留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实现地下水压采目标的精准控灌决策支持系统研究

王鸿玺 李红军 齐永青 董增波 李飞 阎超 邵立威 张喜英

王鸿玺, 李红军, 齐永青, 董增波, 李飞, 阎超, 邵立威, 张喜英. 实现地下水压采目标的精准控灌决策支持系统研究[J]. 中国生态农业学报 (中英文), 2022, 30(1): 138−152 doi: 10.12357/cjea.20210676
引用本文: 王鸿玺, 李红军, 齐永青, 董增波, 李飞, 阎超, 邵立威, 张喜英. 实现地下水压采目标的精准控灌决策支持系统研究[J]. 中国生态农业学报 (中英文), 2022, 30(1): 138−152 doi: 10.12357/cjea.20210676
WANG H X, LI H J, QI Y Q, DONG Z B, LI F, YAN C, SHAO L W, ZHANG X Y. Development of a decision support system for irrigation management to control groundwater withdrawal[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 138−152 doi: 10.12357/cjea.20210676
Citation: WANG H X, LI H J, QI Y Q, DONG Z B, LI F, YAN C, SHAO L W, ZHANG X Y. Development of a decision support system for irrigation management to control groundwater withdrawal[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 138−152 doi: 10.12357/cjea.20210676

实现地下水压采目标的精准控灌决策支持系统研究

doi: 10.12357/cjea.20210676
基金项目: 河北省节水科技创新专项(21326410D)和国网河北省电力有限公司项目(SGHEYX00SCJS2100077)资助
详细信息
    作者简介:

    王鸿玺,主要从事用电信息采集及智能量测技术研究。E-mail: down_in_river@163.com

    通讯作者:

    张喜英, 主要从事农田节水机理与技术研究。E-mail: xyzhang@sjziam.ac.cn

  • 中图分类号: S158.2

Development of a decision support system for irrigation management to control groundwater withdrawal

Funds: The study was supported by the Innovation Project of Water-saving Science and Technology of Hebei Province (21326410D) and the Project of State Grid Hebei Electric Power Co., Ltd. (SGHEYX00SCJS2100077).
More Information
  • 摘要: 河北是我国重要的粮食主产省之一, 作物高产稳产严重依赖灌溉, 多年对地下水超采导致地下水位逐年下降, 威胁区域灌溉农业可持续发展。在地下水限采政策实施后, 如何实现地下水压采目标下利用有限灌水维持区域粮食生产能力, 对实现区域粮食安全和水资源可持续利用具有重要意义。本研究提出了依据国网河北电力公司对河北平原农用机井电气化改造实现的灌溉用电实时采集和计量, 通过“以电折水”换算, 根据用电数据调控地下水开采, 实现地下水开采总量控制, 满足地下水压采目标。在此基础上, 建立针对区域主要粮食作物冬小麦-夏玉米一年两熟有限供水下的优化灌水制度和灌水调控土壤主要耗水层水分下限指标, 通过提升限量供水下的水分利用效率, 维持限水条件下区域粮食生产能力。集成用电信息和限量灌溉决策指标, 形成确保地下水压采目标的精准控灌决策支持系统, 服务农业生产。该决策支持系统可在实现调控灌溉水量的同时, 进行优化灌溉决策, 既满足政府对区域地下水开采的调控需求, 也满足不同经营规模农户用水管理的需求, 具有良好的应用前景。
  • 图  1  根据河北省农业用水以电折水计量实施细则确定的浅层和深层地下水取水的电折水系数

    Figure  1.  Average coefficient for each unit electricity consumption (EWF) for uplifting unit volume of groundwater in shallow and deep groundwater pumping areas in Hebei Province based on the rules formulated by Hebei Hydraulic Bureau

    图  2  2007—2016年冬小麦和夏玉米开花期和成熟期及3种灌水制度下生物量、籽粒产量和生育期蒸散量的模拟和实测结果对比

    Figure  2.  Simulated and measured values of flowering and maturity time and biomass, grain yield, seasonal evapotranspiration under three irrigation schedules of winter wheat and summer maize during 2007−2016

