留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红壤铁氧化物对有机碳的固定及其对长期施肥的响应

万丹 王伯仁 张璐 张婷 陈玖斌 余光辉 韩亚峰 黄巧云

万丹, 王伯仁, 张璐, 张婷, 陈玖斌, 余光辉, 韩亚峰, 黄巧云. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报 (中英文), 2022, 30(4): 694−701 doi: 10.12357/cjea.20210705
引用本文: 万丹, 王伯仁, 张璐, 张婷, 陈玖斌, 余光辉, 韩亚峰, 黄巧云. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报 (中英文), 2022, 30(4): 694−701 doi: 10.12357/cjea.20210705
WAN D, WANG B R, ZHANG L, ZHANG T, CHEN J B, YU G H, HAN Y F, HUANG Q Y. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 694−701 doi: 10.12357/cjea.20210705
Citation: WAN D, WANG B R, ZHANG L, ZHANG T, CHEN J B, YU G H, HAN Y F, HUANG Q Y. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 694−701 doi: 10.12357/cjea.20210705

红壤铁氧化物对有机碳的固定及其对长期施肥的响应

doi: 10.12357/cjea.20210705
基金项目: 国家自然科学基金项目(41830756)和中国博士后科学基金项目(2019M661028, 2021T140507)资助
详细信息
    作者简介:

    万丹, 主要从事矿物-有机互作界面的重金属和有机碳行为研究。E-mail: wandan@tju.edu.cn

    通讯作者:

    黄巧云, 主要从事土壤化学研究。E-mail: qyhuang@mail.hzau.edu.cn

  • 中图分类号: S153.6

Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil

Funds: This study was supported by the National Natural Science Foundation of China (41830756) and China Postdoctoral Science Foundation (2019M661028, 2021T140507).
More Information
  • 摘要: 以湖南衡阳红壤实验站25年长期定位施用化肥和有机肥的红壤为研究对象, 通过焦磷酸钠、盐酸羟胺和连二亚硫酸钠-盐酸溶液分别提取了土壤中络合铁、非晶形铁氧化物和晶形铁氧化物及其结合态有机碳, 借助总有机碳分析和紫外-可见光谱等技术探讨了红壤中不同类型铁氧化物对土壤有机碳固定的贡献及其对长期施肥的响应。结果表明, 红壤中不同类型铁氧化物结合态有机碳的含量为络合铁结合态有机碳(2.45~3.59 g∙kg–1, OCPP)>晶形铁氧化物结合态有机碳(1.46~1.51 g∙kg–1, OCDH)>非晶形铁氧化物结合态有机碳(0.39~0.70 g∙kg–1, OCHH), 其中OCPP主要是络合铁与芳香性弱、疏水性强的大分子有机物通过螯合或者共沉淀作用形成, 而OCHH和OCDH则主要是吸附在(羟基)铁氧化物上的芳香类化合物, OCHH比OCDH具有更大的分子量和更强的芳香性。长期施用化肥(NPK)显著增加(P<0.05)了红壤中OCHH和OCPP的含量, 长期施用有机肥(M)仅促进(P<0.05)非晶形铁氧化物与有机碳结合。NPK处理显著增加(P<0.05)红壤中OCDH的平均分子量以及OCPP的疏水性和芳香性, 而M处理则降低(P<0.05)了OCPP的平均分子量、OCPP和OCHH的疏水性和芳香性。综上所述, NPK和M处理均能提高红壤中铁氧化物的固碳能力, 但对不同类型的铁氧化物影响不一, 此外长期施肥还会改变铁氧化物结合态有机碳的组成。
  • 图  1  长期不同施肥处理对土壤中铁氧化物含量的影响

    CK、NPK、M分别代表对照、长期施用化肥和长期施用有机肥处理, FePP、FeHH、FeDH分别表示络合铁、非晶形铁氧化物和晶形铁氧化物。不同小写字母和大写字母分别表示不同施肥处理和不同铁氧化物类型间差异显著(P<0.05), 误差线表示标准差(n=3)。

