留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同土地经营模式的稻鱼共生系统环境影响评价

崔文超 焦雯珺 闵庆文

崔文超, 焦雯珺, 闵庆文. 不同土地经营模式的稻鱼共生系统环境影响评价[J]. 中国生态农业学报 (中英文), 2022, 30(4): 630−640 doi: 10.12357/cjea.20210736
引用本文: 崔文超, 焦雯珺, 闵庆文. 不同土地经营模式的稻鱼共生系统环境影响评价[J]. 中国生态农业学报 (中英文), 2022, 30(4): 630−640 doi: 10.12357/cjea.20210736
CUI W C, JIAO W J, MIN Q W. Environmental impact assessment of rice-fish culture with different land management models[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 630−640 doi: 10.12357/cjea.20210736
Citation: CUI W C, JIAO W J, MIN Q W. Environmental impact assessment of rice-fish culture with different land management models[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 630−640 doi: 10.12357/cjea.20210736

不同土地经营模式的稻鱼共生系统环境影响评价

doi: 10.12357/cjea.20210736
基金项目: 国家自然科学基金项目(41801204)资助
详细信息
    作者简介:

    崔文超, 主要从事环境影响评价、低碳绿色发展等领域的研究。E-mail: zgcuiwenchao@163.com

    通讯作者:

    焦雯珺, 主要从事生态系统管理、环境影响评估、区域可持续发展等领域的研究。E-mail: jiaowj@igsnrr.ac.cn

  • 中图分类号: F326.11; F326.4; X24

Environmental impact assessment of rice-fish culture with different land management models

Funds: The study was supported by the National Natural Science Foundation of China (41801204).
More Information
  • 摘要: 农业碳排放是全球碳排放的重要组成部分, 研究农业碳排放对当下我国探索农业绿色转型发展具有重要意义, 而针对碳排放的环境影响评价则可为促进农业绿色转型发展提供重要参考。本研究以青田稻鱼共生系统为研究对象, 利用基于生命周期评价的碳足迹模型开展不同土地经营模式下的稻鱼共生系统环境影响评价。研究发现: 1)以发展梯田旅游为重点的经营模式虽然碳足迹仅为5779.1 kg(CO2-eq)∙hm−2, 在碳减排方面最具优势, 但其单位产值碳足迹却高达0.17 kg(CO2-eq)∙¥−1, 较低的经济效益并不利于长久的可持续发展; 2)以扩大田鱼养殖为重点的经营模式经济效益显著, 单位产值碳足迹仅为0.05 kg(CO2-eq)∙¥−1, 但较高的农资投入使得其碳足迹高达7928.6 kg(CO2-eq)∙hm−2, 面临着环境风险的增加, 必须找到经济产出与环境风险的平衡点; 3)在政府的政策与资金支持下, 以维持传统生产为重点的经营模式较好地践行了遗产保护理念, 稻鱼共生系统的碳足迹为6266.7 kg(CO2-eq)∙hm−2, 单位产值碳足迹为0.12 kg(CO2-eq)∙¥−1, 但从长远来看, 还需通过提升产品经济价值、促进农旅融合发展实现经济和环境效益的双赢。研究结果揭示了不同土地经营模式下稻鱼共生系统在经济和环境效益上的显著差异, 并为不同土地经营模式下稻鱼共生系统的绿色可持续发展提供了政策建议。
  • 图  1  青田稻鱼共生系统不同土地经营模式的碳足迹核算框架

    Figure  1.  Accounting framework of carbon footprints of different land management models in Qingtian Rice-Fish Culture System

    图  2  不同区域青田稻鱼共生系统碳足迹组成

    Figure  2.  Composition of carbon footprints in different areas of Qingtian Rice-Fish Culture System

    表  1  青田稻鱼共生系统不同区域的不同土地经营模式及其特点

    Table  1.   Land management models and their characteristics in different areas of Qingtian Rice-Fish Culture System