    图  3  利用APSIM模型模拟3种灌水模式下2011—2016年冬小麦和夏玉米生长期间0~1 m土壤体积含水量变化动态(a: 充分灌水; b: 关键期灌溉; c: 最小灌溉)

    Figure  3.  Simulated and measured soil water contents for the top 1 m soil profile during 2011−2016 for winter wheat and maize under three irrigation schedules (a: full irrigation; b: critical stage irrigation; c: minimum irrigation)

    图  4  河北平原石家庄市栾城区利用APSIM模型模拟的年灌水总量210 mm条件下2009—2019年冬小麦和夏玉米生育期水量分配变化对两种作物产量的影响

    Figure  4.  Changes in grain yield for winter wheat and summer maize under different allocation of a limited total 210 mm irrigation water to two crops simulated by APSIM from 2009 to 2019 at Luancheng District of Shijiazhuang in the Hebei Plain

    图  5  利用APSIM模型模拟的2009—2019年河北平原石家庄市栾城区冬小麦生育期可用水量150 mm条件下灌水次数变化对冬小麦产量的影响(图中阴影部分表示95%置信区间的回归估计值)

    Figure  5.  Effects of irrigation frequency on grain yield of winter wheat under a limited total irrigation amount of 150 mm during the growing season from 2009 to 2019 at Luancheng District of Shijiazhuang of the Hebei Plain (the shaded part in the figure representing the regression estimate of the 95% confidence interval)

    图  6  利用APSIM模型模拟的有限灌水下冬小麦生育期土壤水分下限指标(0~1 m土层平均体积含水量)

    Figure  6.  Simulated soil volumetric water contents for the top 1 m soil profile during winter wheat growing seasons using APSIM to indicate the low limit for irrigation scheduling of winter wheat

    图  7  2018—2019年冬小麦和夏玉米最小灌溉(MI)、关键期灌溉(CI)和充分灌溉(FI)下叶面积指数、平均阶段日蒸散量和参考作物日蒸散量的变化

    Figure  7.  Changes in leaf area index, average daily evapotranspiration (ET) and reference crop ET for winter wheat and summer maize during 2018—2019 under full irrigation (FI), critical stage irrigation (CI) and minimum irrigation (MI)

    图  8  2018—2019年冬小麦和夏玉米生长季最小灌溉、关键期灌溉和充分灌溉下利用水量平衡方法模拟和测定的根层平均土壤体积含水量日变化

    Figure  8.  Simulated and measured daily average soil water contents for the major root zone profile of winter wheat and summer maize under minimum, critical stage and full irrigation schedules using the water-balance equation for the season of 2018−2019

    图  9  依托电力大数据的精准控灌决策支持系统工作流程框图

    Figure  9.  Precision irrigation decision system based on the electricity data in underground water pumping for implementation of limited groundwater withdraw scheme

    表  1  河北平原地下水超采区灌溉耕地面积和单位面积耕地可用水量

    Table  1.   Total irrigated land area and average available water amount for irrigation per cultivated land area in Hebei Plain

    区域
    Region
    地级市
    City
    灌溉耕地面积
    Irrigated farmland
    area (×104 hm2)
    单位耕地面积可用水量 Available water per area for irrigation (m3∙hm−2)
    平均值
    Average
    最低值(县)
    Lowest value (county)
    最高值(县、区、市)
    Highest value (county, district, city)
    山前平原区
    Piedmont plain
    石家庄 Shijiazhuang43.962589.02040 (高邑县 Gaoyi County)2955 (赞皇县 Zanhuang County)
    保定 Baoding57.252077.51367 (博野县 Boye County)2985 (满城区 Mancheng District)
    邢台 Xingtai58.131752.01229 (威县 Weixian County)2880 (沙河市 Shahe City)
    邯郸 Handan60.712041.51259 (曲周县 Quzhou County)2694 (磁县 Cixian County)
    中东部低平原区
    Central and eastern lower plain
    沧州 Cangzhou70.281191.0663 (沧县 Cangxian County)1919 (吴桥县 Wuqiao County)
    衡水 Hengshui57.251783.51019 (饶阳县 Yaoyang County)2309 (武强县 Wuqiang County)
    廊坊 Langfang30.121443.0753 (文安县 Wen’an County)2760 (香河县 Xianghe County)
    下载: 导出CSV