    Figure  1.  Contents of iron oxides in red soil under different long-term fertilization treatments

    CK, NPK and M represent no fertilization, chemical fertilizer application, and manure application treatments, respectively. FePP, FeHH, and FeDH represent organo-Fe complexes, amorphous Fe hydroxides, and crystalline Fe hydroxides, respectively. Different lowercase and capital letters on the graph column indicate significant differences among different treatments for the same iron oxide and among different iron oxides for the same treatment, respectively, at P<0.05 according to Tukey’s multiple range test. Error bar represents the standard deviation of n=3.

    图  2  长期不同施肥处理对红壤中铁氧化物结合态有机碳含量的影响

    CK、NPK、M分别代表对照、长期施用化肥和长期施用有机肥处理, OCPP、OCHH、OCDH分别表示络合铁结合态有机碳、非晶形铁氧化物结合态有机碳和晶形铁氧化物结合态有机碳。不同小写字母和大写字母分别表示不同施肥处理和不同铁氧化物结合态有机碳类型间差异显著(P<0.05), 误差线表示标准差(n=3)。

    Figure  2.  Contents of Fe-oxide-bound organic carbon in red soil under different long-term fertilization treatments

    CK, NPK, and M represent no fertilization, chemical fertilizer application, and manure application treatments, respectively. OCPP, OCHH, and OCDH represent organo-Fe complexes bound organic carbon, amorphous Fe hydroxides bound organic carbon, and crystalline Fe hydroxides bound organic carbon, respectively. Different lowercase and capital letters on the graph column indicate significant differences among different treatments for the same Fe-oxide-bound organic carbon and among different Fe-oxide-bound organic carbon for the same treatment, respectively, at P<0.05 according to Tukey’s multiple range test. Error bar represents the standard deviation of n=3.

    图  3  长期不同施肥处理对红壤中铁氧化物结合态有机碳E2/E3比值(a)、A260 (b)和SUVA254 (c)的影响

    Figure  3.  E2/E3 (a), A260 (b), and SUVA254 (c) values of Fe-oxide-bound organic carbon of red soils under different long-term fertilization treatments

    表  1  长期不同施肥处理的红壤pH和总有机碳含量

    Table  1.   pH and organic carbon content in red soil under different long-term fertilization treatments

    处理
    Treatment
    pH有机碳含量
    Organic carbon content (g∙kg−1)
    CK4.85±0.02b7.0±0.1c
    NPK3.77±0.00c9.4±0.2b
    M5.96±0.03a16.5±0.2a
      CK、NPK、M分别代表对照、长期施用化肥和长期施用有机肥处理, 同列不同字母表示不同施肥处理间差异显著(P<0.05)。CK, NPK, and M represent no fertilization, chemical fertilizer application, and manure application treatments, respectively. Values in the same column followed by different letters are significantly different (P<0.05).
    下载: 导出CSV

    表  2  长期不同施肥处理下红壤不同铁氧化物结合态有机碳的碳/铁摩尔比

    Table  2.   C/Fe molar ratios of different Fe-oxide-bound organic carbon under different long-term fertilization treatments

