留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源土壤水分产品在河北平原的适用性评价

石嘉丽 张晓龙 闵雷雷 张婧 王妍 沈彦军

石嘉丽, 张晓龙, 闵雷雷, 张婧, 王妍, 沈彦军. 多源土壤水分产品在河北平原的适用性评价[J]. 中国生态农业学报 (中英文), 2022, 30(5): 809−819 doi: 10.12357/cjea.20210697
引用本文: 石嘉丽, 张晓龙, 闵雷雷, 张婧, 王妍, 沈彦军. 多源土壤水分产品在河北平原的适用性评价[J]. 中国生态农业学报 (中英文), 2022, 30(5): 809−819 doi: 10.12357/cjea.20210697
SHI J L, ZHANG X L, MIN L L, ZHANG J, WANG Y, SHEN Y J. Adaptability evaluation of soil moisture products in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 809−819 doi: 10.12357/cjea.20210697
Citation: SHI J L, ZHANG X L, MIN L L, ZHANG J, WANG Y, SHEN Y J. Adaptability evaluation of soil moisture products in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 809−819 doi: 10.12357/cjea.20210697

多源土壤水分产品在河北平原的适用性评价

doi: 10.12357/cjea.20210697
基金项目: 国家自然科学基金项目(42001037)和河北省自然科学基金创新研究群体项目(D2021503001)资助
详细信息
    作者简介:

    石嘉丽, 主要从事生态水文模拟方向研究。E-mail: shijiali19@mails.ucas.ac.cn

    通讯作者:

    沈彦军, 主要从事流域生态水文模拟与水环境管理方向研究。E-mail: shenyanjun@sjziam.ac.cn

  • 中图分类号: P426.68

Adaptability evaluation of soil moisture products in the Hebei Plain

Funds: This research was supported by the National Natural Science Foundation of China (42001037) and the Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province (D2021503001).
More Information
  • 摘要: 河北平原地处华北平原中部, 是我国重要的粮食产区, 是世界上冬小麦、夏玉米最高产的地区之一。土壤水分作为作物生长的直接水源和基础条件, 对灌溉决策、干旱预报均有重要意义。虽然多源土壤水分产品已获得了长足发展, 但其在河北平原的适用性还缺乏全面的定量评价。本文利用河北平原望都、霸州、威县、栾城4个站点2018年1月至2019年10月的表层10 cm土壤水分实测数据, 通过相关系数、偏差、均方根误差、无偏均方根误差4个指标, 对比分析了SMOS、SMAP、FY3B、ERA-Land、GLDAS、GLEAM等6种土壤水分产品在河北平原典型农田的具体表现。整体而言, 除夏季FY3B存在高估外, 多源土壤水分产品对河北平原不同站点实际土壤含水量有不同程度的低估, 研究时段内各土壤水分产品平均相关系数排序为GLEAM>FY3B>ERA-Land>GLDAS>SMAP>SMOS, 平均无偏均方根误差排序为GLEAM<GLDAS<SMAP<ERA-Land<SMOS<FY3B。具体表现为: 1)同化多源数据的GLEAM、GLDAS、ERA-Land数据精度较好, 平均相关系数较大而平均无偏均方根误差较低。在土壤含水量高的夏季, 模拟数据更接近实测值。2) FY3B数据缺失较多、波动范围较大且平均无偏均方根误差较大, 但与实测数据相关性较好, 平均相关系数为0.43 m3·m−3, 夏季普遍高估土壤含水量, 数据精度较差, 其他季节则低估。3) SMAP整体数据精度高于SMOS, 夏季相关性较高但平均无偏均方根误差较大, 秋季则与之相反, 当实测土壤水介于0.30~0.40 m3∙m−3时表现较好。4) SMOS因射频干扰等原因在各站点表现最差, 各站点平均相关系数仅为0.20 m3·m−3, 偏差均大于0.10 m3∙m−3
  • 图  1  研究站点及不同土壤水分产品像元分布图

    Figure  1.  Location of observed stations and soil moisture products pixels

    图  2  研究期间不同土壤水分产品和实测(In-situ)的望都(a, b)、霸州(c, d)、威县(e, f)、栾城(g, h)土壤体积含水量变化

    Figure  2.  Variations of soil volumetric water contents in Wangdu (a, b), Bazhou (c, d), Weixian (e, f) and Luancheng (g, h) stations from the soil moisture products and in-situ soil moisture (In-situ) during the experiment period