    表  2  冬小麦和夏玉米不同生育期根深和充分供水下作物系数取值(根据栾城试验站田间试验结果确定)

    Table  2.   Root depths and crop coefficients of winter wheat and summer maize at different growing stages without water stress (results are obtained from Luancheng Station)

    作物
    Crop
    项目
    Item
    越冬前
    Before winter dormancy
    越冬期间
    Winter dormancy
    返青—拔节
    Recovery to jointing
    拔节—抽穗
    Jointing to heading
    抽穗—灌浆
    Heading to grain-filling
    成熟
    Maturity
    冬小麦
    Winter wheat
    根系主要耗水层
    Major soil depth for root water uptake (m)
    0~0.40~0.50~0.60~0.90~1.30~1.5
    作物系数
    Crop coefficient
    0.670.380.801.311.380.95
    作物
    Crop
    项目
    Item
    苗期
    Seedling
    5叶—大喇叭口
    Five- to nine-leaf
    大喇叭口—抽雄
    Nine-leaf to tasseling
    抽雄—灌浆
    Tasseling to grain-filling
    成熟期
    Maturity
    夏玉米
    Summer maize
    根系主要耗水层
    Major soil depth for root water uptake (m)
    0~0.40~0.50~0.60~0.80~1.0
    作物系数
    Crop coefficient
    0.590.901.211.181.10
    下载: 导出CSV
  • [1] 罗海平, 黄晓玲. 我国粮食主产区粮食生产中的水资源利用及影响研究[J]. 农业经济, 2020, (2): 3−5 doi: 10.3969/j.issn.1001-6139.2020.02.001

    LUO H P, HUANG X L. Water resource use and effects in grain production in the major crop grown regions in China[J]. Agricultural Economy, 2020, (2): 3−5 doi: 10.3969/j.issn.1001-6139.2020.02.001
    [2] 刘海若, 白美健, 刘群昌, 等. 华北井灌区地下水水位变化现状及应对措施建议[J]. 中国水利, 2016, (9): 25−28 doi: 10.3969/j.issn.1000-1123.2016.09.009

    LIU H R, BAI M J, LIU Q C, et al. Current situation and countermeasures of groundwater level alteration in well-irrigated districts in North China[J]. China Water Resources, 2016, (9): 25−28 doi: 10.3969/j.issn.1000-1123.2016.09.009
    [3] 张光辉, 连英立, 刘春华, 等. 华北平原水资源紧缺情势与因源[J]. 地球科学与环境学报, 2011, 33(2): 172−176 doi: 10.3969/j.issn.1672-6561.2011.02.012

    ZHANG G H, LIAN Y L, LIU C H, et al. Situation and origin of water resources in short supply in North China Plain[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 172−176 doi: 10.3969/j.issn.1672-6561.2011.02.012
    [4] 王电龙, 张光辉. 不同气候条件下华北粮食主产区地下水保障能力时空特征与机制[J]. 地球学报, 2017, 38(S1): 47−50 doi: 10.3975/cagsb.2017.s1.13

    WANG D L, ZHANG G H. Groundwater ensure capacity spatial-temporal characteristics and mechanism in main grain producing areas of North China Plain under different climatic conditions[J]. Acta Geoscientica Sinica, 2017, 38(S1): 47−50 doi: 10.3975/cagsb.2017.s1.13
    [5] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109−120 doi: 10.1016/S0168-1923(02)00015-1
    [6] ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6): 1097−1104 doi: 10.1016/j.agwat.2011.02.003
    [7] 陈飞, 丁跃元, 李原园, 等. 华北地区地下水超采治理实践与思考[J]. 南水北调与水利科技(中英文), 2020, 18(2): 191−198

    CHEN F, DING Y Y, LI Y Y, et al. Practice and consideration of groundwater overexploitation in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(2): 191−198
    [8] SUN H Y, ZHANG X Y, WANG E L, et al. Quantifying the impact of irrigation on groundwater reserve and crop production — A case study in the North China Plain[J]. European Journal of Agronomy, 2015, 70: 48−56 doi: 10.1016/j.eja.2015.07.001
    [9] CAO G L, HAN D M, SONG X F. Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain[J]. Hydrological Processes, 2014, 28(4): 1797−1808 doi: 10.1002/hyp.9732
    [10] 王剑永. “以电折水”方法研究与应用[J]. 中国水利, 2017, (11): 34−35 doi: 10.3969/j.issn.1000-1123.2017.11.012

