7±158.9a11.40±0.06abc0.9992±0.0001a0.9016±0.0025bc447.9±17.3a
    40%CNF+OF6313.3±137.0a7140.6±154.9a11.42±0.04ab0.9992±0.0001a0.9048±0.0031ab445.7±11.5a
      同列不同小写字母表示不同处理间差异显著(P<0.05)。Within a column, different lowercase letters mean significant differences at P<0.05 level among treatments.
    下载: 导出CSV

    表  6  2019年玉米收获时各施肥处理下土壤主要细菌门平均相对丰度的比较

    Table  6.   Average relative abundances of soil major bacterial phyla under different fertilization treatments at maize harvest in 2019

    处理
    Treatment
    变形菌门
    Proteobacteria
    放线菌门
    Actinobacteria
    酸杆菌门
    Acidobacteria
    拟杆菌门
    Bacteroidetes
    绿弯菌门
    Chloroflexi
    髌骨细菌门
    Patescibacteria
    芽单胞菌门
    Gemmatimonadetes
    疣微菌门
    Verrucomicrobia
    % 
    CK30.09±0.80bc26.80±3.25ab14.65±2.24a6.76±0.29b8.11±0.33a2.22±0.48d3.16±0.42ab1.88±0.70a
    100%CNF31.46±0.45abc28.29±1.09a11.41±1.63b7.90±0.96ab7.04±0.64b3.58±0.33ab2.90±0.48ab1.57±0.48a
    80%CNF32.39±1.44a26.51±1.46ab12.54±0.91ab8.91±0.96a6.48±0.67b3.19±0.38abc3.02±0.33ab1.71±0.19a
    60%CNF31.02±0.29abc25.20±1.83b13.26±1.30ab8.03±0.56ab7.56±0.06ab3.07±0.46bcd3.28±0.39ab1.93±0.61a
    40%CNF30.97±0.34abc29.06±1.71a11.38±0.51b8.72±0.39a7.15±0.45ab3.60±0.49ab2.53±0.07b1.32±0.23a
    OF29.80±1.16c29.07±1.66a12.84±2.67ab7.76±1.82ab7.26±0.91ab2.49±0.57cd2.91±0.77ab1.97±0.60a
    100%CNF+OF32.38±1.20a26.99±0.89ab11.03±1.40b8.36±0.57ab6.49±0.52b3.82±0.86ab3.06±0.29ab2.08±0.18a
    80%CNF+OF33.05±2.28a24.60±1.44b12.67±0.81ab8.54±1.15a6.55±0.81b3.41±0.14ab3.21±0.17ab1.95±0.63a
    60%CNF+OF32.03±0.92ab24.22±0.88b13.90±1.14ab8.87±0.11a6.75±0.24b3.33±0.39abc3.39±0.38a1.72±0.71a
    40%CNF+OF32.31±1.18a24.42±0.60b12.91±0.73ab8.48±0.97a7.05±0.30b4.03±0.31a3.34±0.33a1.73±0.49a
      同列不同小写字母表示不同处理间差异显著(P<0.05)。Within a column, different lowercase letters mean significant differences at P<0.05 level among treatments.
    下载: 导出CSV

    表  7  2019年玉米收获时土壤不同减氮处理下细菌共发生网络的拓扑学性质比较

    Table  7.   Topological properties of bacterial co-occurrence networks under reduced N fertilization conditions at maize harvest in 2019

