留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响

朱长伟 陈琛 牛润芝 李洋 姜桂英 杨锦 申凤敏 刘芳 刘世亮

朱长伟, 陈琛, 牛润芝, 李洋, 姜桂英, 杨锦, 申凤敏, 刘芳, 刘世亮. 不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响[J]. 中国生态农业学报 (中英文), 2022, 30(4): 671−682 doi: 10.12357/cjea.20210741
引用本文: 朱长伟, 陈琛, 牛润芝, 李洋, 姜桂英, 杨锦, 申凤敏, 刘芳, 刘世亮. 不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响[J]. 中国生态农业学报 (中英文), 2022, 30(4): 671−682 doi: 10.12357/cjea.20210741
ZHU C W, CHEN C, NIU R Z, LI Y, JIANG G Y, YANG J, SHEN F M, LIU F, LIU S L. Effects of tillage rotation modes on soil carbon sequestration and carbon pool management index of farmland in northern Henan[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 671−682 doi: 10.12357/cjea.20210741
Citation: ZHU C W, CHEN C, NIU R Z, LI Y, JIANG G Y, YANG J, SHEN F M, LIU F, LIU S L. Effects of tillage rotation modes on soil carbon sequestration and carbon pool management index of farmland in northern Henan[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 671−682 doi: 10.12357/cjea.20210741

不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响

doi: 10.12357/cjea.20210741
基金项目: 国家重点研发计划重点专项项目(2021YFD1700900)、国家自然科学基金项目(41401327)、河南省重点研发与推广专项项目(192102110161)和河南省高等学校重点科研项目(20A210024)资助
详细信息
    作者简介:

    朱长伟, 主要研究方向为土壤培肥与调控。E-mail: 1937975636@qq.com

    通讯作者:

    姜桂英, 主要从事土壤培肥与调控方面的研究, E-mail: jgy9090@126.com

    刘世亮, 主要从事土壤培肥与调控方面的研究, E-mail: shlliu70@163.com

  • 中图分类号: S158.5

Effects of tillage rotation modes on soil carbon sequestration and carbon pool management index of farmland in northern Henan

Funds: This study was supported by the National Key Research and Development Project of China (2021YFD1700900), the National Natural Science Foundation of China (41401327), the Key R&D and Promotion Project of Henan Province (192102110161), and the Key Research Project of Henan Colleges and Universities (20A210024).
More Information
  • 摘要: 为探究不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响, 本研究在豫北潮土区, 于2016—2020年小麦季以3年为一个轮耕周期, 设置5个处理: 连续旋耕(RT-RT-RT)、深耕-旋耕-旋耕(DT-RT-RT)、深耕-旋耕-浅旋耕(DT-RT-SRT)、深耕-浅旋耕-浅旋耕(DT-SRT-SRT)、深耕-浅旋耕-旋耕(DT-SRT-RT)。测定并分析了2019年和2020年0~50 cm土层土壤容重、总有机碳(SOC)、易氧化有机碳(LOC)、稳态有机碳(NLOC)含量及有机碳储量和碳库管理指数。结果表明, 各轮耕处理均能降低0~40 cm土层的土壤容重。在0~20 cm土层, DT-SRT-SRT处理的SOC、LOC和NLOC含量最高, 分别为11.54 g∙kg−1、3.31 g∙kg−1和8.30 g∙kg−1; 而相较于RT-RT-RT处理, DT-SRT-RT处理显著增加10~40 cm土层SOC、LOC和NLOC含量; 且各轮耕处理降低了LOC/SOC, 但提高了NLOC/SOC, 尤其是20~40 cm土层, 最高增长7.5%。试验期内, 各轮耕处理均能提高0~40 cm土层土壤有机碳储量, 2019年0~30 cm土层, DT-SRT-SRT处理有机碳储量最高, 为36.64 Mg∙hm−2; 但在2019和2020年, 0~40 cm土层, DT-SRT-RT处理的有机碳储量均为最高, 与RT-RT-RT处理相比分别提高12.8%和9.7%。随耕作年限的不同土壤碳库管理指数(CPMI)呈现出一定的差异, 2019年, DT-SRT-RT处理显著降低了0~40 cm土层中的活度指数, CPMI相对较低, 最高降幅为4.3%。而2020年, DT-SRT-RT处理显著提高了0~40 cm土层的碳库指数和CPMI, CPMI最高为108.5。综合以上分析, 深耕-条旋耕-旋耕处理显著降低了土壤容重, 提高SOC、LOC和NLOC, 增加0~40 cm土层有机碳储量, 具有明显的固碳效应。
  • 图  1  2019年和2020年不同轮耕处理下不同土层土壤容重

    RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。不同小写字母表示同一土层不同处理间差异显著(P<0.05)。

    Figure  1.  Soil bulk densities in different soil layers under different rotation tillage treatments in 2019 and 2020

    RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different small letters show significant differences among treatments (P<0.05).

    图  2  2019年和2020年不同轮耕处理下不同土层土壤总有机碳

    RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。不同小写字母表示同一土层不同处理间差异显著(P<0.05)。

    Figure  2.  Soil organic carbon contents in different soil layers under different rotation tillage treatments in 2019 and 2020

    RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different small letters show significant differences among treatments (P<0.05).

    图  3  2019年和2020年不同轮耕处理下不同土层土壤易氧化有机碳(a)及稳态有机碳(b)

    RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。不同小写字母表示同一土层不同处理间差异显著(P<0.05)。

    Figure  3.  Soil liable organic carbon (a) and non-liable organic carbon (b) contents in different soil layers under different rotation tillage treatments in 2019 and 2020

    RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different small letters show significant differences among treatments (P<0.05).

    图  4  2019年和2020年不同轮耕处理下易氧化有机碳(a)及稳态有机碳(b)占总有机碳的比例

    RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。不同小写字母表示同一土层不同处理间差异显著(P<0.05)。

    Figure  4.  Proportions of liable organic carbon (a) and non-liable organic carbon (b) to total organic carbon in different soil layers under different rotation tillage treatments in 2019 and 2020

    RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different small letters show significant differences among treatments (P<0.05).

    表  1  小麦轮耕时期、土层深度和耕作模式三因素下土壤容重、总有机碳、易氧化有机碳、稳态有机碳及其比例的方差分析

    Table  1.   Variance analysis of soil bulk densities and contents of organic carbon content, liable organic carbon and non-liable organic carbon and their proportions under three factors of wheat rotation period, soil depth and farming mode

    变异来源

    Source of variation
    df容重

    Bulk density
    总有机碳
    Soil organic carbon
    易氧化有机碳
    Liable organic carbon
    稳态有机碳
    Non-liable organic carbon
    易氧化有机碳/
    总有机碳

    Liable organic carbon /
    organic carbon
    稳态有机碳/总有机碳

    Non-liable organic carbon /
    organic carbon
    年份 Year (Y)126.25**7.99**253.45**2.9**13.03**13.03**
    土层深度 Soil depth (D)41075.98**2672.03**49 254.57**1334**90.57**90.57**
    耕作模式 Tillage mode (T)410.26**16.67**55.89**13.39**5.67**5.67**
    Y×D460.77**4.99**166.86**6.76**22.37**22.37**
    Y×T48.11**1.67NS9.81**1.67NS1.53NS1.53NS
    D×T163.45**4.64**9.91**4.26**3.6**3.6**
    Y×D×T162.83**1.29**3.15**1.25NS0.94NS0.94NS
    误差均方
    Error mean squares
    10000.1100.102.692.69
       **: P<0.01; *: P<0.05; NS: P>0.05.
    下载: 导出CSV

    表  2  不同耕作措施下不同土层等质量土壤有机碳储量

    Table  2.   Soil organic carbon stock on equivalent soil mass basis of different soil layers under different tillage treatments

