留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较

赵杨 高杜娟 李超 陈友德 崔婷 童中权 罗先富

赵杨, 高杜娟, 李超, 陈友德, 崔婷, 童中权, 罗先富. 洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1309−1317 doi: 10.12357/cjea.20210698
引用本文: 赵杨, 高杜娟, 李超, 陈友德, 崔婷, 童中权, 罗先富. 洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1309−1317 doi: 10.12357/cjea.20210698
ZHAO Y, GAO D J, LI C, CHEN Y D, CUI T, TONG Z Q, LUO X F. Comparison of matter production and the light and temperature resources utilization efficiencies of the main cropping systems for paddy fields in the Dongting Lake region[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1309−1317 doi: 10.12357/cjea.20210698
Citation: ZHAO Y, GAO D J, LI C, CHEN Y D, CUI T, TONG Z Q, LUO X F. Comparison of matter production and the light and temperature resources utilization efficiencies of the main cropping systems for paddy fields in the Dongting Lake region[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1309−1317 doi: 10.12357/cjea.20210698

洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较

doi: 10.12357/cjea.20210698
基金项目: 农业部“十三五”国家重点研发计划(2016YFD0300207-05)资助
详细信息
    作者简介:

    赵杨, 主要研究方向为水稻高产高效栽培技术。E-mail: zhaoyang6560@126.com

    通讯作者:

    罗先富, 主要研究方向为水稻高产高效栽培技术。E-mail: 1153677355@qq.com

  • 中图分类号: S318

Comparison of matter production and the light and temperature resources utilization efficiencies of the main cropping systems for paddy fields in the Dongting Lake region

Funds: This study was supported by the National Key Research and Development Project of China (2016YFD0300207-05).
More Information
  • 摘要: 合理的种植模式可实现作物生长需求和自然资源供给的匹配。比较研究洞庭湖区稻田主要种植模式, 可明确该区域优势种植模式, 为优化湖区资源配置和建立丰产高效种植模式提供理论依据。2016—2018年, 选取4种湖区稻田主要种植模式为研究对象, 分析不同模式的干物质生产效率和干物质产能、光温资源利用效率以及经济效益。4种模式中, 冬闲-中稻一熟制模式周年平均干物质生产效率和干物质产能、有效积温和光能分配率最低, 分别为18 330 kg∙hm−2和27.00 MJ∙m−2、70.0%和49.2%, 表明湖区冬闲-中稻一熟制模式光温资源利用不充分。而油菜-早稻-晚稻三熟制模式周年平均干物质生产效率和干物质产能最高, 分别为31 525 kg∙hm−2和48.22 MJ∙m−2, 但周年平均生育期为364.5 d, 2016—2017年周年有效积温和光能分配率分别达到102.5%和102.6%, 表明部分年份油菜-早稻-晚稻三熟制光温资源欠缺, 难以满足3季作物需求, 且三熟制经济效益最低, 两周年平均为8738元∙hm−2。冬闲-早稻-晚稻两熟制模式生长季集中于4月上旬至10月中下旬, 冬季温光资源浪费, 且周年经济效益平均为9009元∙hm−2, 仅为冬闲-中稻模式的75.3%, 油菜-中稻模式的62.3%。油菜-中稻两熟制模式全年时间平均利用率88.9%, 周年平均有效积温和光能分配率为86.6%和87.7%, 光温资源充足且利用率高, 周年经济效益最高, 为14 468元∙hm−2, 明显高于其他3种模式。油菜-中稻两熟制模式与其他3种模式综合比较, 可充分利用全年光温资源, 干物质生产效率和产能较高, 也是经济效益最高的种植模式, 适宜在洞庭湖区发展。
  • 表  1  不同种植模式生育期天数及播种期和收获期

    Table  1.   Growth period and date of sowing and harvest of different cropping systems

    年份
    Year
    种植模式
    Cropping
    system
    播种期-收获期(月/日)
    Date of sowing and harvest (month/day)
    生育期天数
    Growth period (d)
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole
    year
    重叠期
    Overlapping
    period
    2016—2017 IR 05/25—10/18 146 146 0
    OR 10/09—04/27 05/25—10/09 200 137 337 0
    ORR 10/09—04/27 04/10—07/15 06/20—10/21 200 96 123 377 42
    IRR 04/01—07/15 06/20—10/21 106 123 203 25
    2017—2018 IR 05/24—10/02 131 131 0
    OR 10/29—05/01 05/24—09/29 184 128 312 0
    ORR 10/29—05/01 04/10—07/12 06/19-10/16 184 93 119 352 44
    IRR 04/01—07/13 06/19—10/16 103 119 198 24
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。重叠期指两季作物同时生长的时间。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice. Overlapping period is the time of two crops growing at the same time.
    下载: 导出CSV

