留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策

祝贞科 肖谋良 魏亮 王双 丁济娜 陈剑平 葛体达

祝贞科, 肖谋良, 魏亮, 王双, 丁济娜, 陈剑平, 葛体达. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策[J]. 中国生态农业学报 (中英文), 2022, 30(4): 592−602 doi: 10.12357/cjea.20210748
引用本文: 祝贞科, 肖谋良, 魏亮, 王双, 丁济娜, 陈剑平, 葛体达. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策[J]. 中国生态农业学报 (中英文), 2022, 30(4): 592−602 doi: 10.12357/cjea.20210748
ZHU Z K, XIAO M L, WEI L, WANG S, DING J N, CHEN J P, GE T D. Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 592−602 doi: 10.12357/cjea.20210748
Citation: ZHU Z K, XIAO M L, WEI L, WANG S, DING J N, CHEN J P, GE T D. Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 592−602 doi: 10.12357/cjea.20210748

稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策

doi: 10.12357/cjea.20210748
基金项目: 国家自然科学基金项目(42141006, 42177334, 42107341)和宁波大学王宽诚教育基金资助
详细信息
    作者简介:

    祝贞科, 主要研究方向为土壤生态学。E-mail: zhuzhenke@nbu.edu.cn

    通讯作者:

    葛体达, 主要研究方向为微生物生态与土壤健康。E-mail: getida@nbu.edu.cn

  • 中图分类号: S158

Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality

Funds: This study was supported by the National Natural Science Foundation of China (42141006, 42177334, 42107341) and K. C. Wong Magna Fund in Ningbo University.
More Information
  • 摘要: 稻田生态系统具有碳源和碳汇双重功能, 调控稻田土壤固碳减排, 对于保障我国粮食安全以及实现“碳中和”目标具有重要意义。近年来, 国内外学者在稻田土壤有机碳周转过程与机制方面开展了大量研究, 本文从土壤有机碳的来源、转化、稳定与技术调控等方面, 总结和分析稻田土壤固碳过程和机制, 并提出应对“碳中和”的策略。稻田土壤有机碳主要来源于水稻秸秆、根系、根际沉积碳、微生物同化碳以及有机肥等。外源有机碳输入土壤后, 其分解矿化过程首先受控于有机碳溶出过程, 而微生物矿化溶出的有机碳过程与土壤水分条件、养分含量及其计量比、微生物活性等因素密切相关。除了矿化释放的有机碳, 其余部分主要是通过微生物的同化代谢, 形成活体微生物及其残留物, 最终以团聚体保护、矿物结合态保护、微生物残体保护等形式固持于土壤中。我国水稻土具有显著的固碳效应, 近40年来的实测数据表明, 在水肥管理和秸秆还田等多举措实施下, 我国亚热带水稻土耕作层有机碳含量增加了约60%。采用增碳减排措施, 优化稻作系统耕作方式和田间管理模式, 建立碳减排生态补偿机制, 推动稻作系统纳入“碳交易”市场, 对实现“碳中和”起到了积极作用。所以, 在今后的研究中, 需要深入阐明稻田固碳功能形成机制, 提升核算与预测稻田碳中和能力, 加快稻田碳中和技术研发, 为提前实现“碳中和”战略目标提供科技支撑。
  • 图  1  稻田土壤有机碳转化与稳定机制

    Figure  1.  Transformation and stabilization mechanism of soil organic carbon in paddy field

