Carbon neutralization potential and carbon sequestration efforts in a wheat-maize rotation system in the North China Plain
-
摘要: 农业碳中和是将工业生产的二氧化碳(CO2)用于农业生产的有效手段。针对国家提出的CO2排放于2030年前达到峰值(碳达峰), 2060年前实现碳中和目标, 我们利用“静态箱-涡度相关-生物量监测法”明确了华北平原农业非能源碳平衡; 同时结合农户抽样调查和农事活动碳排放系数明确了农业能源碳排放, 进而计算出该区域农田的碳中和潜力。结果表明: 小麦-玉米轮作农田净截存的有机碳量小麦季和玉米季分别为604 g(C)∙m−2和540 g(C)∙m−2。考虑农田生态系统的呼吸损耗, 该区域小麦季和玉米季非能源碳净碳固存量分别为−359 g(C)∙m−2和−143 g(C)∙m−2。通过对农地投入中能源碳排放的研究发现, 冬小麦季农药、化肥、农用机械消耗柴油及农地灌溉的碳排放分别为3.74 g(C)∙m−2、90.70 g(C)∙m−2、5.68 g(C)∙m−2和2.05 g(C)∙m−2, 玉米季分别为2.89 g(C)∙m−2、53.70 g(C)∙m−2、10.20 g(C)∙m−2和2.05 g(C)∙m−2。综合非能源(包括籽粒固碳)和能源碳观测, 华北平原冬小麦季和夏玉米季均为碳汇, 其强度分别为−257 g(C)∙m−2和−74 g(C)∙m−2。以华北平原典型集约高产粮区——河北栾城为例, 其每年冬小麦和夏玉米农田的碳中和潜力分别为3.8×1010 g(C)和9.4×109 g(C)。此外加强耕地管理, 推广农业低碳化和发展富碳农业均可作为该区域有效的固碳措施。总之, 本研究明确了华北平原小麦-玉米轮作农田的碳汇强度, 估算了该农田系统在河北栾城的碳中和潜力, 并提出了有效的固碳措施。Abstract: Agricultural C neutralization is an effective method of using industrial carbon dioxide (CO2) in agricultural production. Aiming at the national goal of “peaking CO2 emissions before 2030 and achieving carbon neutrality before 2060”, we defined the agricultural non-energy C balance in the North China Plain (NCP) by using the “static chamber-eddy covariance-biomass monitoring method”. Simultaneously, C emissions from agricultural energy were determined based on the sampling survey data of farmers and the C emission coefficients of agricultural activities. Thus, the C neutralization potential of croplands in this region was calculated. Our results showed that in the NCP, the net amount of organic C (including grains and returned straw) for winter wheat and summer maize was 604 g(C)∙m−2 and 540 g(C)∙m−2, respectively. Considering the ecosystem autotrophic respiration consumption, the net C sequestration of non-energy C was −359 g(C)∙m−2 and −143 g(C)∙m−2 in the wheat and maize seasons, respectively. Energy C emissions in the system were further studied. The C emissions of pesticides, chemical fertilizers, agricultural diesel, and irrigation in the wheat season were 3.74, 90.70, 5.68, and 2.05 g(C)∙m−2, respectively; and those in the maize season were 2.89, 53.70, 10.20, and 2.05 g(C)∙m−2, respectively. Combined with the non-energy and energy C budget, both the winter wheat and summer maize seasons were C sinks, −257 g(C)∙m−2 for the winter wheat season and −74 g(C)∙m−2 for the summer-maize season. For example, in Luancheng (located in Hebei Province), a typical intensive and high-yield grain region in the NCP, the annual C sequestration potential of winter wheat and summer maize croplands was 3.8×1010 g C and 9.4×109 g C, respectively. In addition, strengthening cultivated land management, promoting low-C agriculture, and developing C-rich agriculture can be effective strategies for C sequestration in this region. In conclusion, we identified the C sink intensity of winter wheat and summer maize rotation cropland in the NCP, estimated the C neutralization potential in Luancheng, Hebei Province, and proposed effective C sequestration efforts.
-
图 2 华北平原小麦-玉米两熟农田生态系统非能源碳收支平衡图[13][单位为g(C)∙m−2]
C sink: 碳汇; C source: 碳源; GPP: 总初级生产力; NEE: 净生态系统碳交换量; NPP: 净初级生产力; Grain removal: 籽粒移除; Straw return: 秸秆还田; TER: 总生态系统呼吸; Raa: 地上部自养呼吸; Rab: 地下部自养呼吸; Rh: 异养呼吸。
Figure 2. Non-energy carbon budgets in a wheat-maize rotation ecosystem in the North China Plain[13]. The unit is g(C)∙m−2.