    区域
    Area
    土地经营模式
    Land management model
    主要特点
    Main characteristics
    龙现村
    Longxian Village
    以维持传统生产为重点
    Maintaining traditional farming as the focus
    实施种粮大户和稻鱼共生生态补贴政策, 促进土地流转和土地复垦, 注重稻鱼共生传统生产方式的传承与保护
    Providing subsidies for large-scale farmers and farmers who continue the rice-fish culture, promoting land transfer and land reclamation, and emphasizing on the inheritance and conservation of traditional production methods in the rice-fish culture
    新彭村
    Xinpeng Village
    以扩大田鱼养殖为重点
    Enlarging field fish raising as the focus
    建立稻鱼共生示范基地, 与浙江大学和上海海洋大学开展联合研究, 在水稻种植和田鱼养殖方面具有技术优势, 现代技术的引入帮助农户实现了靠田鱼养殖致富创收
    Establishing a rice-fish culture demonstration base, conducting joint research with Zhejiang University and Shanghai Ocean University, obtaining technical advantages in the rice-fish culture, and introducing modern technologies to help farmers in field fish raising
    小舟山村
    Xiaozhoushan Village
    以发展梯田旅游为重点
    Developing terrace tourism as the focus
    成立农民专业合作社, 开展绿色和有机生产, 利用大面积稻鱼梯田打造旅游景观、发展观光旅游, 参与的农户可获得政府补贴, 收获的稻谷由政府进行收购
    Establishing farmers’ cooperatives, carrying out green and organic production, and using large-scale rice-fish terraces to develop tourism through which farmers receive subsidies from the government and sell the harvested rice to the government
    下载: 导出CSV

    表  2  稻鱼共生系统的各项农业生产资料的温室气体排放因子

    Table  2.   Greenhouse gas emission factors of various agricultural production inputs of the rice-fish culture system

    项目
    Item
    排放因子
    Emission factor
    数据来源
    Data source
    kg(CO2-eq)∙kg−1 
    化肥 Fertilizer氮肥 Nitrogen fertilizer1.53[25]
    复合肥 Compound fertilizer1.77[25]
    农药 Pesticide16.61[26]
    饲料 Feed小麦 Wheat feed1.01[27]
    玉米 Corn feed0.79[27]
    成品饲料 Commercial feed0.10自行折算
    Self calculation
    油菜饼 Rapeseed feed1.33[21]
    燃料 Fuel汽油 Gasoline3.12[28]
    下载: 导出CSV

    表  3  不同区域青田稻鱼共生系统农业生产资料投入情况

    Table  3.   Agricultural production inputs in different areas of Qingtian Rice-Fish Culture System kg∙hm−2 

    区域
    Area
    化肥 Fertilizer农药
    Pesticide
    饲料 Feed燃料 Fuel
    氮肥
    Nitrogen fertilizer
    复合肥
    Compound fertilizer
    小麦
    Wheat feed
    玉米
    Corn feed
    油菜饼
    Rapeseed feed
    成品饲料
    Commercial feed
    汽油
    Gasoline
    龙现村
    Longxian Village
    181.8±257.1a630.6±584.4a2.6±2.6a220.4±572.4a336.1±992.3a0b042.7±69.1b
    新彭村
    Xinpeng Village
    114.5±275.9ab618.8±430.4ab51.4±45.9a150.0±573.6a65.5±207.7a698.3±1483.8a2259.4±3698.189.3±77.4a
    小舟山村
    Xiaozhoushan Village
    25.7±61.3b355.6±173.5b11.9±11.3ab277.4±324.4a0a286.9±428.8ab053.4±102.2ab
      同列数据后不同小写字母表示不同区域在P<0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P<0.05 level.
    下载: 导出CSV

    表  4  不同区域青田稻鱼共生系统农资投入温室气体排放量

    Table  4.   Greenhouse gases emissions from agricultural production inputs in different areas of Qingtian Rice-Fish Culture System

    区域
    Area
    化肥 Fertilizer农药
    Pesticide
    饲料 Feed燃料 Fuel合计
    Total
    氮肥
    Nitrogen fertilizer
    复合肥
    Compound fertilizer
    小麦
    Wheat feed
    玉米
    Corn feed
    油菜饼
    Rapeseed feed
    成品饲料
    Commercial feed
    汽油
    Gasoline
    kg(CO2-eq)∙hm−2 
    龙现村
    Longxian Village
    278.2±393.4a1116.2±1034.4a43.2±43.7b222.6±578.1a265.5±783.9a00133.2±215.6b2058.9±1789.3b
    新彭村
    Xinpeng Village
    175.2±422.1ab1095.3±761.8ab853.8±763.1a151.5±579.4a51.7±164.1a928.8±1973.5a225.9±369.8278.7±241.4a3761.0±2466.2a
    小舟山村
    Xiaozhoushan Village
    39.3±93.8b629.4±307.1b198.3±188.0b280.1±327.7a0381.6±570.3ab0166.7±319.0ab1695.4±985.2b
      同列数据后不同小写字母表示不同区域在P<0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P<0.05 level.
    下载: 导出CSV