  • [1] PACHAURI R K, MEYER L A, et al. Climate Change 2014: Synthesis Report[R]. Switzerland: IPCC, 2016: 141(9): 28
    [2] KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of paddy soils[J]. Geoderma, 2010, 157(1/2): 1−14
    [3] LIU Y L, GE T D, VAN GROENIGEN K J, et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis[J]. Communications Earth & Environment, 2021, 2: 154
    [4] VAN GROENIGEN K J, SIX J, HUNGATE B A, et al. Element interactions limit soil carbon storage[J]. PNAS, 2006, 103(17): 6571−6574 doi: 10.1073/pnas.0509038103
    [5] VAN GROENIGEN K J, QI X, OSENBERG C W, et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage[J]. Science, 2014, 344(6183): 508−509 doi: 10.1126/science.1249534
    [6] 吴金水, 李勇, 童成立, 等. 亚热带水稻土碳循环的生物地球化学特点与长期固碳效应[J]. 农业现代化研究, 2018, 39(6): 895−906

    WU J S, LI Y, TONG C L, et al. The key geo-biochemical processes of the long-term carbon sequestration and its mechanisms in the subtropical paddy soils[J]. Research of Agricultural Modernization, 2018, 39(6): 895−906
    [7] ZHU Z K, GE T D, XIAO M L, et al. Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content[J]. Plant and Soil, 2017, 410(1/2): 247−258
    [8] GE T D, LI B Z, ZHU Z K, et al. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization[J]. Biology and Fertility of Soils, 2017, 53(1): 37−48 doi: 10.1007/s00374-016-1155-z
    [9] ZHU Z K, GE T D, HU Y J, et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil — part 2: turnover and microbial utilization[J]. Plant and Soil, 2017, 416(1/2): 243−257
    [10] LIU Y L, GE T D, ZHU Z K, et al. Carbon input and allocation by rice into paddy soils: A review[J]. Soil Biology and Biochemistry, 2019, 133: 97−107 doi: 10.1016/j.soilbio.2019.02.019
    [11] GE T D, YUAN H Z, ZHU H H, et al. Biological carbon assimilation and dynamics in a flooded rice — Soil system[J]. Soil Biology and Biochemistry, 2012, 48: 39−46 doi: 10.1016/j.soilbio.2012.01.009
    [12] ZHU Z K, ZENG G J, GE T D, et al. Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil — Part 1: Decomposition and priming effect[J]. Biogeosciences, 2016, 13(15): 4481−4489 doi: 10.5194/bg-13-4481-2016
    [13] CUI J, ZHU Z K, XU X L, et al. Carbon and nitrogen recycling from microbial necromass to cope with C∶N stoichiometric imbalance by priming[J]. Soil Biology and Biochemistry, 2020, 142: 107720 doi: 10.1016/j.soilbio.2020.107720
    [14] CHEN X B, HU Y J, XIA Y H, et al. Contrasting pathways of carbon sequestration in paddy and upland soils[J]. Global Change Biology, 2021, 27(11): 2478−2490 doi: 10.1111/gcb.15595
    [15] WU J S, ZHOU P, LI L, et al. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1031−1037 doi: 10.1002/jsfa.4645
    [16] ZHAO Y C, WANG M Y, HU S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. PNAS, 2018, 115(16): 4045−4050 doi: 10.1073/pnas.1700292114