    年份

    Year
    取样深度

    Soil depth (cm)
    土壤有机碳储量
    Soil organic carbon storage (Mg∙hm−2)
    RT-RT-RTDT-RT-RTDT-RT-SRTDT-SRT-SRTDT-SRT-RT
    20190~1014.59±0.41c15.32±0.32b15.39±0.29b16.21±0.16a15.35±0.29b
    0~2024.61±1.12c26.80±1.27ab26.10±0.32bc28.62±1.22a27.00±0.47ab
    0~3032.49±0.80c35.76±0.55ab34.50±0.35b36.64±0.52a36.39±0.83a
    0~4038.71±0.94c42.87±0.81ab41.85±0.57b43.52±0.25a43.67±0.88a
    20200~1014.14±0.21bc14.06±0.22bc13.85±0.32c14.79±0.27a14.50±0.37ab
    0~2024.82±0.44b24.93±0.63b24.86±0.16b26.11±0.29a26.15±0.38a
    0~3033.54±0.45d34.17±0.52cd34.80±0.29bc35.43±0.36ab36.32±0.63a
    0~4039.79±0.65b40.49±0.70b42.53±0.28a42.60±0.50a43.65±0.91a
      RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。同行不同小写字母表示同一土层不同处理间差异显著(P<0.05)。RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different lowercase letters in the same line show significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  3  不同耕作措施下不同土层的土壤碳库管理指数

    Table  3.   Soil carbon pool management indexes (CPMI) of different soil layers under different tillage treatments