GPP: global primary production; NEE: net ecosystem exchange; NPP: net primary production; TER: total ecosystem respiration; Raa: aboveground autotrophic respiration; Rab: underground autotrophic respiration; Rh: heterotrophic respiration.
表 1 农业能源碳排放系数的参考来源及华北平原小麦玉米农资投入量
Table 1. Reference sources of agricultural energy carbon emission coefficients and the input of agricultural resources in wheat and maize seasons in the North China Plain
碳源
Carbon source碳排放系数1)
Carbon emission coefficient1)参考来源
Reference source消耗量 Actual consumption [g(C)∙m−2] 小麦季
Wheat season玉米季
Maize season化肥
Chemical fertilizers0.8956 Oak Ridge National Laboratory, USA 90.7 53.7 农药 Pesticides 4.9341 Oak Ridge National Laboratory, USA 3.74 2.89 农膜
Agricultural film5.18 南京农业大学农业资源与生态环境研究所
Institute of Resources and Environment Sciences, Nanjing
Agriculture University— — 柴油 Diesel 0.5927 政府间气候变化专门委员会
Intergovernmental Panel on Climate Change (IPCC)5.68 10.2 翻耕 Tillage 312.6 中国农业大学生物与技术学院
College of Biological Sciences, China Agriculture University— — 灌溉 Irrigation 20.4672) Dubey 2.05 2.05 1)转换系数均为1 kg(C)∙kg−1。2)农业灌溉碳排放系数为25.00 kg∙hm−2, 由于此过程仅是火力发电间接引起碳排放, 故农业灌溉碳排放系数应是25.00 kg∙hm−2×火电系数(0.816)=20.467 kg∙hm−2。1) All conversion coefficients are 1 kg(C)∙kg−1. 2) The carbon emission coefficient of agricultural irrigation is 25.00 kg∙hm−2. However, the carbon emission of irrigation is only indirectly caused by thermal power generation, so the carbon emission coefficient of agricultural irrigation is 25.00 kg∙hm−2 × thermal power coefficient (0.816). -
[1] 王克, 刘芳名, 尹明健, 等. 1.5℃温升目标下中国碳排放路径研究[J]. 气候变化研究进展, 2021, 17(1): 7−17WANG K, LIU F M, YIN M J, et al. Research on China’s carbon emissions pathway under the 1.5℃ target[J]. Climate Change Research, 2021, 17(1): 7−17 [2] 张雅欣, 罗荟霖, 王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展, 2021, 17(1): 88−97ZHANG Y X, LUO H L, WANG C. Progress and trends of global carbon neutrality pledges[J]. Climate Change Research, 2021, 17(1): 88−97 [3] 张博庭. 如何兑现减排承诺: 我国首次实现碳达峰的启示[J]. 水电与新能源, 2021, 35(3): 1−6ZHANG B T. How to fulfill the carbon emission reduction commitment: enlightenment of the first carbon emission peaking in China[J]. Hydropower and New Energy, 2021, 35(3): 1−6 [4] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013 [5] 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价−基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210 [6] 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097−2105TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China: calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097−2105 [7] 吴泽新. 气候变化对黄淮海平原主要粮食作物的影响[D]. 兰州: 兰州大学, 2007: 9WU Z X. The effects of the climate change on the main grain crop in the Huang-Huai-Hai Plain[D]. Lanzhou: Lanzhou University, 2007: 9 [8] 国家统计局. 中国统计年鉴—2014[M]. 北京: 中国统计出版社, 2014National Bureau of Statistics. China Statistical Yearbook—2014[M]. Beijing: China Statistics Press, 2014 [9] 钟茜, 巨晓棠, 张福锁. 华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J]. 植物营养与肥料学报, 2006, 12(3): 285−293 doi: 10.3321/j.issn:1008-505X.2006.03.001ZHONG Q, JU X T, ZHANG F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 285−293 doi: 10.3321/j.issn:1008-505X.2006.03.001 [10] 白义鑫, 王霖娇, 盛茂银. 黔中喀斯特地区农业生产碳排放实证研究[J]. 