    表  2  不同种植模式的周年干物质生产效率

    Table  2.   Efficiency of dry matter production in different cropping systems kg∙hm−2 

    年份
    Year
    种植模式
    Cropping system
    第1季 1st season第2季 2nd season第3季 3rd season周年 Whole year
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    2016—2017 IR 9452 8345 17 797 9452 8345 17 797d
    OR 5334 1880 7214 6596 8123 14 719 11 930 10 003 21 933c
    ORR 5313 1909 7221 5776 6030 11 806 5741 5623 11 364 16 830 13 562 30 391a
    IRR 7961 6336 14 297 5571 6089 11 660 13 532 12 425 25 957b
    2017—2018 IR 9542 9321 18 863 9542 9321 18 863c
    OR 6622 1617 8239 8648 9538 18 186 15 270 11 155 26 425b
    ORR 6218 1679 7897 5506 5503 11 009 7099 6653 13 752 18 823 13 835 32 658a
    IRR 5931 6767 12 698 7158 6503 13 661 13 089 13 270 26 359b
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。同一年份数据后不同小写字母表示不同模式间差异显著(P<0.05)。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice. Values followed by different small letters in the same year are significantly different at P<0.05 level.
    下载: 导出CSV

    表  3  不同种植模式的干物质产能

    Table  3.   Energy of dry matter production in different cropping systems

    年份
    Year
    种植模式
    Cropping system
    第1季 1st season 第2季 2nd season 第3季 3rd season 周年 Whole year
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    茎秆
    Stalk
    籽粒
    Seed
    全株
    Whole plant
    ×104 MJ∙hm−2 
    2016—2017 IR 13.27 12.91 26.18 13.27 12.91 26.18d
    OR 7.54 4.95 12.49 9.26 12.57 21.83 16.80 17.52 34.31c
    ORR 7.51 5.03 12.53 8.11 9.33 17.44 8.06 8.70 16.76 23.68 23.05 46.73a
    IRR 11.18 9.80 20.98 7.82 9.42 17.24 19.00 19.22 38.22b
    2017—2018 IR 13.40 14.42 27.82 13.40 14.42 27.82c
    OR 9.36 4.26 13.62 12.14 14.76 26.90 21.50 19.01 40.51b
    ORR 8.79 4.42 13.21 7.73 8.51 16.24 9.97 10.29 20.26 26.48 23.23 49.71a
    IRR 8.33 10.47 18.80 10.05 10.06 20.11 18.38 20.53 38.91b
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。同一年份数据后不同小写字母表示不同模式间差异显著(P<0.05)。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice. Values followed by different small letters in the same year are significantly different at P<0.05 level.
    下载: 导出CSV

    表  4  不同种植模式的有效积温分配与积温生产效率

    Table  4.   Distribution of effective accumulated temperature and production efficiency in different cropping systems

    年份
    Year
    种植模式
    Cropping
    system
    有效积温
    Effective accumulated
    temperature (℃)
    有效积温分配率
    Distribution ratio of effective
    accumulated temperature (%)
    积温生产效率
    Temperature production efficiency
    (kg∙hm−2∙℃−1)
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    2016—2017 IR 2359 2359 72.4 72.4 7.54 7.54b
    OR 603 2312 2915 18.5 71.0 89.5 11.94 6.37 7.52b
    ORR 603 1347 1994 3339 18.5 41.3 61.2 102.5 11.96 8.77 5.70 9.10a
    IRR 1414 1994 2944 43.4 61.2 90.4 10.11 5.85 8.82a
    2017—2018 IR 2336 2336 67.6 67.6 8.07 8.07c
    OR 593 2297 2890 17.2 66.4 83.6 13.88 7.92 9.14ab
    ORR 593 1399 2054 3372 17.2 40.5 59.4 97.5 13.25 7.87 6.69 9.68a
    IRR 1491 2054 3087 43.1 59.4 89.3 8.52 6.65 8.54bc
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。同一年份数据后不同小写字母表示不同模式间差异显著(P<0.05)。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice. Values followed by different small letters in the same year are significantly different at P<0.05 level.
    下载: 导出CSV