    图  3  望都(a, b)、霸州(c, d)、威县(e, f)、栾城(g, h)实测土壤水分与土壤水分产品散点图

    Figure  3.  Scatter plots of the in-situ and estimated soil moisture in Wangdu (a, b), Bazhou (c, d), Weixian (e, f), and Luancheng (g, h) stations

    图  4  各站点季节尺度6种土壤水分产品的精度表现

    Figure  4.  Soil moisture measurement accuracies of 6 soil moisture products at seasonal scale at each station

    图  5  各站点6种土壤水分产品不同数值范围精度表现

    Figure  5.  Accuracy of six soil moisture products in different numerical range at each site

    表  1  本研究所用土壤水分产品信息

    Table  1.   Soil moisture products information used in the study

    产品类型
    Data type
    产品名称
    Dataset name
    版本
    Version
    空间分辨率
    Spatial resolution
    深度
    Depth (cm)
    时间分辨率
    Temporal resolution
    微波遥感产品
    Microwave remote sensing products
    FY3BFY3B_P25 km×25 km0~51 d (升轨时间13:30, 降轨1:30)
    (Ascending time 13:30, decending time 1:30)
    SMOSSMOS_L3_P36 km×36 km0~51 d (升轨时间6:00, 降轨时间18:00)
    (Ascending time 6:00, decending time 18:00)
    SMAPSMAP_L3_P36 km×36 km0~51 d (升轨时间18:00, 降轨时间6:00)
    (Ascending time 18:00, decending time 6:00)
    再分析产品
    Reanalysis product
    ERA-Land0.1°×0.1°0~71 h
    陆表模型产品
    Land surface model products
    GLDASGLEAM_V3.5b0.25°×0.25°0~103 h
    GLEAMNOAH_V2.10.25°×0.25°0~103 h
    下载: 导出CSV

    表  2  各站点各种土壤水分产品的精度检验

    Table  2.   Error metrics of soil moisture of different soil moisture products in different stations

    站点
    Station
    产品
    Product
    RMSE
    (m3·m−3)
    Bias
    (m3·m−3)
    ubRMSE
    (m3·m−3)
    rP样本个数
    Number of samples
    望都
    Wangdu
    FY3B 0.094 −0.012 0.093 0.773 0.001 181
    SMOS 0.190 0.164 0.095 0.341 0.001 303
    SMAP 0.123 0.109 0.057 0.479 0.001 242
    ERA-Land 0.085 0.048 0.071 0.348 0.001 655
    GLDAS 0.120 0.108 0.051 0.530 0.001 655
    GLEAM 0.060 0.032 0.051 0.546 0.001 655
    霸州
    Bazhou
    FY3B 0.168 0.145 0.083 0.402 0.001 186
    SMOS 0.221 0.208 0.076 0.240 0.001 299
    SMAP 0.166 0.156 0.057 0.388 0.001 239
    ERA-Land 0.134 0.120 0.059 0.414 0.001 622
    GLDAS 0.129 0.120 0.048 0.527 0.001 622
    GLEAM 0.094 0.080 0.050 0.446 0.001 622
    威县
    Weixian
    FY3B 0.126 0.007 0.126 0.314 0.001 201
    SMOS 0.144 0.116 0.084 0.282 0.001 311
    SMAP 0.115 0.100 0.057 0.345 0.001 287
    ERA-Land 0.071 0.047 0.053 0.535 0.001 645
    GLDAS 0.059 0.034 0.049 0.338 0.001 645
    GLEAM 0.051 0.028 0.042 0.455 0.001 645
    栾城
    Luancheng
    FY3B 0.127 0.041 0.120 0.248 0.001 214
    SMOS 0.213 0.193 0.092 −0.049 255
    SMAP 0.165 0.152 0.063 0.204 0.002 262
    ERA-Land 0.114 0.090 0.070 0.229 0.001 633
    GLDAS 0.087 0.061 0.062 0.113 0.01 633
    GLEAM 0.071 0.049 0.052 0.291 0.001 633
      加粗字母表示该站点所有产品中RMSE、Bias、ubRMSE最小值及r最大值。Bold font indicates the minimum value of RMSE, Bias, ubRMSE and maximum value of r for each product on this site.
    下载: 导出CSV