    年份
    Year
    土层深度
    Soil depth (cm)
    处理
    Treatment
    碳库活度
    Carbon pool activity (A)
    活度指数
    Activity index (AI)
    碳库指数
    Carbon pool index (CPI)
    碳库管理指数
    Carbon pool management index (CPMI)
    2019 0~10 RT-RT-RT 0.45a 1.00a 1.00c 100.00a
    DT-RT-RT 0.43ab 0.97ab 1.03bc 100.08a
    DT-RT-SRT 0.43ab 0.97ab 1.04bc 101.09a
    DT-SRT-SRT 0.40b 0.91b 1.10a 99.96a
    DT-SRT-RT 0.43ab 0.97ab 1.05b 101.44a
    10~20 RT-RT-RT 0.52a 1.00a 1.00b 100.00b
    DT-RT-RT 0.44a 0.86a 1.15ab 96.58c
    DT-RT-SRT 0.51a 0.98a 1.06ab 102.91a
    DT-SRT-SRT 0.42a 0.80a 1.23a 97.80bc
    DT-SRT-RT 0.43a 0.83a 1.18ab 96.49c
    20~30 RT-RT-RT 0.47a 1.00a 1.00c 100.00a
    DT-RT-RT 0.42ab 0.90ab 1.14ab 101.62a
    DT-RT-SRT 0.45ab 0.96ab 1.06bc 101.32a
    DT-SRT-SRT 0.47a 1.00a 1.01bc 100.80a
    DT-SRT-RT 0.38b 0.81b 1.21a 97.73b
    30~40 RT-RT-RT 0.47a 1.00a 1.00b 100.00a
    DT-RT-RT 0.40b 0.86b 1.16a 98.91ab
    DT-RT-SRT 0.38b 0.81b 1.19a 95.56c
    DT-SRT-SRT 0.41b 0.87b 1.11ab 96.69bc
    DT-SRT-RT 0.37b 0.79b 1.23a 95.88c
    40~50 RT-RT-RT 0.27a 1.00a 1.00a 100.00bc
    DT-RT-RT 0.28a 1.06a 0.97a 97.44c
    DT-RT-SRT 0.31a 1.15a 0.90a 101.60ab
    DT-SRT-SRT 0.25a 0.95a 1.07a 98.27c
    DT-SRT-RT 0.31a 1.17a 0.91a 103.36a
    2020 0~10 RT-RT-RT 0.39a 1.00a 1.00b 100.00c
    DT-RT-RT 0.39a 1.00a 1.01ab 100.99c
    DT-RT-SRT 0.41a 1.05a 0.99b 103.94b
    DT-SRT-SRT 0.39a 1.00a 1.06a 105.55b
    DT-SRT-RT 0.41a 1.05a 1.03ab 108.50a
    10~20 RT-RT-RT 0.51a 1.00a 1.00b 100.00b
    DT-RT-RT 0.50ab 0.97ab 1.04ab 100.07b
    DT-RT-SRT 0.50ab 0.98ab 1.04ab 101.51ab
    DT-SRT-SRT 0.50ab 0.97ab 1.07a 103.47a
    DT-SRT-RT 0.47b 0.91b 1.10a 99.96b
    20~30 RT-RT-RT 0.43a 1.00a 1.00c 100.00c
    DT-RT-RT 0.39b 0.92b 1.12ab 102.65b
    DT-RT-SRT 0.39b 0.91b 1.17a 105.56a
    DT-SRT-SRT 0.40ab 0.94ab 1.09b 101.41b
    DT-SRT-RT 0.37b 0.86b 1.19a 102.20b
    30~40 RT-RT-RT 0.50a 1.00a 1.00c 100.00c
    DT-RT-RT 0.49a 0.99a 1.05c 102.99b
    DT-RT-SRT 0.39b 0.78b 1.30a 102.04b
    DT-SRT-SRT 0.42b 0.85b 1.18b 100.33c
    DT-SRT-RT 0.44ab 0.88ab 1.22ab 107.28a
    40~50 RT-RT-RT 0.36a 1.00a 1.00a 100.00b
    DT-RT-RT 0.36a 1.01a 1.04a 103.18ab
    DT-RT-SRT 0.38a 1.08a 0.99a 106.51a
    DT-SRT-SRT 0.37a 1.04a 1.00a 103.10ab
    DT-SRT-RT 0.38a 1.07a 0.99a 105.09a
      RT-RT-RT: 连续旋耕; DT-RT-RT: 深耕-旋耕-旋耕; DT-RT-SRT: 深耕-旋耕-浅旋耕; DT-SRT-SRT: 深耕-浅旋耕-浅旋耕; DT-SRT-RT: 深耕-浅旋耕-旋耕。同列同一年份同一土层不同小写字母表示不同处理间差异显著(P<0.05)。RT-RT-RT: continuous rotary tillage; DT-RT-RT: deep tillage-rotary tillage-rotary tillage; DT-RT-SRT: deep tillage-rotary tillage-shallow rotary tillage; DT-SRT-SRT: deep tillage-shallow rotary tillage-shallow rotary tillage; DT-SRT-RT: deep tillage-shallow rotary tillage-rotary tillage. Different lowercase letters in the same column for the same year and same soil layer show significant differences among treatments (P<0.05).
    下载: 导出CSV
  • [1] VARVEL G E, WILHELM W W. Long-term soil organic carbon as affected by tillage and cropping systems[J]. Soil Science Society of America Journal, 2010, 74(3): 915−921 doi: 10.2136/sssaj2009.0362
    [2] 李妙宇, 上官周平, 邓蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素[J]. 生态学报, 2021, 41(17): 6786−6799

    LI M Y, SHANGGUAN Z P, DENG L. Spatial distribution of carbon storages in the terrestrial ecosystems and its influencing factors on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(17): 6786−6799
    [3] 齐鹏, 王晓娇, 姚一铭, 等. 不同耕作方法和施氮量对旱作农田土壤CO2排放及碳平衡的影响[J]. 草业学报, 2021, 30(1): 96−106 doi: 10.11686/cyxb2020136

    QI P, WANG X J, YAO Y M, et al. Effects of different tillage practices and nitrogen application rate on carbon dioxide emissions and carbon balance in rain-fed maize crops[J]. Acta Prataculturae Sinica, 2021, 30(1): 96−106 doi: 10.11686/cyxb2020136
    [4] 田慎重, 郭洪海, 董晓霞, 等. 耕作方式转变和秸秆还田对土壤活性有机碳的影响[J]. 农业工程学报, 2016, 32(S2): 39−45