    [17] GE T D, LUO Y, HE X H. Quantitative and mechanistic insights into the key process in the rhizodeposited carbon stabilization, transformation and utilization of carbon, nitrogen and phosphorus in paddy soil[J]. Plant and Soil, 2019, 445(1/2): 1−5
    [18] WEI L, GE T D, ZHU Z K, et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers[J]. Geoderma, 2021, 398: 115121 doi: 10.1016/j.geoderma.2021.115121
    [19] LU Y H, WATANABE A, KIMURA M. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil[J]. Soil Biology and Biochemistry, 2003, 35(9): 1223−1230 doi: 10.1016/S0038-0717(03)00184-6
    [20] AN T T, SCHAEFFER S, LI S Y, et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling[J]. Soil Biology and Biochemistry, 2015, 80: 53−61 doi: 10.1016/j.soilbio.2014.09.024
    [21] KUZYAKOV Y, SUBBOTINA I, CHEN H Q, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2): 210−219 doi: 10.1016/j.soilbio.2008.10.016
    [22] WERTH M, KUZYAKOV Y. 13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies[J]. Soil Biology and Biochemistry, 2010, 42(9): 1372−1384 doi: 10.1016/j.soilbio.2010.04.009
    [23] KUZYAKOV Y, EHRENSBERGER H, STAHR K. Carbon partitioning and below-ground translocation by Lolium perenne[J]. Soil Biology and Biochemistry, 2001, 33(1): 61−74 doi: 10.1016/S0038-0717(00)00115-2
    [24] LU Y H, WATANABE A, KIMURA M. Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J]. Biology and Fertility of Soils, 2002, 36(2): 136−142 doi: 10.1007/s00374-002-0504-2
    [25] GE T D, WU X H, CHEN X J, et al. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013, 113: 70−78 doi: 10.1016/j.gca.2013.03.020
    [26] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [27] WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 2021, 162: 108422 doi: 10.1016/j.soilbio.2021.108422
    [28] KEMMITT S J, LANYON C V, WAITE I S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass — a new perspective[J]. Soil Biology and Biochemistry, 2008, 40(1): 61−73 doi: 10.1016/j.soilbio.2007.06.021
    [29] CORTES-TOLALPA L, JIMÉNEZ D J, BROSSI M J, et al. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity[J]. Applied Microbiology and Biotechnology, 2016, 100(17): 7713−7725 doi: 10.1007/s00253-016-7516-6
    [30] BROOKES P C, CHEN Y F, CHEN L, et al. Is the rate of mineralization of soil organic carbon under microbiological control?[J]. Soil Biology and Biochemistry, 2017, 112: 127−139 doi: 10.1016/j.soilbio.2017.05.003
    [31] SCHIMEL J P, WETTERSTEDT J Å M, HOLDEN P A, et al. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland[J]. Soil Biology and Biochemistry, 2011, 43(5): 1101−1103 doi: 10.1016/j.soilbio.2011.01.008
    [32] DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1781−1796 doi: 10.1111/j.1365-2486.2012.02665.x
    [33] WISSING L, KÖLBL A, HÄUSLER W, et al. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations[J]. Soil and Tillage Research, 2013, 126: 60−71 doi: 10.1016/j.still.2012.08.004
    [34] 赵永存, 徐胜祥, 王美艳, 等. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 2018, 33(2): 191−197