    表  5  不同种植模式的光能资源分配与光能利用

    Table  5.   Distribution of light resources and light energy use efficiency in different cropping systems

    年份
    Year
    种植模式
    Cropping
    system
    太阳总辐射
    Total solar radiation
    (MJ∙m−2)
    光能分配率
    Light energy distribution
    ratio (%)
    光能生产效率
    Light energy production efficiency
    (×10−3 kg∙MJ−2)
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    2016—2017 IR 1997 1997 50.9 50.9 0.89 0.89a
    OR 1602 1927 3529 40.9 49.2 90.1 0.45 0.76 0.62c
    ORR 1602 1354 1599 4020 40.9 34.6 40.8 102.6 0.45 0.87 0.71 0.76b
    IRR 1455 1599 2763 37.1 40.8 70.5 0.98 0.73 0.94a
    2017—2018 IR 2058 2058 47.4 47.4 0.92 0.92a
    OR 1688 2014 3702 38.9 46.4 85.3 0.49 0.90 0.71b
    ORR 1688 1389 1807 4208 38.9 32.0 41.6 96.9 0.47 0.79 0.76 0.78b
    IRR 1533 1807 2929 35.3 41.6 67.5 0.83 0.76 0.90a
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。同一年份数据后不同小写字母表示不同模式间差异显著(P<0.05)。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice.Values followed by different small letters in the same year are significantly different at P<0.05 level.
    下载: 导出CSV

    表  6  不同种植模式的经济效益比较

    Table  6.   Comparison of economic benefits of different cropping systems ¥∙hm–2 

    年份
    Year
    种植模式
    Cropping system
    产值和补贴
    Total income and subsidy
    成本
    Cost
    经济效益
    Net income
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    第1季
    1st season
    第2季
    2nd season
    第3季
    3rd season
    周年
    Whole year
    2016—2017 IR 22 266 22 266 11 400 11 400 10 866 10 866
    OR 9500 21 739 31 239 7200 10 500 17 700 2300 11 239 13 539
    ORR 9700 15 516 15 738 40 954 7200 11 670 13 200 32 070 2500 3846 2538 8884
    IRR 16 198 16 866 33 064 11 670 13 200 24 870 4528 3666 8194
    2017—2018 IR 24 618 24 618 11 550 11 550 13 068 13 068
    OR 8250 25 146 33 396 7350 10 650 18 000 900 14 496 15 396
    ORR 8550 14 350 18 210 41 110 7350 11 820 13 350 32 520 1200 2530 4860 8590
    IRR 17 144 17 850 34 994 11 820 13 350 25 170 5324 4500 9824
      IR: 冬闲-中稻; OR: 油菜-中稻; ORR: 油菜-早稻-晚稻; IRR: 冬闲-早稻-晚稻。IR: winter fallow-middle rice; OR: oilseed rape-middle rice; ORR: oilseed rape-early rice-late rice; IRR: winter fallow-early rice-late rice.
    下载: 导出CSV
  • [1] 胡延斌, 肖国举, 李永平. 气候带北移及其对中国作物种植制度的影响研究进展[J]. 干旱地区农业研究, 2020, 38(3): 269−274

    HU Y B, XIAO G J, LI Y P. Research advances in northward shifting of climatic-zones and the influence on crop-planting systems in China[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 269−274
    [2] CUMHUR A, MALCOLM S. The effects of global climate change on agriculture[J]. American-Eurasian Journal of Agricultural and Environmental Sciences, 2008, 3(5): 672−676
    [3] TRNKA M, OLESEN J E, KERSEBAUM K C, et al. Changing regional weather-crop yield relationships across Europe between 1901 and 2012[J]. Climate Research, 2016, 70(2): 195−214 doi: 10.3354/cr01426
    [4] SINGH G. Climate change and food security in India: challenges and opportunities[J]. Irrigation and Drainage, 2016, 65: 5−10 doi: 10.1002/ird.2038
    [5] 谭诗琪, 范嘉智, 颜石, 等. 长时间尺度下气象灾害对湖南水稻产量影响分析[J]. 中国农学通报, 2020, 36(19): 104−113