    表  3  不同站点土壤水分产品像元内土地利用类型占比

    Table  3.   Proportion of land use types in each pixels of soil moisture products in different stations

    站点
    Station
    耕地
    Cropland
    建设用地
    Construction land
    其他
    Others
    望都 Wangdu74.7623.381.87
    霸州 Bazhou77.9518.423.63
    威县 Weixian80.3317.562.11
    栾城 Luancheng73.5721.514.92
    下载: 导出CSV
  • [1] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 2010, 99(3/4): 125−161
    [2] KOSTER R D, MAHANAMA S P P, LIVNEH B, et al. Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow[J]. Nature Geoscience, 2010, 3(9): 613−616 doi: 10.1038/ngeo944
    [3] KORNELSEN K C, COULIBALY P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications[J]. Journal of Hydrology, 2013, 476: 460−489 doi: 10.1016/j.jhydrol.2012.10.044
    [4] 杨涛, 宫辉力, 李小娟, 等. 土壤水分遥感监测研究进展[J]. 生态学报, 2010, 30(22): 6264−6277

    YANG T, GONG H L, LI X J, et al. Progress of soil moisture monitoring by remote sensing[J]. Acta Ecologica Sinica, 2010, 30(22): 6264−6277
    [5] LONG D, BAI L L, YAN L, et al. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution[J]. Remote Sensing of Environment, 2019, 233: 111364 doi: 10.1016/j.rse.2019.111364
    [6] 陈泓羽, 吴静, 李纯斌, 等. 卫星土壤水分产品在青藏高原地区的适用性评价[J]. 生态学报, 2020, 40(24): 9195−9207

    CHEN H Y, WU J, LI C B, et al. Applicability evaluation of satellite soil moisture products in Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2020, 40(24): 9195−9207
    [7] 潘宁, 王帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13): 4615−4626

    PAN N, WANG S, LIU Y X, et al. Advances in soil moisture retrieval from remote sensing[J]. Acta Ecologica Sinica, 2019, 39(13): 4615−4626
    [8] LIU J, CHAI L N, DONG J Z, et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method[J]. Remote Sensing of Environment, 2021, 255: 112225 doi: 10.1016/j.rse.2020.112225
    [9] AL-YAARI A, WIGNERON J P, DUCHARNE A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates[J]. Remote Sensing of Environment, 2014, 149: 181−195 doi: 10.1016/j.rse.2014.04.006
    [10] KIM H, WIGNERON J P, KUMAR S, et al. Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions[J]. Remote Sensing of Environment, 2020, 251: 112052 doi: 10.1016/j.rse.2020.112052
    [11] CUI C Y, XU J, ZENG J Y, et al. Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales[J]. Remote Sensing, 2017, 10(2): 33 doi: 10.3390/rs10010033
    [12] ZENG J Y, LI Z, CHEN Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in situ observations[J]. Remote Sensing of Environment, 2015, 163: 91−110 doi: 10.1016/j.rse.2015.03.008
    [13] FU H Y, ZHOU T T, SUN C L. Evaluation and analysis of AMSR2 and FY3B soil moisture products by an in situ network in cropland on pixel scale in the northeast of China[J]. Remote Sensing, 2019, 11(7): 868 doi: 10.3390/rs11070868
    [14] WANG G Q, ZHANG X J, YINGLAN A, et al. A spatio-temporal cross comparison framework for the accuracies of remotely sensed soil moisture products in a climate-sensitive grassland region[J]. Journal of Hydrology, 2021, 597: 126089 doi: 10.1016/j.jhydrol.2021.126089
    [15] 沈彦俊, 刘昌明. 华北平原典型井灌区农田水循环过程研究回顾[J]. 中国生态农业学报, 2011, 19(5): 1004−1010

    SHEN Y J, LIU C M. Agro-ecosystems water cycles of the typical irrigated farmland in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1004−1010
    [16] 刘中培, 王富强, 于福荣. 石家庄平原区浅层地下水位变化研究[J]. 南水北调与水利科技, 2012, 10(5): 124−127