    TIAN S Z, GUO H H, DONG X X, et al. Effect of tillage method change and straw return on soil labile organic carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 39−45
    [5] YANG Y H, MOHAMMAT A, FENG J M, et al. Storage, patterns and environmental controls of soil organic carbon in China[J]. Biogeochemistry, 2007, 84(2): 131−141 doi: 10.1007/s10533-007-9109-z
    [6] XIAO L G, ZHOU S Q, ZHAO R Q, et al. Evaluating soil organic carbon stock changes induced by no-tillage based on fixed depth and equivalent soil mass approaches[J]. Agriculture, Ecosystems & Environment, 2020, 300: 106982
    [7] MONDAL S, CHAKRABORTY D, BANDYOPADHYAY K, et al. A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response[J]. Land Degradation & Development, 2020, 31(5): 557−567
    [8] 蔡太义, 黄耀威, 黄会娟, 等. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响[J]. 生态学杂志, 2011, 30(9): 1962−1968

    CAI T Y, HUANG Y W, HUANG H J, et al. Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching[J]. Chinese Journal of Ecology, 2011, 30(9): 1962−1968
    [9] 王新建, 张仁陟, 毕冬梅, 等. 保护性耕作对土壤有机碳组分的影响[J]. 水土保持学报, 2009, 23(2): 115−121 doi: 10.3321/j.issn:1009-2242.2009.02.025

    WANG X J, ZHANG R Z, BI D M, et al. Effects of conservation tillage on soil organic carbon fractions[J]. Journal of Soil and Water Conservation, 2009, 23(2): 115−121 doi: 10.3321/j.issn:1009-2242.2009.02.025
    [10] 张影, 刘星, 任秀娟, 等. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J]. 水土保持学报, 2019, 33(3): 153−159, 165

    ZHANG Y, LIU X, REN X J, et al. Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization[J]. Journal of Soil and Water Conservation, 2019, 33(3): 153−159, 165
    [11] LI Y, LI Z, CHANG S X, et al. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture[J]. Science of the Total Environment, 2020, 740: 140147 doi: 10.1016/j.scitotenv.2020.140147
    [12] 张琦, 王淑兰, 王浩, 等. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 2020, 53(14): 2840−2851 doi: 10.3864/j.issn.0578-1752.2020.14.008

    ZHANG Q, WANG S L, WANG H, et al. Effects of subsoiling and no-tillage frequencies on soil aggregates and carbon pools in the loess plateau[J]. Scientia Agricultura Sinica, 2020, 53(14): 2840−2851 doi: 10.3864/j.issn.0578-1752.2020.14.008
    [13] SYSWERDA S P, CORBIN A T, MOKMA D L, et al. Agricultural management and soil carbon storage in surface vs. deep layers[J]. Soil Science Society of America Journal, 2011, 75(1): 92−101 doi: 10.2136/sssaj2009.0414
    [14] 魏燕华, 赵鑫, 翟云龙, 等. 耕作方式对华北农田土壤固碳效应的影响[J]. 农业工程学报, 2013, 29(17): 87−95 doi: 10.3969/j.issn.1002-6819.2013.17.012

    WEI Y H, ZHAO X, ZHAI Y L, et al. Effects of tillages on soil organic carbon sequestration in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(17): 87−95 doi: 10.3969/j.issn.1002-6819.2013.17.012
    [15] 李娟, 李军, 尚金霞, 等. 轮耕对渭北旱塬春玉米田土壤理化性状和产量的影响[J]. 中国生态农业学报, 2012, 20(7): 867−873 doi: 10.3724/SP.J.1011.2012.00867

    LI J, LI J, SHANG J X, et al. Effects of rotational tillage on soil physiochemical properties and spring maize yield in Weibei Highlands[J]. Chinese Journal of Eco-Agriculture, 2012, 20(7): 867−873 doi: 10.3724/SP.J.1011.2012.00867
    [16] 张霞, 杜昊辉, 王旭东, 等. 不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响[J]. 自然资源学报, 2018, 33(12): 2223−2237 doi: 10.31497/zrzyxb.20171206