    网络性质
    Network property
    100%
    CNF
    80%
    CNF
    60%
    CNF
    40%
    CNF
    节点数 Number of nodes115116115114
    边数 Number of edges321330456469
    正相关边数 Number of positive edges184160234227
    负相关边数 Number of negative edges137170222242
    模块度 Modularity0.5760.6130.5400.476
    模块数 Number of modules8867
    网络直径 Network diameter81087
    平均路径长度 Average path length3.5643.9563.2513.250
    平均度 Average degree5.5835.6907.9308.228
    图形密度 Graph density0.0490.0490.0700.073
    平均聚类系数 Average clustering coefficient0.2720.2790.3040.360
    下载: 导出CSV
  • [1] WEI W L, YAN Y, CAO J, et al. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: an integrated analysis of long-term experiments[J]. Agriculture, Ecosystems & Environment, 2016, 225: 86−92
    [2] MIAO Y X, STEWART B A, ZHANG F S. Long-term experiments for sustainable nutrient management in China. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397−414 doi: 10.1051/agro/2010034
    [3] NINH H T, GRANDY A S, WICKINGS K, et al. Organic amendment effects on potato productivity and quality are related to soil microbial activity[J]. Plant and Soil, 2015, 386(1/2): 223−236
    [4] LI H, FENG W T, HE X H, et al. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain[J]. Journal of Integrative Agriculture, 2017, 16(4): 937−946 doi: 10.1016/S2095-3119(16)61559-9
    [5] SAHARIAH B, DAS S, GOSWAMI L, et al. An avenue for replacement of chemical fertilization under rice-rice cropping pattern: sustaining soil health and organic C pool via MSW-based vermicomposts[J]. Archives of Agronomy and Soil Science, 2020, 66(10): 1449−1465 doi: 10.1080/03650340.2019.1679782
    [6] LUAN H A, GAO W, HUANG S W, et al. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system[J]. Soil and Tillage Research, 2019, 191: 185−196 doi: 10.1016/j.still.2019.04.009
    [7] JI L F, NI K, WU Z D, et al. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization[J]. Biology and Fertility of Soils, 2020, 56(5): 633−646 doi: 10.1007/s00374-020-01439-y
    [8] ZHANG X Y, FANG Q C, ZHANG T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: a meta-analysis[J]. Global Change Biology, 2020, 26(2): 888−900 doi: 10.1111/gcb.14826
    [9] 申长卫, 袁敬平, 李新华, 等. 有机肥氮替代20%化肥氮提高豫北冬小麦氮肥利用率和土壤肥力[J]. 植物营养与肥料学报, 2020, 26(8): 1395−1406 doi: 10.11674/zwyf.19504

    SHEN C W, YUAN J P, LI X H, et al. Improving winter wheat N utilization efficiency and soil fertility through replacement of chemical N by 20% organic manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1395−1406 doi: 10.11674/zwyf.19504
    [10] 吕凤莲, 侯苗苗, 张弘弢, 等. 土冬小麦–夏玉米轮作体系有机肥替代化肥比例研究[J]. 植物营养与肥料学报, 2018, 24(1): 22−32 doi: 10.11674/zwyf.17210

    LYU F L, HOU M M, ZHANG H T, et al. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22−32 doi: 10.11674/zwyf.17210
    [11] CHAPARRO J M, SHEFLIN A M, MANTER D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489−499 doi: 10.1007/s00374-012-0691-4
    [12] WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. PNAS, 2014, 111(14): 5266−5270 doi: 10.1073/pnas.1320054111
    [13] SALWAN R, SHARMA A, SHARMA V. Microbes mediated plant stress tolerance in saline agricultural ecosystem[J]. Plant and Soil, 2019, 442(1/2): 1−22
    [14] 赵亚南, 徐霞, 黄玉芳, 等. 河南省小麦、玉米氮肥需求及节氮潜力[J]. 中国农业科学, 2018, 51(14): 2747−2757 doi: 10.3864/j.issn.0578-1752.2018.14.012

    ZHAO Y N, XU X, HUANG Y F, et al. Nitrogen requirement and saving potential for wheat and maize in Henan Province[J]. Scientia Agricultura Sinica, 2018, 51(14): 2747−2757 doi: 10.3864/j.issn.0578-1752.2018.14.012
    [15] 赵亚南, 徐霞, 孙笑梅, 等. 基于GIS的河南省不同区域小麦氮磷钾推荐量与施肥配方[J]. 植物营养与肥料学报, 2021, 27(6): 938−948 doi: 10.11674/zwyf.20557

    ZHAO Y N, XU X, SUN X M, et al. GIS-based NPK recommendation and fertilizer formulae for wheat production in different regions of Henan Province[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 938−948 doi: 10.11674/zwyf.20557
    [16] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2008

    BAO S D. Analytical Methods of Soils and Agrochemistry[M]. Beijing: China Agriculture Press, 2008
    [17] ZHANG D B, YAO P W, ZHAO N, et al. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China[J]. Geoderma, 2019, 337: 425−433 doi: 10.1016/j.geoderma.2018.09.053
    [18] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008