    TAN S Q, FAN J Z, YAN S, et al. Meteorological disasters at long-term scales: influence on rice yield of Hunan[J]. Chinese Agricultural Science Bulletin, 2020, 36(19): 104−113
    [6] 赵正洪, 戴力, 黄见良, 等. 长江中游稻区水稻产业发展现状、问题与建议[J]. 中国水稻科学, 2019, 33(6): 553−564

    ZHAO Z H, DAI L, HUANG J L, et al. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River[J]. Chinese Journal of Rice Science, 2019, 33(6): 553−564
    [7] QI X X, LIU L M, LIU Y B, et al. Risk assessment for sustainable food security in China according to integrated food security-taking Dongting Lake area for example[J]. Environmental Monitoring and Assessment, 2013, 185(6): 4855−4867 doi: 10.1007/s10661-012-2908-2
    [8] YIN G Y, LIU L M, YUAN C C. Assessing environmental risks for high intensity agriculture using the material flow analysis method — a case study of the Dongting Lake Basin in South Central China[J]. Environmental Monitoring and Assessment, 2015, 187(7): 472 doi: 10.1007/s10661-015-4696-y
    [9] 张志刚, 赵瑞元, 丁世勇, 等. 湖南棉花产业发展形势调研报告[J]. 中国棉花, 2019, 46(11): 10−13, 19

    ZHANG Z G, ZHAO R Y, DING S Y, et al. Survey report on the development tendency of cotton industry in Hunan Province[J]. China Cotton, 2019, 46(11): 10−13, 19
    [10] 朱四元, 刘头明, 汤清明, 等. 苎麻在湖南平原地和山坡地栽培的比较试验[J]. 中国麻业科学, 2015, 37(4): 211−215

    ZHU S Y, LIU T M, TANG Q M, et al. The comparative test of ramie grown in plain and hillside in Hunan[J]. Plant Fiber Sciences in China, 2015, 37(4): 211−215
    [11] 李淑娅, 田少阳, 袁国印, 等. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J]. 作物学报, 2015, 41(10): 1537−1547 doi: 10.3724/SP.J.1006.2015.01537

    LI S Y, TIAN S Y, YUAN G Y, et al. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River[J]. Acta Agronomica Sinica, 2015, 41(10): 1537−1547 doi: 10.3724/SP.J.1006.2015.01537
    [12] 陈伟. 四川丘陵旱地不同种植模式的资源利用及生态经济效益比较研究[D]. 雅安: 四川农业大学, 2019

    CHEN W. A comparative study on resource utilization and eco-economic benefits of different cropping modes in hilly dryland of Sichuan Province[D]. Ya’an: Sichuan Agricultural University, 2019
    [13] 陈友德, 赵杨, 高杜娟, 等. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响[J]. 环境科学, 2020, 41(10): 4701−4710

    CHEN Y D, ZHAO Y, GAO D J, et al. Effects of different rotation patterns of oil-rice on methane and nitrous oxide emissions in rice fields[J]. Environmental Science, 2020, 41(10): 4701−4710
    [14] REN T, BU R Y, LIAO S P, et al. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations[J]. Soil and Tillage Research, 2019, 192: 206−214 doi: 10.1016/j.still.2019.05.008
    [15] GENG J B, SUN Y B, ZHANG M, et al. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system[J]. Field Crops Research, 2015, 184: 65−73 doi: 10.1016/j.fcr.2015.09.003
    [16] 王美云, 任天志, 赵明, 等. 双季青贮玉米模式物质生产及资源利用效率研究[J]. 作物学报, 2007, 33(8): 1316−1323

    WANG M Y, REN T Z, ZHAO M, et al. Matter production and resources use efficiency of double-cropping silage maize system[J]. Acta Agronomica Sinica, 2007, 33(8): 1316−1323
    [17] 林益明, 郑茂钟, 林鹏, 等. 园林竹类植物叶的热值和灰分含量研究[J]. 厦门大学学报(自然科学版), 2000, 39(1): 136−140

    LIN Y M, ZHENG M Z, LIN P, et al. Ash content and caloric value in leaves of garden bamboo species[J]. Journal of Xiamen University (Natural Science), 2000, 39(1): 136−140
    [18] 骆世明. 农业生态学[M]. 北京: 中国农业出版社, 2001

    LUO S M. Agroecology[M]. Beijing: Chinese Agriculture Press, 2001
    [19] 杨滨娟, 孙丹平, 张颖睿, 等. 长江中游地区水旱复种轮作模式资源利用率比较研究[J]. 中国生态农业学报, 2018, 26(8): 1197−1205