    ZHANG X, DU H H, WANG X D, et al. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei Highland[J]. Journal of Natural Resources, 2018, 33(12): 2223−2237 doi: 10.31497/zrzyxb.20171206
    [17] 吕薇, 李军, 岳志芳, 等. 轮耕对渭北旱塬麦田土壤有机质和全氮含量的影响[J]. 中国农业科学, 2015, 48(16): 3186−3200 doi: 10.3864/j.issn.0578-1752.2015.16.009

    LYU W, LI J, YUE Z F, et al. Effects of rotational tillage on soil organic matter and soil total nitrogen contents of continuous cropping wheat field in Weibei Highland[J]. Scientia Agricultura Sinica, 2015, 48(16): 3186−3200 doi: 10.3864/j.issn.0578-1752.2015.16.009
    [18] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2008

    BAO S D. Soil Agro-chemical Analysis[M]. 3rd Edition. Beijing: China Agriculture Press, 2008
    [19] WANG H, WANG S L, ZHANG Y J, et al. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China[J]. Land Degradation & Development, 2018, 29(9): 2880−2887
    [20] ELLERT B H, BETTANY J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes[J]. Canadian Journal of Soil Science, 1995, 75(4): 529−538 doi: 10.4141/cjss95-075
    [21] BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459
    [22] O’ROURKE S M, ANGERS D A, HOLDEN N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015, 21(10): 3561−3574 doi: 10.1111/gcb.12959
    [23] 王道中, 花可可, 郭志彬. 长期施肥对砂姜黑土作物产量及土壤物理性质的影响[J]. 中国农业科学, 2015, 48(23): 4781−4789 doi: 10.3864/j.issn.0578-1752.2015.23.019

    WANG D Z, HUA K K, GUO Z B. Effects of long-term fertilization on crop yield and soil physical properties in lime concretion black soil[J]. Scientia Agricultura Sinica, 2015, 48(23): 4781−4789 doi: 10.3864/j.issn.0578-1752.2015.23.019
    [24] 张向前. 耕作方式对华北平原麦玉两熟农田土壤固碳及作物生长的影响[D]. 北京: 中国农业大学, 2017

    ZHANG X Q. Effects of tillage practices on soil carbon sequestration and crop growth under a wheat-maize cropping system in the North China Plain[D]. Beijing: China Agricultural University, 2017
    [25] REICOSKY D, CROVETTO C. No-till systems on the Chequen Farm in Chile: a success story in bringing practice and science together[J]. International Soil and Water Conservation Research, 2014, 2(1): 66−77 doi: 10.1016/S2095-6339(15)30014-9
    [26] 孔凡磊, 陈阜, 张海林, 等. 轮耕对土壤物理性状和冬小麦产量的影响[J]. 农业工程学报, 2010, 26(8): 150−155 doi: 10.3969/j.issn.1002-6819.2010.08.026

    KONG F L, CHEN F, ZHANG H L, et al. Effects of rotational tillage on soil physical properties and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 150−155 doi: 10.3969/j.issn.1002-6819.2010.08.026
    [27] 侯贤清, 李荣, 韩清芳, 等. 轮耕对宁南旱区土壤理化性状和旱地小麦产量的影响[J]. 土壤学报, 2012, 49(3): 592−600 doi: 10.11766/trxb201107290282

    HOU X Q, LI R, HAN Q F, et al. Effects of alternate tillage on soil physicochemical properties and yield of dryland wheat in arid areas of south Ningxia[J]. Acta Pedologica Sinica, 2012, 49(3): 592−600 doi: 10.11766/trxb201107290282
    [28] 王靖, 林琪, 倪永君, 等. 不同保护性耕作模式对冬小麦产量及土壤理化性状的影响[J]. 青岛农业大学学报: 自然科学版, 2009, 26(4): 276−281