    LIU Z P, WANG F Q, YU F R. Variation of shallow groundwater level in Shijiazhuang Plain[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(5): 124−127
    [17] 陈宗培. 河北平原小麦-玉米不同灌溉制度下产量和水分生产力潜力及差距研究[D]. 保定: 河北农业大学, 2020

    CHEN Z P. Potential and gap of yield and water productivity of wheat-maize under different irrigation systems in Hebei Plain[D]. Baoding: Hebei Agricultural University, 2020
    [18] 杨纲. 微波遥感土壤水分产品真实性检验方法研究[D]. 泰安: 山东农业大学, 2020

    YANG G. The research of validation of microwave remote sensing soil moisture products[D]. Tai’an: Shandong Agricultural University, 2020
    [19] JACKSON T J, COSH M H, BINDLISH R, et al. Validation of advanced microwave scanning radiometer soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4256−4272 doi: 10.1109/TGRS.2010.2051035
    [20] SU Z, WEN J, DENTE L, et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences, 2011, 15(7): 2303−2316 doi: 10.5194/hess-15-2303-2011
    [21] KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384−1403 doi: 10.1109/TGRS.2012.2184548
    [22] 陈勇强. SMOS和SMAP数据可靠性研究[D]. 焦作: 河南理工大学, 2019

    CHEN Y Q. The reliability study of SMOS and SMAP data[D]. Jiaozuo: Henan Polytechnic University, 2019
    [23] 张明敏. 高寒山区土壤水分数据集验证及降尺度研究[D]. 兰州: 兰州大学, 2020

    ZHANG M M. Evaluation and downscaling of soil moisture datasets in the alpine mountain ranges[D]. Lanzhou: Lanzhou University, 2020
    [24] MARTENS B, MIRALLES D G, LIEVENS H, et al. Gleam V3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903−1925 doi: 10.5194/gmd-10-1903-2017
    [25] ZENG J Y, CHEN K S, CUI C Y, et al. A physically based soil moisture index from passive microwave brightness temperatures for soil moisture variation monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2782−2795 doi: 10.1109/TGRS.2019.2955542
    [26] XU L, CHEN N C, ZHANG X, et al. In-situ and triple-collocation based evaluations of eight global root zone soil moisture products[J]. Remote Sensing of Environment, 2021, 254: 112248 doi: 10.1016/j.rse.2020.112248
    [27] ALBERGEL C, DORIGO W, BALSAMO G, et al. Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses[J]. Remote Sensing of Environment, 2013, 138: 77−89 doi: 10.1016/j.rse.2013.07.009
    [28] ZENG J Y, CHEN K S, BI H Y, et al. A comprehensive analysis of rough soil surface scattering and emission predicted by AIEM with comparison to numerical simulations and experimental measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1696−1708 doi: 10.1109/TGRS.2016.2629759
    [29] XU J, CAI H J, SADDIQUE Q, et al. Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness[J]. Agricultural Water Management, 2019, 214: 64−77 doi: 10.1016/j.agwat.2019.01.003
    [30] OLIVA R, DAGANZO E, KERR Y H, et al. SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400–1427 MHz passive band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1427−1439 doi: 10.1109/TGRS.2012.2182775
    [31] SOLDO Y, KHAZAAL A, SLOMINSKA E, et al. Monitoring of RFI localizations for the SMOS mission: seasonal variations and systematic errors[C]//2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS. Melbourne, VIC, Australia. IEEE, 2013: 1912–1915
    [32] 庄媛, 师春香, 沈润平, 等. 中国区域多种微波遥感土壤湿度产品质量评估[J]. 气象科学, 2015, 35(3): 289−296 doi: 10.3969/2014jms.0054

    ZHUANG Y, SHI C X, SHEN R P, et al. Quality evaluation of multi-microwave remote sensing soil moisture products over China[J]. Journal of the Meteorological Sciences, 2015, 35(3): 289−296 doi: 10.3969/2014jms.0054
    [33] WAGNER W, HAHN S, KIDD R, et al. The ascat soil moisture product: a review of its specifications, validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013, 22(1): 5−33 doi: 10.1127/0941-2948/2013/0399
    [34] KOSTER R D, GUO Z C, YANG R Q, et al. On the nature of soil moisture in land surface models[J]. Journal of Climate, 2009, 22(16): 4322−4335 doi: 10.1175/2009JCLI2832.1
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  88
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 录用日期:  2021-11-27
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回