留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江中下游水稻生产固碳减排关键影响因素及技术体系

刘天奇 胡权义 汤计超 李成芳 江洋 刘娟 曹凑贵

刘天奇, 胡权义, 汤计超, 李成芳, 江洋, 刘娟, 曹凑贵. 长江中下游水稻生产固碳减排关键影响因素及技术体系[J]. 中国生态农业学报 (中英文), 2022, 30(4): 603−615 doi: 10.12357/cjea.20210733
引用本文: 刘天奇, 胡权义, 汤计超, 李成芳, 江洋, 刘娟, 曹凑贵. 长江中下游水稻生产固碳减排关键影响因素及技术体系[J]. 中国生态农业学报 (中英文), 2022, 30(4): 603−615 doi: 10.12357/cjea.20210733
LIU T Q, HU Q Y, TANG J C, LI C F, JIANG Y, LIU J, CAO C G. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603−615 doi: 10.12357/cjea.20210733
Citation: LIU T Q, HU Q Y, TANG J C, LI C F, JIANG Y, LIU J, CAO C G. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603−615 doi: 10.12357/cjea.20210733

长江中下游水稻生产固碳减排关键影响因素及技术体系

doi: 10.12357/cjea.20210733
基金项目: 湖北省技术创新专项重大项目(2019ABA104)、中央高校基本科研业务费专项 (2662020ZKPY014)和中国博士后科学基金(2020M672373)资助
详细信息
    作者简介:

    刘天奇, 主要研究方向为农业碳中和与土壤碳氮循环。E-mail: 570112975@qq.com

    通讯作者:

    曹凑贵, 主要研究方向为稻田生态和稻田复合种养。E-mail: ccgui@mail.hzau.edu.cn

  • 中图分类号: X511

Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River

Funds: This study was supported by Hubei Province Technological Innovation Special Major Project (2019ABA104), the Fundamental Research Funds for the Central Universities of China (2662020ZKPY014) and China Postdoctoral Science Foundation (2020M672373).
More Information
  • 摘要: 水稻生产是中国农业温室气体的主要排放源之一, 针对“碳达峰”和“碳中和”的战略目标, 探究影响水稻生产固碳减排的关键因素, 构建水稻生产固碳减排技术体系具有重要意义。 本文针对长江中下游水稻主产区, 开展包括免耕、氮肥深施、间歇性节水灌溉、秸秆氮肥配施管理等低碳管理措施在内的定位试验, 分析水稻生产固碳减排的关键影响因素。在长期监测稻田温室气体排放的基础上, 使用13C核磁共振技术分析有机碳官能团分子结构, 明确稻作管理措施增汇减排机理。进一步从碳足迹角度评估不同稻作管理技术下稻田生产间接碳排放。同时使用13C秸秆示踪技术, 明确秸秆外源碳在稻作循环中的转化比例。研究结果显示, 通过调控秸秆和氮肥配比, 可以促进秸秆碳向小分子官能团的转化, 并促进土壤团聚体吸附外源颗粒有机碳, 相比常规秸秆管理模式提高土壤碳库闭蓄态颗粒有机碳储量32.3%。间歇性节水灌溉技术可以通过提高甲烷氧化菌丰度, 减少稻田甲烷排放19.9%~21.1%。免耕等低能耗稻田管理技术可以减少燃油和人力等投入, 综合降低稻田生产间接碳排放10.5%~16.7%。相对于常规稻田秸秆还田模式, 间歇性节水灌溉、秸秆氮肥配施等管理技术可以提高秸秆外源碳循环固定率57.3%~59.9%。土壤团聚体结构发育、碳排放功能微生物、土壤氮素底物浓度、水稻生产碳足迹和作物碳固定量是影响水稻生产碳中和的关键因素。从“增汇” “减排” “降耗” “循环”角度, 构建水稻生产固碳减排技术体系可以促进水稻生产碳固持28.9%~67.6%。
  • 图  1  水稻生产碳足迹输入和输出清单