    YANG B J, SUN D P, ZHANG Y R, et al. Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1197−1205
    [20] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型[J]. 南京农业大学学报, 2004, 27(4): 20−25

    YAN D C, ZHU Y, CAO W X. A knowledge model for selection of suitable variety in rice production[J]. Journal of Nanjing Agricultural University, 2004, 27(4): 20−25
    [21] 左大康, 王懿贤, 陈建绥. 中国地区太阳总輻射的空間分布特征[J]. 气象学报, 1963, 21(1): 78−96

    ZUO D K, WANG Y X, CHEN J S. Characteristics of the distribution of total radiation in China[J]. Acta Meteorologica Sinica, 1963, 21(1): 78−96
    [22] SUN H Y, ZHANG X Y, CHEN S Y, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain[J]. Industrial Crops and Products, 2007, 25(3): 239−247 doi: 10.1016/j.indcrop.2006.12.003
    [23] JENA S, POONAM A, NAYAK B C. Response of hybrid rice to time of planting and plant density[J]. ORYZA: An International Journal on Rice, 2010, 47(1): 48−52
    [24] 陈国平. 玉米的干物质生产与分配[J]. 玉米科学, 1994, 2(1): 48−53

    CHEN G P. Dry matter production and distribution of maize[J]. Maize Sciences, 1994, 2(1): 48−53
    [25] 敖和军, 王淑红, 邹应斌, 等. 超级杂交稻干物质生产特点与产量稳定性研究[J]. 中国农业科学, 2008, 41(7): 1927−1936

    AO H J, WANG S H, ZOU Y B, et al. Study on yield stability and dry matter characteristics of super hybrid rice[J]. Scientia Agricultura Sinica, 2008, 41(7): 1927−1936
    [26] 郑本川, 张锦芳, 李浩杰, 等. 甘蓝型油菜生育期天数与产量构成性状的相关分析[J]. 中国油料作物学报, 2013, 35(3): 240–245

    ZHENG B C, ZHANG J F, LI H J, et al. Correlation between duration of growth periods and yield components of Brassica napus L[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 240–245
    [27] 叶廷红, 李鹏飞, 侯文峰, 等. 早稻、晚稻和中稻干物质积累及氮素吸收利用的差异[J]. 植物营养与肥料学报, 2020, 26(2): 212−222

    YE T H, LI P F, HOU W F, et al. Differences in dry matter accumulation and nitrogen absorption and utilization among early, late and middle rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 212−222
    [28] 李阔, 许吟隆. 适应气候变化的中国农业种植结构调整研究[J]. 中国农业科技导报, 2017, 19(1): 8−17

    LI K, XU Y L. Study on adjustment of agricultural planting structures in China for adapting to climate change[J]. Journal of Agricultural Science and Technology, 2017, 19(1): 8−17
    [29] 王乐. 湖南省稻田典型种植模式的经济效益分析[J]. 湖北农业科学, 2010, 49(2): 509−512

    WANG L. Analysis on economic benefit of paddy field typical cropping patterns in Hunan Province[J]. Hubei Agricultural Sciences, 2010, 49(2): 509−512
    [30] 陈畅, 李俊, 张利艳, 等. 不同油稻轮作模式产量形成过程的比较[C]. 中国作物学会. 2015年学术年会论文摘要集. 北京: 中国作物学会, 2015: 1

    CHEN C, LI J, ZHANG L Y, et al. Comparison of yield formation process of different oil-rice rotation models[C]//Crop Science Society of China. Abstracts of 2015 Academic Conference Papers. Beijing: Crop Science Society of China, 2015
    [31] 黄敏. 稻油两熟制下免耕直播超级杂交稻生理生态特性研究[D]. 长沙: 湖南农业大学, 2011

    HUANG M. Physiological and ecological characteristics of no-till direct deeded super hybrid rice in rice-oilseed rape cropping system[D]. Changsha: Hunan Agricultural University, 2011
    [32] 钱友山, 文化. 京郊气候资源与种植制度[J]. 北京农业科学, 1994(4): 33−37

    QIAN Y S, WEN H. Climate resources and cropping system in Beijing suburb[J]. Beijing Agricultural Sciences, 1994(4): 33−37
    [33] 阮新民, 陈曦, 岳伟, 等. 气候变化对安徽省两熟制粮食作物物候期及周年气候资源分配与利用的影响[J]. 中国生态农业学报(中英文), 2021, 29(2): 355−365