    处理 TreatmentOCPPOCHHOCDH
    CK6.06±0.50bA1.27±0.11cB0.40±0.02aC
    NPK5.75±0.23 bA1.98±0.08aB0.24±0.02cC
    M15.95±1.26 aA1.58±0.05bB0.35±0.01bC
      CK、NPK、M分别代表对照、长期施用化肥和长期施用有机肥处理, OCPP、OCHH、OCDH分别表示络合铁结合态有机碳、非晶形铁氧化物结合态有机碳和晶形铁氧化物结合态有机碳。不同小写字母和大写字母分别表示不同施肥处理和不同铁氧化物结合态有机碳类型间差异显著(P<0.05)。CK, NPK, and M represent no fertilization, chemical fertilizer application, and manure application treatments, respectively. OCPP, OCHH, and OCDH represent organo-Fe complexes bound organic carbon, amorphous Fe hydroxides bound organic carbon, and crystalline Fe hydroxides bound organic carbon, respectively. Different lowercase and capital letters in the table indicate significant differences among different treatments for the same Fe-oxide-bound organic carbon and among different Fe-oxide-bound organic carbon for the same treatment, respectively, at P<0.05 according to Tukey’s multiple range test.
    下载: 导出CSV
  • [1] KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1−140
    [2] YU G H, XIAO J, HU S J, et al. Mineral availability as a key regulator of soil carbon storage[J]. Environmental Science & Technology, 2017, 51(9): 4960−4969
    [3] HEMINGWAY J D, ROTHMAN D H, GRANT K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760): 228−231 doi: 10.1038/s41586-019-1280-6
    [4] WANG Y Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, 8: 15972 doi: 10.1038/ncomms15972
    [5] KRAMER M G, CHADWICK O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104−1108 doi: 10.1038/s41558-018-0341-4
    [6] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041−1050 doi: 10.11766/trxb201802260035

    WANG L Y, QIN L, LYU X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041−1050 doi: 10.11766/trxb201802260035
    [7] JEEWANI P H, GUNINA A, LIANG T, et al. Rusty sink of rhizodeposits and associated keystone microbiomes[J]. Soil Biology & Biochemistry, 2020, 147: 107840
    [8] JEEWANI P H, ZWIETEN L V, ZHU Z K, et al. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients[J]. Soil Biology & Biochemistry, 2021, 160: 108312
    [9] WAN D, YE T H, LU Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils[J]. European Journal of Soil Science, 2019, 70(6): 1153−1163
    [10] 万丹. 铁氧化物和钙离子对土壤有机碳的固定及有机质对Pb形态转化的影响[D]. 武汉: 华中农业大学, 2019

    WAN D. Stabilization of soil organic carbon by iron oxides and calcium ions and the effect of organic matter on the fraction of Pb[D]. Wuhan: Huazhong Agricultural University, 2019
    [11] KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2): 219−236 doi: 10.1046/j.1365-2389.2003.00544.x
    [12] COWARD E K, THOMPSON A T, PLANTE A F. Iron-mediated mineralogical control of organic matter accumulation in tropical soils[J]. Geoderma, 2017, 306: 206−216 doi: 10.1016/j.geoderma.2017.07.026
    [13] HECKMAN K, LAWRENCE C R, HARDEN J W. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases[J]. Geoderma, 2018, 312: 24−35 doi: 10.1016/j.geoderma.2017.09.043
    [14] HALL S J, BERHE A A, THOMPSON A. Order from disorder: do soil organic matter composition and turnover co-vary with iron phase crystallinity?[J]. Biogeochemistry, 2018, 140(1): 93−110 doi: 10.1007/s10533-018-0476-4
    [15] ZHANG W J, WANG X J, XU M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J]. Biogeosciences, 2010, 7(2): 409−425 doi: 10.5194/bg-7-409-2010
    [16] HUANG C C, LIU S, LI R Z, et al. Spectroscopic evidence of the improvement of reactive iron mineral content in red soil by long-term application of swine manure[J]. PLoS One, 2016, 11(1): e0146364 doi: 10.1371/journal.pone.0146364
    [17] WEN Y L, XIAO J, LIU F F, et al. Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils[J]. Soil Biology and Biochemistry, 2018, 117: 56−67 doi: 10.1016/j.soilbio.2017.11.003
    [18] HUANG W J, HALL S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 2017, 8: 1774 doi: 10.1038/s41467-017-01998-z
    [19] CHEN C M, HALL S J, COWARD E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11: 2255 doi: 10.1038/s41467-020-16071-5
    [20] YU G H, KUZYAKOV Y. Fenton chemistry and reactive oxygen species in soil: abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling[J]. Earth-Science Reviews, 2021, 214: 103525
    [21] WAN D, MA M K, PENG N, et al. Effects of long-term fertilization on calcium-associated soil organic carbon: implications for C sequestration in agricultural soils[J]. Science of the Total Environment, 2021, 772: 145037 doi: 10.1016/j.scitotenv.2021.145037
    [22] WAN D, ZHANG N C, CHEN W L, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research International, 2018, 25(32): 32130−32139 doi: 10.1007/s11356-018-3173-x
    [23] SCHNECKER J, BORKEN W, SCHINDLBACHER A, et al. Little effects on soil organic carbon chemistry of density fractions after seven years of forest soil warming[J]. Soil Biology & Biochemistry, 2016, 103: 300−307
    [24] 史吉平, 张夫道, 林葆. 长期定位施肥对土壤腐殖质理化性质的影响[J]. 中国农业科学, 2002, 35(2): 174−180 doi: 10.3321/j.issn:0578-1752.2002.02.012