    Figure  1.  Input and output lists of carbon (C) footprint of rice production

    图  2  不同秸秆与氮肥配施碳氮比处理下稻田土壤团聚体有机质组分特性变化

    SR: 只秸秆还田; CN30: 秸秆与氮肥配施碳氮比30; CN20: 秸秆与氮肥配施碳氮比20; CN10: 秸秆与氮肥配施碳氮比10。fPOM: 自由轻组颗粒有机质; iPOM: 微团聚体内颗粒有机质; intra-SC: 微团聚体内粉黏粒; free-SC: 游离态粉黏粒。不同字母表示不同处理间差异在P<0.05水平显著。SR: only straw returned to soil; CN30: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 30; CN20: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 20; CN10: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 10. fPOM: free light particulate organic matter; iPOM: intra-microaggregate particulate organic matter; intra-SC: intra-microaggregate silt+clay sized fraction; free-SC: free silt+clay. Different letters within the column indicate significant differences among treatments (P<0.05).

    Figure  2.  Changes of soil aggregate organic matter composition characteristics in paddy field under different treatments of carbon to nitrogen ratios adjusted by straw and nitrogen fertilizer addition

    图  3  间歇性节水灌溉减少稻田CH4和N2O排放的结构方程模型分析(χ2=52.88; df=30; CFI=0.965; GFI=0.932; RSMEA=0.00)

    箭头上面的数字为路径系数, R2表示能够解释变量的百分比。*表示P<0.05, **表示P<0.01。Numbers adjacent to arrows are standardized path coefficients. R2 indicates the proportion of variance explained. *: P<0.05; **: P<0.01.

    Figure  3.  Structural equation model analysis of the reduction of CH4 and N2O emissions from paddy fields under intermittent water-saving irrigation (χ2= 52.88; df = 30; CFI = 0.965; GFI = 0.932; RSMEA=0.00)

    图  4  不同低碳管理措施下稻田秸秆外源碳土壤和作物固定及温室气体转化和水体流失比例

    正值表示碳固定, 负值表示碳流失。CK: 常规秸秆还田模式; NT: 免耕管理; ND: 氮肥深施; AWD: 干湿交替灌溉; SN: 秸秆氮肥配施碳氮比调控; RS: 稻虾共作模式。不同字母表示不同管理措施的差异在P<0.05水平显著。The positive value indicates carbon sequestration and the negative value indicates carbon loss. CK: conventional straw return; NT: no-tillage; ND: deep placement of nitrogen fertilizer; AWD: alternate wet and dry irrigation; SN: combined application of straw and nitrogen fertilizer with carbon to nitrogen ratio regulation; RS: rice-shrimp co-cultivation. Different letters indicate significant differences among management measures (P<0.05).

    Figure  4.  Proportions of soil and crop carbon sequestration, greenhouse gas conversion and water carbon loss of straw exogenous carbon in paddy field under different low-carbon management measures

    图  5  不同低碳管理措施下水稻生产碳盈余

    正值表示碳固定, 负值表示碳流失。CK: 常规秸秆还田模式; NT: 免耕管理; ND: 氮肥深施; AWD: 干湿交替灌溉; SN: 秸秆氮肥配施碳氮比调控; RS: 稻虾共作模式。不同字母表示不同管理措施的差异在P<0.05水平显著。The positive value indicates carbon sequestration and the negative value indicates carbon loss. CK: conventional straw return; NT: no-tillage; ND: deep placement of nitrogen fertilizer; AWD: alternate wet and dry irrigation; SN: combined application of straw and nitrogen fertilizer with carbon to nitrogen ratio regulation; RS: rice-shrimp co-cultivation. Different letters indicate significant differences among management measures (P<0.05).

    Figure  5.  Carbon surplus of rice production under different low-carbon management measures

    图  6  水稻生产固碳减排技术体系

    Figure  6.  Management technology system of carbon (C) sequestration and emission reduction for rice production

    表  1  不同秸秆与氮肥配施碳氮比处理下稻田土壤主要有机质官能团比例

    Table  1.   Proportions of main soil organic matter functional groups in paddy field under different treatments of carbon to nitrogen ratios adjusted by straw and nitrogen fertilizer addition