中国农业资源与区划, 2021, 42(3): 150−157BAI Y X, WANG L J, SHENG M Y. Empirical study on carbon emission of agricultural production in Karst region of Guizhou Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(3): 150−157 [11] 沈满洪, 吴文博, 魏楚. 近二十年低碳经济研究进展及未来趋势[J]. 浙江大学学报: 人文社会科学版, 2011, 41(3): 28−39SHEN M H, WU W B, WEI C. Prospects of a low carbon economy in the last two decades[J]. Journal of Zhejiang University:Humanities and Social Sciences, 2011, 41(3): 28−39 [12] 王玉英, 胡春胜, 程一松, 等. 太行山前平原夏玉米-冬小麦轮作生态系统碳截存及其气体调节价值[J]. 农业环境科学学报, 2009, 28(7): 1508−1515 doi: 10.3321/j.issn:1672-2043.2009.07.031WANG Y Y, HU C S, CHENG Y S, et al. Carbon sequestrations and gas regulations in summer-maize and winter-wheat rotation ecosystem affected by nitrogen fertilization in the piedmont plain of Taihang Mountains, China[J]. Journal of Agro-Environment Science, 2009, 28(7): 1508−1515 doi: 10.3321/j.issn:1672-2043.2009.07.031 [13] WANG Y Y, HU C S, DONG W X, et al. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2015, 206: 33−45 [14] LI D J, NIU S L, LUO Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis[J]. The New Phytologist, 2012, 195(1): 172−181 doi: 10.1111/j.1469-8137.2012.04150.x [15] 张颂心. 我国低碳农业的影响因素探析[J]. 安徽农学通报, 2020, 26(8): 6−9 doi: 10.3969/j.issn.1007-7731.2020.08.003ZHANG S X. Analysis of the influencing factors of low carbon agriculture in China[J]. Anhui Agricultural Science Bulletin, 2020, 26(8): 6−9 doi: 10.3969/j.issn.1007-7731.2020.08.003 [16] 曾宪成, 李双. 腐植酸与气候智慧型农业[J]. 腐植酸, 2018(6): 11−19ZENG X C, LI S. Humic acid and climate-smart agriculture[J]. Humic Acid, 2018(6): 11−19 [17] 曾宪成, 李双. 腐植酸低碳肥料与土壤碳中和[J]. 腐植酸, 2021(1): 1−6ZENG X C, LI S. Humic acid low-carbon fertilizers and soil carbon neutrality[J]. Humic Acid, 2021(1): 1−6 [18] 庞庆阳, 宣毓龙, 蔡旭, 等. 棉粕腐植酸肥对土壤团聚体、酶及养分的影响[J]. 干旱地区农业研究, 2017, 35(4): 54−60, 94 doi: 10.7606/j.issn.1000-7601.2017.04.09PANG Q Y, XUAN Y L, CAI X, et al. Effects of cottonseed meal humic acid fertilizer on soil water-stable aggregates, soil enzymes and soil nutrition[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 54−60, 94 doi: 10.7606/j.issn.1000-7601.2017.04.09 [19] 路艳艳, 吴钦泉, 陈士更, 等. 活化腐植酸对小油菜产量及土壤理化性质的影响[J]. 腐植酸, 2017(1): 33−40LU Y Y, WU Q Q, CHEN S G, et al. Effects of activated humic acid on yield of spring rape and the physical-chemical properties of soil[J]. Humic Acid, 2017(1): 33−40 [20] 马栗炎, 姚荣江, 杨劲松. 氮肥及黄腐酸对盐渍土有机碳和团聚体特征的调控作用[J]. 土壤, 2020, 52(1): 33−39MA L Y, YAO R J, YANG J S. Regulation of nitrogen and fulvic acid on soil organic carbon and aggregates in saline soil[J]. Soils, 2020, 52(1): 33−39 [21] 赵永华. 发展富碳农业 促进农业碳中和[J]. 北方经济, 2021(3): 15−18ZHAO Y H. Developing carbon-rich agriculture to promote carbon neutrality in agriculture[J]. Northern Economy, 2021(3): 15−18 [22] TORBERT H A, PRIOR S A, ROGERS H H, et al. Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybean[J]. Field Crops Research, 2004, 88(1): 57−67 doi: 10.1016/j.fcr.2003.11.011 [23] 宋心怡, 炼晨, 张依然. “双碳”目标“施工图”日渐清晰−肥料行业将迎来新变革[J]. 中国农资, 2021(11): 3−5SONG X Y, LIAN C, ZHANG Y R. The “construction drawing” of the “carbon peak and neutrality” goals is becoming clear — Fertilizer industry will usher in new changes[J]. China Agri-Production News, 2021(11): 3−5 -