    表  5  不同区域青田稻鱼共生系统的温室气体排放量及碳足迹

    Table  5.   Greenhouse gases emissions and carbon footprints in different areas of Qingtian Rice-Fish Culture System

    区域
    Area
    农业生产投入温室气体排放量
    Greenhouse gases emission from
    agricultural production inputs
    生产过程温室气体排放量
    Greenhouse gases emission in the process of agricultural production
    农业生产碳足迹
    Carbon footprint
    of agriculture
    N2O排放
    N2O emission
    CH4排放
    CH4 emission
    合计
    Total
    kg(CO2-eq)∙hm−2 
    龙现村
    Longxian Village
    2058.9±1789.3b183.3±170.9a4024.54207.8±170.9a6266.7±1893.2b
    新彭村
    Xinpeng Village
    3761.0±2466.2a143.1±184.0ab4024.54167.6±184.0ab7928.6±2521.9a
    小舟山村
    Xiaozhoushan Village
    1695.4±985.2b59.2±46.3b4024.54083.7±46.3b5779.1±990.3b
      同列数据后不同小写字母表示不同区域在P<0.05水平差异显著。Values followed by different lowercase letters in a column are significantly different at P<0.05 level.
    下载: 导出CSV

    表  6  不同区域青田稻鱼共生系统产量、产值及单位产值碳足迹

    Table  6.   Yields, output values and carbon footprints per unit output in different areas of Qingtian Rice-Fish Culture System

    区域
    Area
    水稻 Rice田鱼 Field fish单位面积产值
    Output value per unit area
    (¥∙hm−2)
    单位产值碳足迹
    Carbon footprint per unit output [kg(CO2-eq)∙ ¥−1]
    产量
    Yield (kg∙hm−2)
    产值
    Output value (¥∙hm−2)
    产量
    Yield (kg∙hm−2)
    产值
    Output value (¥∙hm−2)
    龙现村
    Longxian Village
    6831.220 493.6318.331 830.052 323.60.12
    新彭村
    Xinpeng Village
    7241.621 724.81237.6123 760.0145 484.80.05
    小舟山村
    Xiaozhoushan Village
    4954.914 864.7187.118 710.033 574.70.17
    下载: 导出CSV
  • [1] Energy & Climate Intelligence Unit. Net zero emissions race[EB/OL]. [2021-05-10]. https://eciu.net/netzerotracker
    [2] Change Intergovernmental Panel on Climate. Agriculture, Forestry and Other Land Use (AFOLU)[M]//Climate Change 2014 Mitigation of Climate Change. Cambridge: Cambridge University Press, 2014: 811–922
    [3] SCHEEHLE E A, KRUGER D. Global anthropogenic methane and nitrous oxide emissions[J]. The Energy Journal, 2006, SI2006(1), DOI: 10.5547/issn0195-6574-ej-volsi2006-nosi3-2
    [4] XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. PNAS, 2011, 108(50): E1381−E1387 doi: 10.1073/pnas.1111043108
    [5] 唐建军, 胡亮亮, 陈欣. 传统农业回顾与稻渔产业发展思考[J]. 农业现代化研究, 2020, 41(5): 727−736

    TANG J J, HU L L, CHEN X. Review on the traditional agriculture for the development of intensive rice-fish system[J]. Research of Agricultural Modernization, 2020, 41(5): 727−736
    [6] CAI S M, LYU W, ZHU H T, et al. Effect of nitrogen application rate on soil fungi community structure in a rice-fish mutualistic system[J]. Scientific Reports, 2019, 9: 16188 doi: 10.1038/s41598-019-52602-x
    [7] 郭海松, 罗衡, 李丰, 等. 不同水稻栽培密度下青田稻-鱼共生系统的土壤肥力[J]. 水产学报, 2020, 44(5): 805−815