    处理
    Treatment
    烷基碳
    Alkyl C
    烷氧基碳
    O-alkyl C
    芳香碳
    Aromatic C
    羧基碳
    Carboxyl C
    烷基碳/烷氧基碳
    Alkyl C / O-alkyl C
    芳香度
    Aromaticity
    疏水性
    Hydrophobicity
    % 
    SR 9.43±0.95b 18.50±0.60c 31.60±2.31a 24.10±0.89a 0.51±0.04a 0.53±0.03a 0.96±0.04a
    CN30 11.40±0.40a 21.30±1.18b 25.83±1.55b 21.33±1.17b 0.54±0.01a 0.44±0.03b 0.88±0.07ab
    CN20 12.90±0.96a 23.63±1.66a 21.67±1.27c 18.37±1.19c 0.55±0.08a 0.37±0.02c 0.82±0.05b
    CN10 11.33±1.10a 21.33±0.59b 26.17±1.17b 21.27±1.40b 0.53±0.07a 0.44±0.02b 0.88±0.02ab
      SR: 只秸秆还田; CN30: 秸秆与氮肥配施碳氮比30; CN20: 秸秆与氮肥配施碳氮比20; CN10: 秸秆与氮肥配施碳氮比10。不同字母表示不同处理间在P<0.05水平差异显著。SR: only straw returned to soil; CN30: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 30; CN20: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 20; CN10: straw and nitrogen fertilizer combination with a carbon to nitrogen ratio of 10. Different letters within the column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  2  2015—2017年稻田不同灌溉模式下CH4和N2O累计排放量

    Table  2.   Cumulative emissions of CH4 and N2O under different irrigation modes in paddy fields from 2015 to 2017

    处理
    Treatment
    CH4累计排放量 Cumulative CH4 emission [kg(CH4)∙hm−2]N2O累计排放量 Cumulative N2O emissions [kg(N2O)∙hm−2]
    201520162017201520162017
    F 653.0±45.3a 634.0±44.3a 624.4±52.7a 1.86±0.11b 1.77±0.15b 1.74±0.12b
    W 520.1±44.5b 507.6±52.3b 492.5±50.0b 1.15±0.18c 1.05±0.15c 1.27±0.20c
    D 384.6±28.5c 396.8±20.0c 374.3±42.9c 2.14±0.13a 2.22±0.10a 2.10±0.14a
      F: 常规淹灌模式; W: 间歇性节水灌溉模式; D: 旱作灌溉模式。不同字母表示不同处理间差异在P<0.05水平显著。F: conventional flooding irrigation; W: intermittent water-saving irrigation; D: dry farming irrigation. Different letters within the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  3  不同低碳管理措施下稻田生产间接碳排放清单

    Table  3.   Inventory of indirect carbon emissions from rice production under different low-carbon management measures

    低碳管理措施
    Low-carbon management measure
    总间接碳排放
    Total indirect carbon emission
    排放源 Emission source
    劳动力投入
    Labor input
    防治投入
    Control input
    机械燃料
    Mechanical fuel
    电力消耗
    Power consumption
    生产物料投入
    Production material input
    kg(C-eq)∙hm−2 
    常规管理
    Traditional management
    1441.3316.3135.9135.630.2823.3
    免耕
    No tillage
    1201.1169.2169.223.116.3823.3
    氮肥深施
    Nitrogen fertilizer deep placement
    1429.5346.9105.683.628.3865.1
    间歇性节水灌溉
    Intermittent water-saving irrigation
    1273.2216.896.889.247.1823.3
    秸秆和氮肥配施
    Combined application of straw and nitrogen fertilizer
    1209.7326.788.397.823.1673.8
    下载: 导出CSV
  • [1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC[R]. New York: Cambridge University Press, 2021
    [2] 伍国勇, 陈莹, 孙小钧. 中国种植业碳补偿率区域差异、动态演进及收敛性分析[J]. 中国生态农业学报(中英文), 2021, 29(10): 1774−1785

    WU G Y, CHEN Y, SUN X J. Regional differences, dynamic evolution, and convergence of the carbon compensation rate of planting industry in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1774−1785
    [3] 马晓哲, 王雅晴, 刘昌新, 等. 碳税政策对农业土地利用变化及其碳排放的影响[J]. 生态学报, 2019, 39(5): 1815−1828