    ZHAO Y C, XU S X, WANG M Y, et al. Carbon sequestration potential in Chinese cropland soils: review, challenge, and research suggestions[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 191−197
    [35] SCHMIDT H, EICKHORST T, TIPPKÖTTER R. Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis[J]. Plant and Soil, 2011, 341(1/2): 221−232
    [36] LIU Y, WANG P, CROWLEY D, et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from East China[J]. European Journal of Soil Science, 2016, 67(4): 443−455 doi: 10.1111/ejss.12348
    [37] JANSSEN M, LENNARTZ B. Horizontal and vertical water and solute fluxes in paddy rice fields[J]. Soil and Tillage Research, 2007, 94(1): 133−141 doi: 10.1016/j.still.2006.07.010
    [38] HANSEL C M, FENDORF S, JARDINE P M, et al. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile[J]. Applied and Environmental Microbiology, 2008, 74(5): 1620−1633 doi: 10.1128/AEM.01787-07
    [39] KEILUWEIT M, NICO P S, KLEBER M, et al. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?[J]. Biogeochemistry, 2016, 127(2/3): 157−171
    [40] INUBUSHI K, SAITO H, ARAI H, et al. Effect of oxidizing and reducing agents in soil on methane production in Southeast Asian paddies[J]. Soil Science and Plant Nutrition, 2018, 64(1): 84−89 doi: 10.1080/00380768.2017.1401907
    [41] KEILUWEIT M, WANZEK T, KLEBER M, et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J]. Nature Communications, 2017, 8: 1771 doi: 10.1038/s41467-017-01406-6
    [42] FAN L C, DIPPOLD M A, GE T D, et al. Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes[J]. Soil Biology and Biochemistry, 2020, 141: 107685 doi: 10.1016/j.soilbio.2019.107685
    [43] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5: 22
    [44] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795−798 doi: 10.1038/nature08632
    [45] ZHU Z K, GE T D, LUO Y, et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry, 2018, 121: 67−76 doi: 10.1016/j.soilbio.2018.03.003
    [46] ZHU Z K, GE T D, LIU S L, et al. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions[J]. Soil Biology and Biochemistry, 2018, 116: 369−377 doi: 10.1016/j.soilbio.2017.11.001
    [47] WEI X M, ZHU Z K, LIU Y, et al. C∶N∶P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil[J]. Biology and Fertility of Soils, 2020, 56(8): 1093−1107 doi: 10.1007/s00374-020-01468-7
    [48] FREEMAN C, OSTLE N, KANG H. An enzymic ‘latch’ on a global carbon store[J]. Nature, 2001, 409(6817): 149
    [49] WANG Y Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, 8: 15972 doi: 10.1038/ncomms15972
    [50] ZHAO Y P, LIU C Z, WANG S M, et al. “Triple locks” on soil organic carbon exerted by sphagnum acid in wetlands[J]. Geochimica et Cosmochimica Acta, 2021, 315: 24−37 doi: 10.1016/j.gca.2021.09.028
    [51] SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155−176 doi: 10.1023/A:1016125726789
    [52] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7−31 doi: 10.1016/j.still.2004.03.008
    [53] RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1/2): 341−356
    [54] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49−56 doi: 10.1038/nature10386
    [55] MAGID J, KJÆRGAARD C, GORISSEN A, et al. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material[J]. Soil Biology and Biochemistry, 1999, 31(4): 595−602 doi: 10.1016/S0038-0717(98)00164-3
    [56] KUZYAKOV Y. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363−1371 doi: 10.1016/j.soilbio.2010.04.003
    [57] SIX J, ELLIOTT E T, PAUSTIAN K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Science Society of America Journal, 1999, 63(5): 1350−1358 doi: 10.2136/sssaj1999.6351350x
    [58] LUO Y, XIAO M L, YUAN H Z, et al. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass[J]. Soil Biology and Biochemistry, 2021, 160: 108345 doi: 10.1016/j.soilbio.2021.108345
    [59] ATERE C T, GE T D, ZHU Z K, et al. Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation[J]. Biology and Fertility of Soils, 2017, 53(4): 407−417 doi: 10.1007/s00374-017-1190-4
    [60] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
    [61] FREY S D, LEE J, MELILLO J M, et al. The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change, 2013, 3(4): 395−398 doi: 10.1038/nclimate1796
    [62] KALLENBACH C M, GRANDY A S, FREY S D, et al. Microbial physiology and necromass regulate agricultural soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 91: 279−290 doi: 10.1016/j.soilbio.2015.09.005
    [63] SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 2019, 12(1): 46−53 doi: 10.1038/s41561-018-0258-6
    [64] SCHULTEN H R, LEINWEBER P. New insights into organic-mineral particles: composition, properties and models of molecular structure[J]. Biology and Fertility of Soils, 2000, 30(5/6): 399−432
    [65] MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1): 25−56 doi: 10.1007/s10533-005-0712-6
    [66] KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1−140
    [67] MILTNER A, BOMBACH P, SCHMIDT-BRÜCKEN B, et al. SOM genesis: microbial biomass as a significant source[J]. Biogeochemistry, 2012, 111(1/2/3): 41−55
    [68] GUNINA A, DIPPOLD M, GLASER B, et al. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers[J]. Biogeosciences, 2017, 14(2): 271−283 doi: 10.5194/bg-14-271-2017
    [69] LIANG C, BALSER T C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy[J]. Nature Reviews Microbiology, 2011, 9(1): 75
    [70] DE ATERE C T, GUNINA A, ZHU Z K, et al. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance[J]. Soil Biology and Biochemistry, 2020, 149: 107931 doi: 10.1016/j.soilbio.2020.107931
    [71] ENGELKING B, FLESSA H, JOERGENSEN R G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil[J]. Soil Biology and Biochemistry, 2007, 39(8): 2111−2118 doi: 10.1016/j.soilbio.2007.03.020
    [72] SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555−569 doi: 10.2136/sssaj2004.0347
    [73] JEEWANI P H, LUO Y, YU G H, et al. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions[J]. Soil Biology and Biochemistry, 2021, 162: 108417 doi: 10.1016/j.soilbio.2021.108417
    [74] 宋文质, 王少彬, 苏维瀚, 等. 我国农田土壤的主要温室气体CO2、CH4和N2O排放研究[J]. 环境科学, 1996, 17(1): 85−92