    GUO H S, LUO H, LI F, et al. Investigation of soil fertility of Qingtian rice-fish coculture system under different rice cultivation densities[J]. Journal of Fisheries of China, 2020, 44(5): 805−815
    [8] YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China, 2009, 8(10): 1246−1255 doi: 10.1016/S1671-2927(08)60335-1
    [9] 周江伟, 刘贵斌, 陈灿, 等. 免耕“稻鳖鱼”共生模式的环境经济学分析[J]. 湖南农业科学, 2017(8): 98−102

    ZHOU J W, LIU G B, CHEN C, et al. Environmental economics analysis of no-tillage rice-turtle-fish symbiosis model[J]. Hunan Agricultural Sciences, 2017(8): 98−102
    [10] 王强盛. 稻田种养结合循环农业温室气体排放的调控与机制[J]. 中国生态农业学报, 2018, 26(5): 633−642

    WANG Q S. Regulation and mechanism of greenhouse gas emissions of circular agriculture ecosystem of planting and breeding in paddy[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 633−642
    [11] 王寒, 唐建军, 谢坚, 等. 稻田生态系统多个物种共存对病虫草害的控制[J]. 应用生态学报, 2007, 18(5): 1134−1138

    WANG H, TANG J J, XIE J, et al. Controlling effects of multiple species coexistence on rice diseases, pests and weeds in paddy field ecosystem[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 1134−1138
    [12] WANG Y X, FREI M. Stressed food — The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 271−286
    [13] WAN N F, LI S X, LI T, et al. Ecological intensification of rice production through rice-fish co-culture[J]. Journal of Cleaner Production, 2019, 234: 1002−1012 doi: 10.1016/j.jclepro.2019.06.238
    [14] 闵庆文, 何露, 孙业红, 等. 中国GIAHS保护试点: 价值、问题与对策[J]. 中国生态农业学报, 2012, 20(6): 668−673 doi: 10.3724/SP.J.1011.2012.00668

    MIN Q W, HE L, SUN Y H, et al. On the value, conservation and sustainable development of GIAHS pilot sites in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6): 668−673 doi: 10.3724/SP.J.1011.2012.00668
    [15] JIAO W J, FULLER A, XU S Y, et al. Socio-ecological adaptation of agricultural heritage systems in modern China: Three cases in Qingtian County, Zhejiang Province[J]. Sustainability, 2016, 8(12): 1260 doi: 10.3390/su8121260
    [16] 张永勋, 闵庆文. 稻作梯田农业文化遗产保护研究综述[J]. 中国生态农业学报, 2016, 24(4): 460−469

    ZHANG Y X, MIN Q W. A review of conservation of rice terraces as agricultural heritage systems[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 460−469
    [17] WIEDMANN T, MINX J. A definition of ‘carbon footprint’[M]//PERTSOVA C C. Ecological Economics Research Trends. Hauppauge, USA: Nova Science Publishers, 2008: 1–11
    [18] DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906
    [19] 王毅, 瞿兴, 杨跃, 等. 菜籽饼肥与化肥配合施用对烤烟生长及土壤养分的影响[J]. 华中农业大学学报, 2006, 25(1): 50−54 doi: 10.3321/j.issn:1000-2421.2006.01.013

    WANG Y, QU X, YANG Y, et al. Effect of combining application of rapeseed cake fertilizer and chemical fertilizer on growth of tobacco and nutrient content in soil[J]. Journal of Huazhong Agricultural University, 2006, 25(1): 50−54 doi: 10.3321/j.issn:1000-2421.2006.01.013
    [20] 刘忠松. 不同用途油菜对品种特性的基本要求[J]. 作物研究, 2017, 31(6): 623−625

    LIU Z S. Basic requirements for variety characteristics of rapeseed for different purposes[J]. Crop Research, 2017, 31(6): 623−625
    [21] 陈中督, 徐春春, 纪龙, 等. 2004—2015年长江中下游地区冬油菜生产碳足迹的时空变化[J]. 中国生态农业学报(中英文), 2019, 27(7): 1105−1114

    CHEN Z D, XU C C, JI L, et al. Spatial and temporal changes in carbon footprint for oilseed rape production in the middle and lower reaches of Yangtze River during 2004–2015[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1105−1114
    [22] 徐皓, 刘晃, 张建华, 等. 我国渔业能源消耗测算[J]. 中国水产, 2007(11): 74−76, 78 doi: 10.3969/j.issn.1002-6681.2007.11.048