    MA X Z, WANG Y Q, LIU C X, et al. Effect of carbon tax policy on agricultural land use change and its carbon emission[J]. Acta Ecologica Sinica, 2019, 39(5): 1815−1828
    [4] IPCC. Climate Change 2013: The Physical Science Basis[R]. New York: Cambridge University Press, 2013
    [5] IPCC. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. New York: Cambridge University Press, 2007: 63−67
    [6] VERGÉ X P C, KIMPE C D, DESJARDINS R L. Agricultural production, greenhouse gas emissions and mitigation potential[J]. Agricultural and Forest Meteorology, 2007, 142(2/3/4): 255−269
    [7] IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group Ⅲ Contribution to the Fourth Assessment Report of the IPCC[R]. New York: Cambridge University Press, 2014
    [8] 黄满堂, 王体健, 赵雄飞, 等. 2015年中国地区大气甲烷排放估计及空间分布[J]. 环境科学学报, 2019, 39(5): 1371−1380

    HUANG M T, WANG T J, ZHAO X F, et al. Estimation of atmospheric methane emissions and its spatial distribution in China during 2015[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1371−1380
    [9] 国家统计局农村社会经济调查司. 中国农村统计年鉴—2019[M]. 北京: 中国统计出版社, 2019

    Department of Rural Social Economical Survey, State Bureau of Statistics. China Rural Statistical Yearbook 2019[M]. Beijing: China Statistics Press, 2019
    [10] HEIMANN M. Enigma of the recent methane budget[J]. Nature, 2011, 476(7359): 157−158 doi: 10.1038/476157a
    [11] XUE J F, LIU S L, CHEN Z D, et al. Assessment of carbon sustainability under different tillage systems in a double rice cropping system in southern China[J]. The International Journal of Life Cycle Assessment, 2014, 19(9): 1581−1592 doi: 10.1007/s11367-014-0768-4
    [12] LIU T Q, LI S H, GUO L G, et al. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields[J]. Journal of Cleaner Production, 2020, 263: 121322 doi: 10.1016/j.jclepro.2020.121322
    [13] MEDINA E, PAREDES C, BUSTAMANTE M A, et al. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate[J]. Geoderma, 2012, 173/174: 152−161 doi: 10.1016/j.geoderma.2011.12.011
    [14] 吴梦琴, 李成芳, 盛锋, 等. 基于DNDC模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化[J]. 中国生态农业学报(中英文), 2021, 29(9): 1480−1492

    WU M Q, LI C F, SHENG F, et al. Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1480−1492
    [15] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103 doi: 10.1016/S0038-0717(00)00179-6
    [16] MIKHA M M, HERGERT G W, BENJAMIN J G, et al. Long-term manure impacts on soil aggregates and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal, 2015, 79(2): 626−636 doi: 10.2136/sssaj2014.09.0348
    [17] XU Y, ZHAN M, CAO C G, et al. Effects of irrigation management during the rice growing season on soil organic carbon pools[J]. Plant and Soil, 2017, 421(1): 337−351
    [18] ZHANG Z S, GUO L J, LIU T Q, et al. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China[J]. Atmospheric Environment, 2015, 122: 636−644 doi: 10.1016/j.atmosenv.2015.09.065
    [19] WANG Y, LI C Y, TU C, et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community[J]. Science of the Total Environment, 2017, 609: 341−347 doi: 10.1016/j.scitotenv.2017.07.053
    [20] FAN D J, LIU T Q, SHENG F, et al. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields[J]. Biology and Fertility of Soils, 2020, 56(5): 711−727 doi: 10.1007/s00374-020-01447-y
    [21] 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3−12

    CHEN S W, LIU T Q, CAO C G, et al. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3−12
    [22] HU Q Y, LIU T Q, JIANG S S, et al. Combined effects of straw returning and chemical N fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 392−406 doi: 10.1007/s42729-019-00120-0
    [23] SOLOMON D, LEHMANN J, KINYANGI J, et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems[J]. Global Change Biology, 2007, 13(2): 511−530 doi: 10.1111/j.1365-2486.2006.01304.x
    [24] 刘天奇. 氮肥深施模式下免耕稻田氮素利用及微生物调控机制研究[D]. 武汉: 华中农业大学, 2018