    LI Z G, LUO Y M, TENG Y. Analytical Methods in Soil and Environmental Microbiology[M]. Beijing: Science Press, 2008
    [19] XU N, TAN G C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1−8 doi: 10.1016/j.ejsobi.2016.02.004
    [20] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852−857 doi: 10.1038/s41587-019-0209-9
    [21] RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918−1927 doi: 10.1111/j.1365-2486.2012.02639.x
    [22] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315−322 doi: 10.1038/ngeo844
    [23] SHEN W S, NI Y Y, GAO N, et al. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates[J]. Applied Soil Ecology, 2016, 108: 76−83 doi: 10.1016/j.apsoil.2016.08.005
    [24] ZENG J, LIU X J, SONG L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 2016, 92: 41−49 doi: 10.1016/j.soilbio.2015.09.018
    [25] TANG H M, LI C, XIAO X P, et al. Effects of short-term manure nitrogen input on soil microbial community structure and diversity in a double-cropping paddy field of Southern China[J]. Scientific Reports, 2020, 10: 13540 doi: 10.1038/s41598-020-70612-y
    [26] XU A X, LI L L, COULTER J A, et al. Long-term nitrogen fertilization impacts on soil bacteria, grain yield and nitrogen use efficiency of wheat in semiarid Loess Plateau, China[J]. Agronomy, 2020, 10(8): 1175 doi: 10.3390/agronomy10081175
    [27] ZHANG M L, ZHANG X, ZHANG L Y, et al. The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition[J]. Geoderma, 2021, 382: 114752 doi: 10.1016/j.geoderma.2020.114752
    [28] ZHOU J, GUAN D W, ZHOU B K, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China[J]. Soil Biology and Biochemistry, 2015, 90: 42−51 doi: 10.1016/j.soilbio.2015.07.005
    [29] VAN DER BOM F, NUNES I, RAYMOND N S, et al. Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field[J]. Soil Biology and Biochemistry, 2018, 122: 91−103 doi: 10.1016/j.soilbio.2018.04.003
    [30] DAI X L, SONG D L, ZHOU W, et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in South China[J]. Soil and Tillage Research, 2021, 205: 104753 doi: 10.1016/j.still.2020.104753
    [31] LI J, COOPER J M, LIN Z A, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Applied Soil Ecology, 2015, 96: 75−87 doi: 10.1016/j.apsoil.2015.07.001
    [32] BLANCHET G, GAVAZOV K, BRAGAZZA L, et al. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system[J]. Agriculture, Ecosystems & Environment, 2016, 230: 116−126
    [33] DAI Z M, SU W Q, CHEN H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe[J]. Global Change Biology, 2018, 24(8): 3452−3461 doi: 10.1111/gcb.14163
    [34] FU L, XIONG W, DINI-ANDREOTE F, et al. Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 307 doi: 10.15302/J-FASE-2020328
    [35] LAZCANO C, BOYD E, HOLMES G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Scientific Reports, 2021, 11(1): 1−17 doi: 10.1038/s41598-020-79139-8
    [36] CHEN L, REDMILE-GORDON M, LI J W, et al. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes[J]. Applied Soil Ecology, 2019, 139: 1−9 doi: 10.1016/j.apsoil.2019.03.011
    [37] BUYER J S, TEASDALE J R, ROBERTS D P, et al. Factors affecting soil microbial community structure in tomato cropping systems[J]. Soil Biology and Biochemistry, 2010, 42(5): 831−841 doi: 10.1016/j.soilbio.2010.01.020
    [38] PENG C J, LAI S S, LUO X S, et al. Effects of long term rice straw application on the microbial communities of rapeseed rhizosphere in a paddy-upland rotation system[J]. Science of the Total Environment, 2016, 557/558: 231−239 doi: 10.1016/j.scitotenv.2016.02.184
    [39] DING J L, JIANG X, MA M C, et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China[J]. Applied Soil Ecology, 2016, 105: 187−195 doi: 10.1016/j.apsoil.2016.04.010
    [40] ZHU J, PENG H, JI X H, et al. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils[J]. European Journal of Soil Biology, 2019, 94: 103116 doi: 10.1016/j.ejsobi.2019.103116
    [41] LIU W B, LING N, GUO J J, et al. Legacy effects of 8-year nitrogen inputs on bacterial assemblage in wheat rhizosphere[J]. Biology and Fertility of Soils, 2020, 56(5): 583−596 doi: 10.1007/s00374-020-01435-2
    [42] YAO M J, RUI J P, LI J B, et al. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe[J]. Soil Biology and Biochemistry, 2014, 79: 81−90 doi: 10.1016/j.soilbio.2014.09.009
    [43] JIANG Y L, LEI Y B, YANG Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence[J]. Soil Biology and Biochemistry, 2018, 118: 207−216 doi: 10.1016/j.soilbio.2017.12.019
    [44] MORRIËN E, HANNULA S E, SNOEK L B, et al. Soil networks become more connected and take up more carbon as nature restoration progresses[J]. Nature Communications, 2017, 8: 14349 doi: 10.1038/ncomms14349
    [45] MOUGI A, KONDOH M. Diversity of interaction types and ecological community stability[J]. Science, 2012, 337(6092): 349−351 doi: 10.1126/science.1220529
    [46] MENDES L W, RAAIJMAKERS J M, DE HOLLANDER M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018, 12(1): 212−224 doi: 10.1038/ismej.2017.158
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  137
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 录用日期:  2021-10-28
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回