    WANG J, LIN Q, NI Y J, et al. Effects on yield of winter wheat and soil physical-chemical properties under different conservation tillage[J]. Journal of Qingdao Agricultural University:Natural Science, 2009, 26(4): 276−281
    [29] XIAO C W, JANSSENS I A, LIU P, et al. Irrigation and enhanced soil carbon input effects on below-ground carbon cycling in semiarid temperate grasslands[J]. The New Phytologist, 2007, 174(4): 835−846 doi: 10.1111/j.1469-8137.2007.02054.x
    [30] DU Z L, ANGERS D A, REN T S, et al. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017, 236: 1−11
    [31] HU Y C, DU Z L, WANG Q B, et al. Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in Karst area of southwestern China[J]. Solid Earth, 2016, 7(4): 1075−1084 doi: 10.5194/se-7-1075-2016
    [32] DU Z L, REN T S, HU C S. Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain[J]. Soil Science Society of America Journal, 2010, 74(1): 196−202 doi: 10.2136/sssaj2009.0048
    [33] ZHAO X, XUE J F, ZHANG X Q, et al. Stratification and storage of soil organic carbon and nitrogen as affected by tillage practices in the North China Plain[J]. PLoS One, 2015, 10(6): e0128873 doi: 10.1371/journal.pone.0128873
    [34] 潘雅文, 樊军, 郝明德, 等. 黄土塬区长期不同耕作、覆盖措施对表层土壤理化性状和玉米产量的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1558−1567 doi: 10.11674/zwyf.15455

    PAN Y W, FAN J, HAO M D, et al. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1558−1567 doi: 10.11674/zwyf.15455
    [35] 杨敏芳, 朱利群, 韩新忠, 等. 不同土壤耕作措施与秸秆还田对稻麦两熟制农田土壤活性有机碳组分的短期影响[J]. 应用生态学报, 2013, 24(5): 1387−1393

    YANG M F, ZHU L Q, HAN X Z, et al. Short-term effects of different tillage modes combined with straw-returning on the soil labile organic carbon components in a farmland with rice-wheat double cropping[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1387−1393
    [36] 万小楠, 赵珂悦, 吴雄伟, 等. 秸秆还田对冬小麦-夏玉米农田土壤固碳、氧化亚氮排放和全球增温潜势的影响[J]. 环境科学, 2022, 43(1): 569−576

    WAN X N, ZHAO K Y, WU X W, et al. Effects of stalk incorporation on soil carbon sequestration, nitrous oxide emissions, and global warming potential of a winter wheat-summer maize field in Guanzhong Plain[J]. Environmental Science, 2022, 43(1): 569−576
    [37] 杨思存, 王成宝, 霍琳, 等. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响[J]. 农业工程学报, 2019, 35(2): 114−121 doi: 10.11975/j.issn.1002-6819.2019.02.015

    YANG S C, WANG C B, HUO L, et al. Effects of different tillage practices on soil organic carbon of cultivated land in Gansu Yellow River irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 114−121 doi: 10.11975/j.issn.1002-6819.2019.02.015
    [38] 张博文, 杨彦明, 张兴隆, 等. 连续深松对黑土结构特性和有机碳及碳库指数影响[J]. 中国土壤与肥料, 2019(2): 6−13 doi: 10.11838/sfsc.1673-6257.18207

    ZHANG B W, YANG Y M, ZHANG X L, et al. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil[J]. Soil and Fertilizer Sciences in China, 2019(2): 6−13 doi: 10.11838/sfsc.1673-6257.18207
    [39] 吕瑞珍, 熊瑛, 李友军, 等. 保护性耕作对农田土壤碳库特性的影响[J]. 水土保持学报, 2014, 28(4): 206−209, 217

    LYU R Z, XIONG Y, LI Y J, et al. Effect of conservation tillage on soil carbon pool in farmland[J]. Journal of Soil and Water Conservation, 2014, 28(4): 206−209, 217
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  128
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-02-17
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回