    LIU T Q. Study on nitrogen utilization and microbial regulation mechanism under nitrogen fertilizer deep placement modes in no-tillage rice fields[D]. Wuhan: Huazhong Agricultural University, 2018
    [25] SUN Z C, GUO Y, LI C F, et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China[J]. Environmental Science and Pollution Research International, 2019, 26(12): 11710−11718 doi: 10.1007/s11356-019-04572-w
    [26] 《湖北农村统计年鉴》编辑委员会. 2019湖北农村统计年鉴[M]. 北京: 中国统计出版社, 2019

    Editorial Committee of “Hubei Rural Statistical Yearbook”. 2019 Hubei Rural Statistical Yearbook[M]. Beijing: China Statistics Press, 2019
    [27] LIU T Q, GUO L J, CAO C G, et al. Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107548
    [28] 李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362−2367

    LI C F, KOU Z K, ZHANG Z S, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields[J]. Journal of Agro-Environment Science, 2011, 30(11): 2362−2367
    [29] 曹凑贵, 李成芳, 展茗, 等. 稻田管理措施对土壤碳排放的影响[J]. 中国农业科学, 2011, 44(1): 93−98 doi: 10.3864/j.issn.0578-1752.2011.01.011

    CAO C G, LI C F, ZHAN M, et al. Effects of agricultural management practices on carbon emissions in paddy fields[J]. Scientia Agricultura Sinica, 2011, 44(1): 93−98 doi: 10.3864/j.issn.0578-1752.2011.01.011
    [30] DI H J, CAMERON K C, PODOLYAN A, et al. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil[J]. Soil Biology and Biochemistry, 2014, 73: 59−68 doi: 10.1016/j.soilbio.2014.02.011
    [31] TAYLOR A E, ZEGLIN L H, WANZEK T A, et al. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials[J]. The ISME Journal, 2012, 6(11): 2024−2032 doi: 10.1038/ismej.2012.51
    [32] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80−90 doi: 10.1016/j.fcr.2015.09.011
    [33] LI S H, GUO L J, CAO C G, et al. Integrated assessment of carbon footprint, energy budget and net ecosystem economic efficiency from rice fields under different tillage modes in central China[J]. Journal of Cleaner Production, 2021, 295: 126398 doi: 10.1016/j.jclepro.2021.126398
    [34] 张岳芳, 周炜, 陈留根, 等. 太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究[J]. 中国生态农业学报, 2013, 21(3): 290−296

    ZHANG Y F, ZHOU W, CHEN L G, et al. Methane and nitrous oxide emission under different paddy-upland crop rotation systems during rice growth season in Taihu Lake region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 290−296
    [35] 朱姝, 窦森, 陈丽珍. 秸秆深还对土壤团聚体中胡敏酸结构特征的影响[J]. 土壤学报, 2015, 52(4): 747−758

    ZHU S, DOU S, CHEN L Z. Effect of deep application of straw on composition of humic acid in soil[J]. Acta Pedologica Sinica, 2015, 52(4): 747−758
    [36] 耿川雄, 任家兵, 马心灵, 等. 基于LCA的不同间作体系产量优势及温室效应研究[J]. 中国生态农业学报(中英文), 2020, 28(2): 159−167

    GENG C X, REN J B, MA X L, et al. Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 159−167
    [37] SHE W, WU Y, HUANG H, et al. Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions[J]. Journal of Cleaner Production, 2017, 162: 702−708 doi: 10.1016/j.jclepro.2017.05.108
    [38] YUAN P L, WANG J P, LI C F, et al. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain, China using a minimum data set[J]. Soil and Tillage Research, 2020, 204: 104732 doi: 10.1016/j.still.2020.104732
    [39] 邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291−1301

    ZOU F L, CAO C G, MA J Y, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291−1301
    [40] JIANG Y, CAO C G. Crayfish-rice integrated system of production: an agriculture success story in China. a review[J]. Agronomy for Sustainable Development, 2021, 41(5): 68 doi: 10.1007/s13593-021-00724-w
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  116
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 录用日期:  2021-12-22
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回