    WANG J Y. Using electricity consumption to converse into groundwater pumping amount[J]. China Water Resources, 2017, (11): 34−35 doi: 10.3969/j.issn.1000-1123.2017.11.012
    [11] 吴美, 兰凤, 谢磊. 河北省农业地下水水量核定“以电折水”系数测量方法分析[J]. 河北水利, 2019, (8): 30−31 doi: 10.3969/j.issn.1004-7700.2019.08.022

    WU M, LAN F, XIE L. Methods in underground water withdraw amount decided by electricity use[J]. Hebei Water Resources, 2019, (8): 30−31 doi: 10.3969/j.issn.1004-7700.2019.08.022
    [12] 王剑永. 河北省农业地下水灌区水价改革承受能力研究[J]. 海河水利, 2017, (6): 59−61 doi: 10.3969/j.issn.1004-7328.2017.06.018

    WANG J Y. Affordability in water price reform for underground water irrigation regions in Hebei[J]. Haihe Water Resources, 2017, (6): 59−61 doi: 10.3969/j.issn.1004-7328.2017.06.018
    [13] 杨会峰, 曹文庚, 支传顺, 等. 近40年来华北平原地下水位演变研究及其超采治理建议[J]. 中国地质, 2021, 48(4): 1142−1155

    YANG H F, CAO W G, ZHI C S, et al. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment[J]. Geology in China, 2021, 48(4): 1142−1155
    [14] ZHANG X Y, WANG Y Z, SUN H Y, et al. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply[J]. Irrigation Science, 2013, 31(5): 1103−1112
    [15] 张喜英. 华北典型区域农田耗水与节水灌溉研究[J]. 中国生态农业学报, 2018, 26(10): 1454−1464

    ZHANG X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1454−1464
    [16] LI J M, INANAGA S, LI Z H, et al. Optimizing irrigation scheduling for winter wheat in the North China Plain[J]. Agricultural Water Management, 2005, 76(1): 8−23 doi: 10.1016/j.agwat.2005.01.006
    [17] 梁硕硕, 关劼兮, 李璐, 等. 水分处理对冬小麦生育期耗水分配及产量影响[J]. 灌溉排水学报, 2019, 38(5): 52−59

    LIANG S S, GUAN J X, LI L, et al. Impact of irrigation schedules on yield, water consumption and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2019, 38(5): 52−59
    [18] XU X, ZHANG M, LI J, et al. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain[J]. Field Crop Research, 2018, 221: 219−227 doi: 10.1016/j.fcr.2018.02.011
    [19] SAADI S, SIMONNEAUX V, BOULET G, et al. Monitoring irrigation consumption using high resolution NDVI image time series: Calibration and validation in the Kairouan Plain (Tunisia)[J]. Remote Sensing, 2015, 7(10): 13005−13028 doi: 10.3390/rs71013005
    [20] TOUREIRO C, SERRALHEIRO R, SHAHIDIAN S, et al. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition[J]. Agricultural Water Management, 2017, 184: 211−220 doi: 10.1016/j.agwat.2016.02.010
    [21] LI H J, LI J Z, SHEN Y J, et al. Web-based irrigation decision support system with limited inputs for farmers[J]. Agricultural Water Management, 2018, 210: 279−285 doi: 10.1016/j.agwat.2018.08.025
    [22] 黄玉清, 王丹, 陈小宁. 土壤水分监测与灌溉预报系统设计[J]. 节水灌溉, 2008, (5): 13−15 doi: 10.3969/j.issn.1007-4929.2008.05.004

    HUANG Y Q, WANG D, CHEN X N. Design of soil moisture monitoring and irrigation forecast system[J]. Water Saving Irrigation, 2008, (5): 13−15 doi: 10.3969/j.issn.1007-4929.2008.05.004
    [23] 胡海军, 宫爱玺, 尚瑞朝. 地下水超采区水权分配方法及实例应用分析[J]. 地下水, 2015, 37(4): 57−58