    RUAN X M, CHEN X, YUE W, et al. Effects of climate change on phenophases and annual climate resources distribution and utilization of major food crops under a double-cropping system in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 355−365
    [34] 习敏, 杜祥备, 吴文革, 等. 稻麦两熟系统适期晚播对周年产量和资源利用效率的影响[J]. 应用生态学报, 2020, 31(1): 165−172

    XI M, DU X B, WU W G, et al. Effects of late sowing of two season crops on annual yield and resource use efficiency in rice-wheat double cropping system[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 165−172
    [35] 吕伟生, 曾勇军, 石庆华, 等. 近30年江西双季稻安全生产期及温光资源变化[J]. 中国水稻科学, 2016, 30(3): 323−334

    LYU W S, ZENG Y J, SHI Q H, et al. Changes in safe production dates and heat-light resources of double cropping rice in Jiangxi Province in recent 30 years[J]. Chinese Journal of Rice Science, 2016, 30(3): 323−334
    [36] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1−11

    GUO J P. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1−11
    [37] WANG J X, HUANG J K, YANG J. Overview of impacts of climate change and adaptation in China’s agriculture[J]. Journal of Integrative Agriculture, 2014, 13(1): 1−17 doi: 10.1016/S2095-3119(13)60588-2
    [38] 王丹丹, 潘东华, 郭桂祯. 1978-2016年全国分区农业气象灾害灾情趋势分析[J]. 灾害学, 2018, 33(2): 114−121, 145

    WANG D D, PAN D H, GUO G Z. Regional analysis of agro-meteorological disasters loss tendency variation from 1978 to 2016 in China[J]. Journal of Catastrophology, 2018, 33(2): 114−121, 145
    [39] 田莉萍, 余青松, 刘电英. 洞庭湖区气候和农业气象灾害变化分析[J]. 安徽农业科学, 2015, 43(21): 219−221 doi: 10.3969/j.issn.0517-6611.2015.21.081

    TIAN L P, YU Q S, LIU D Y. Analysis on climate of Dongting Lake area and agricultural meteorological disaster variation[J]. Journal of Anhui Agricultural Sciences, 2015, 43(21): 219−221 doi: 10.3969/j.issn.0517-6611.2015.21.081
    [40] 李勇, 杨晓光, 叶清, 等. 全球气候变暖对中国种植制度可能影响Ⅸ. 长江中下游地区单双季稻高低温灾害风险及其产量影响[J]. 中国农业科学, 2013, 46(19): 3997−4006 doi: 10.3864/j.issn.0578-1752.2013.19.005

    LI Y, YANG X G, YE Q, et al. The possible effects of global warming on cropping systems in China Ⅸ. the risk of high and low temperature disasters for single and double rice and its impacts on rice yield in the Middle-Lower Yangtze Plain[J]. Scientia Agricultura Sinica, 2013, 46(19): 3997−4006 doi: 10.3864/j.issn.0578-1752.2013.19.005
    [41] 夏飞. 长江中游不同种植模式产量、资源利用效率及环境代价的研究[D]. 武汉: 华中农业大学, 2019

    XIA F. Study on yield, resource utilization efficiency and environmental cost of different planting patterns in the middle Rreaches of Yangtze River[D]. Wuhan: Huazhong Agricultural University, 2019
    [42] 侯国佐, 侯燕, 侯剑, 等. 油菜撒播轻型栽培技术研究 Ⅰ. 油菜不同种植方式的产量及经济效益分析[J]. 贵州农业科学, 2008, 36(2): 22−24, 27 doi: 10.3969/j.issn.1001-3601.2008.02.007

    HOU G Z, HOU Y, HOU J, et al. Study on the broadcast cultivation technique in rape Ⅰ. Yield and economic benefits of different planting patterns[J]. Guizhou Agricultural Sciences, 2008, 36(2): 22−24, 27 doi: 10.3969/j.issn.1001-3601.2008.02.007
    [43] 范连益, 惠荣奎, 邓力超, 等. 湖南油菜产业发展的现状、问题与对策[J]. 湖南农业科学, 2020(4): 80−83, 87

    FAN L Y, HUI R K, DENG L C, et al. Current situation, problems and countermeasures of rape industry development in Hunan Province[J]. Hunan Agricultural Sciences, 2020(4): 80−83, 87
  • 加载中
表(6)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  90
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 录用日期:  2022-02-24
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回