    SHI J P, ZHANG F D, LIN B. Effects of long-term located fertilization on the physico-chemical property of soil humus[J]. Scientia Agricultura Sinica, 2002, 35(2): 174−180 doi: 10.3321/j.issn:0578-1752.2002.02.012
    [25] GAO J K, LIANG C L, SHEN G Z, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere, 2017, 176: 108−116 doi: 10.1016/j.chemosphere.2017.02.104
    [26] CHEN C M, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23): 13751−13759
    [27] POULIN B A, RYAN J N, AIKEN G R. Effects of iron on optical properties of dissolved organic matter[J]. Environmental Science & Technology, 2014, 48(17): 10098−10106
    [28] DILLING J, KAISER K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry[J]. Water Research, 2002, 36(20): 5037−5044 doi: 10.1016/S0043-1354(02)00365-2
    [29] WAGAI R, MAYER L M, KITAYAMA K, et al. Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis[J]. Biogeochemistry, 2013, 112(1): 95−109
    [30] PARFITT R L, CHILDS C W. Estimation of forms of Fe and Al — a review, and analysis of contrasting soils by dissolution and Mossbauer methods[J]. Soil Research, 1988, 26(1): 121 doi: 10.1071/SR9880121
    [31] KAISER K, ZECH W. Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction[J]. Soil Science, 1996, 161(7): 452−458 doi: 10.1097/00010694-199607000-00005
    [32] REGELINK I C, VOEGELIN A, WENG L P, et al. Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy[J]. Environmental Science & Technology, 2014, 48(8): 4307−4316
    [33] LAWRENCE C R, HARDEN J W, XU X M, et al. Long-term controls on soil organic carbon with depth and time: a case study from the Cowlitz River chronosequence, WA USA[J]. Geoderma, 2015, 247/248: 73−87 doi: 10.1016/j.geoderma.2015.02.005
    [34] COWARD E K, OHNO T, PLANTE A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036−1044
    [35] HUANG X L, FENG C L, ZHAO G L, et al. Carbon sequestration potential promoted by oxalate extractable iron oxides through organic fertilization[J]. Soil Science Society of America Journal, 2017, 81(6): 1359−1370 doi: 10.2136/sssaj2017.02.0068
    [36] LV J T, ZHANG S Z, WANG S S, et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides[J]. Environmental Science & Technology, 2016, 50(5): 2328−2336
    [37] WENG L P, VAN RIEMSDIJK W H, KOOPAL L K, et al. Ligand and charge distribution (LCD) model for the description of fulvic acid adsorption to goethite[J]. Journal of Colloid and Interface Science, 2006, 302(2): 442−457 doi: 10.1016/j.jcis.2006.07.005
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1553
  • HTML全文浏览量:  164
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2021-12-21
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回