    HU H J, GONG A X, SHANG R C. The allocation method of water rights and its application in groundwater overdraft area[J]. Ground Water, 2015, 37(4): 57−58
    [24] 马素英, 孙梅英, 付银环, 等. 河北省水权确权方法研究与实践探索[J]. 南水北调与水利科技, 2019, 17(4): 94−103

    MA S Y, SUN M Y, FU Y H, et al. Methods and practice use of water right confirmation in Hebei Province[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(4): 94−103
    [25] YAN Z Z, ZHANG X Y, RASHID M A, et al. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change[J]. Agricultural Systems, 2020, 178: 102745 doi: 10.1016/j.agsy.2019.102745
    [26] SUN H Y, ZHANG X Y, WANG E L, et al. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain[J]. Field Crops Research, 2016, 194: 94−102 doi: 10.1016/j.fcr.2016.05.007
    [27] ZHAO G, BRYAN B A, SONG X D. Sensitivity and uncertainty analysis of the APSIM-wheat model: interactions between cultivar, environmental, and management parameters[J]. Ecological Modelling, 2014, 279: 1−11 doi: 10.1016/j.ecolmodel.2014.02.003
    [28] 张喜英. 作物根系与土壤水利用[M]. 北京: 气象出版社, 1999

    ZHANG X Y. Crop Root and Soil Water Utilization[M]. Beijing: Meteorological Publishing House, 1999
    [29] ZHANG X Y, PEI D, CHEN S Y. Root growth and soil water utilization of winter wheat in the North China Plain[J]. Hydrological Processes, 2004, 18(12): 2275−2287 doi: 10.1002/hyp.5533
    [30] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration — Guidelines for computing crop water requirements — FAO Irrigation and drainage paper 56[EB/OL]. Roma: FAO, 1998 (1999-06-08). http://scans.hebis.de/10/87/20/10872040_toc.pdf
    [31] ALLEN R G, PEREIRA L S, SMITH M, et al. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 2−13 doi: 10.1061/(ASCE)0733-9437(2005)131:1(2)
    [32] 池京云, 刘伟, 吴初国. 澳大利亚水资源和水权管理[J]. 国土资源情报, 2016, (5): 11−17 doi: 10.3969/j.issn.1674-3709.2016.05.002

    CHI J Y, LIU W, WU C G. Water resources and water rights management in Australia[J]. Land and Resources Information, 2016, (5): 11−17 doi: 10.3969/j.issn.1674-3709.2016.05.002
    [33] JOHANSSON R C, TSUR Y, ROE T L, et al. Pricing irrigation water: a review of theory and practice[J]. Water Policy, 2002, 4(2): 173−199 doi: 10.1016/S1366-7017(02)00026-0
    [34] 梁雪丽, 吕旺, 兰凤. 以电折水系数影响因素探析−以不同灌溉方式为例[J]. 海河水利, 2020, (1): 68−70 doi: 10.3969/j.issn.1004-7328.2020.01.021

    LIANG X L, LYU W, LAN F. Factors affecting the electricity-water conversion coefficient — the effects of irrigation methods[J]. Haihe Hydrology, 2020, (1): 68−70 doi: 10.3969/j.issn.1004-7328.2020.01.021
    [35] 王慧军, 张喜英. 华北平原地下水压采区冬小麦种植综合效应探讨[J]. 中国生态农业学报(中英文), 2020, 28(5): 724−733

    WANG H J, ZHANG X Y. Evaluating the comprehensive effects of planting winter wheat in the groundwater depletion regions in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 724−733
    [36] 吕丽华, 王学清, 黄冀楠, 等. 不同灌溉集成模式对冬小麦产量形成特点的影响[J]. 华北农学报, 2018, 33(6): 219−226 doi: 10.7668/hbnxb.2018.06.030

    LYU L H, WANG X Q, HUANG J N, et al. Effect of different irrigation mode on yield formation characteristics of winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 219−226 doi: 10.7668/hbnxb.2018.06.030
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  98
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-01-08

目录

    /

    返回文章
    返回