    XU H, LIU H, ZHANG J H, et al. China’s fishery energy consumption calculation[J]. China Fisheries, 2007(11): 74−76, 78 doi: 10.3969/j.issn.1002-6681.2007.11.048
    [23] 全国畜牧总站. 2018年全国饲料工业发展概况[EB/OL]. 中华人民共和国农业农村部. [2019-04-08]. https://www.moa.gov.cn/xw/bmdt/201904/t20190408_6178234.htm

    National Animal and Husbandry Station. National feed industry development in 2018[EB/OL]. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. [2019-04-08]. https://www.moa.gov.cn/xw/bmdt/201904/t20190408_6178234.htm
    [24] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴—2019[M]. 北京: 中国农业出版社, 2019

    Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Promotion Station, Chinese Fisheries Society. China Fishery Statistical Yearbook—2019[M]. Beijing: Chinese Agriculture Press, 2019
    [25] 刘夏璐, 王洪涛, 陈建, 等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10): 2136−2144

    LIU X L, WANG H T, CHEN J, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae, 2010, 30(10): 2136−2144
    [26] Ecoinvent Database[EB/OL]. (2011-05-11) [2016-06-30]. http://www.ecoinvent.ch.
    [27] 王钰乔, 濮超, 赵鑫, 等. 中国小麦、玉米碳足迹历史动态及未来趋势[J]. 资源科学, 2018, 40(9): 1800−1811

    WANG Y Q, PU C, ZHAO X, et al. Historical dynamics and future trends of carbon footprint of wheat and maize in China[J]. Resources Science, 2018, 40(9): 1800−1811
    [28] LAL R. Carbon emission from farm operations[J]. Environment International, 2004, 30(7): 981−990 doi: 10.1016/j.envint.2004.03.005
    [29] IPCC. Climate Change 2013: The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change[M]. New York: Cambridge University Press, 2013
    [30] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use[M]. Hayama: Institute for Global Environmental Strategies, 2006
    [31] 袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052−2060 doi: 10.3864/j.issn.0578-1752.2009.06.022

    YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-fish and rice-duck complex ecosystems and the evaluation of their economic significance[J]. Scientia Agricultura Sinica, 2009, 42(6): 2052−2060 doi: 10.3864/j.issn.0578-1752.2009.06.022
    [32] HU L L, REN W Z, TANG J J, et al. The productivity of traditional rice-fish co-culture can be increased without increasing nitrogen loss to the environment[J]. Agriculture, Ecosystems & Environment, 2013, 177: 28−34
    [33] 崔文超, 焦雯珺, 闵庆文, 等. 土地流转背景下不同经营规模青田稻鱼共生系统的环境影响差异−基于碳足迹的实证研究[J]. 应用生态学报, 2020, 31(12): 4125−4133

    CUI W C, JIAO W J, MIN Q W, et al. Environmental impact differences in Qingtian rice-fish culture system at different management scales in the context of land transfer: an empirical study with the carbon footprint method[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4125−4133
    [34] 崔文超, 焦雯珺, 闵庆文, 等. 基于碳足迹的传统农业系统环境影响评价−以青田稻鱼共生系统为例[J]. 生态学报, 2020, 40(13): 4362−4370

    CUI W C, JIAO W J, MIN Q W, et al. Environmental impact assessment on traditional agricultural systems based on carbon footprint: a case study of Qingtian rice-fish culture system[J]. Acta Ecologica Sinica, 2020, 40(13): 4362−4370
    [35] 吴雪. 稻鱼系统养分循环利用研究[D]. 杭州: 浙江大学, 2012

    WU X. The utilization of nutrients in traditional rice-fish go-culture system[D]. Hangzhou: Zhejiang University, 2012
    [36] 陈欣, 唐建军, 胡亮亮. 青田稻鱼共生系统生态学基础及保护与利用[M]. 北京: 科学出版社, 2021

    CHEN X, TANG J J, HU L L. Rice-Fish System in Qingtian Ecology, Conservation & Utilization[M]. Beijing: Science Press, 2021
    [37] JIAO W J, WANG B J, SUN Y H, et al. Design and application of the annual report of globally important agricultural heritage systems (GIAHS) monitoring[J]. Journal of Resources and Ecology, 2021, 12(4), DOI: 10.5814/j.issn.1674-764x.2021.04.008
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  124
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2021-12-20
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回