    SONG W Z, WANG S B, SU W H, et al. Agricultural activities and emissions of greenhouse gases in China region[J]. Chinese Journal of Enviromental Science, 1996, 17(1): 85−92
    [75] 邹建文, 黄耀, 郑循华, 等. 基于静态暗箱法的陆地生态系统-大气CO2净交换估算[J]. 科学通报, 2004, 49(3): 258−264

    ZOU J W, HUANG Y, ZHENG X H, et al. Estimation of net CO2 exchange between terrestrial ecosystem and atmosphere based on static dark box method[J]. Chinese Science Bulletin, 2004, 49(3): 258−264
    [76] 朱咏莉, 童成立, 吴金水, 等. 透明箱法监测稻田生态系统CO2通量的研究[J]. 环境科学, 2005, 26(6): 8−14

    ZHU Y L, TONG C L, WU J S, et al. Estimation of CO2 fluxes from rice paddies based on transparent chamber measurement[J]. Environmental Science, 2005, 26(6): 8−14
    [77] 李飞跃, 梁媛, 汪建飞, 等. 生物炭固碳减排作用的研究进展[J]. 核农学报, 2013, 27(5): 681−686

    LI F Y, LIANG Y, WANG J F, et al. Biochar to sequester carbon and mitigate greenhouses emission: a review[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(5): 681−686
    [78] WU J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29−34 doi: 10.1111/j.1365-2389.2010.01325.x
    [79] 陈义, 王胜佳, 吴春艳, 等. 稻田土壤有机碳平衡及其数学模拟研究[J]. 浙江农业学报, 2004, 16(1): 1−6

    CHEN Y, WANG S J, WU C Y, et al. Study on the balance and mathematical modeling of organic carbon in the soils of paddy field[J]. Acta Agriculturae Zhejiangensis, 2004, 16(1): 1−6
    [80] 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3−12

    CHEN S W, LIU T Q, CAO C G, et al. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3−12
    [81] 林森, 肖谋良, 江家彬, 等. 水分管理对水稻生长与根际激发效应的影响特征[J]. 环境科学, 2021, 42(2): 988−995

    LIN S, XIAO M L, JIANG J B, et al. Effect of water management on rice growth and rhizosphere priming effect in paddy soils[J]. Environmental Science, 2021, 42(2): 988−995
    [82] QIAO N, SCHAEFER D, BLAGODATSKAYA E, et al. Labile carbon retention compensates for CO2 released by priming in forest soils[J]. Global Change Biology, 2014, 20(6): 1943−1954 doi: 10.1111/gcb.12458
    [83] YAGI K, MINAMI K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Science and Plant Nutrition, 1990, 36(4): 599−610 doi: 10.1080/00380768.1990.10416797
    [84] CORTON T M, BAJITA J B, GROSPE F S, et al. Methane emission from irrigated and intensively managed rice fields in central Luzon (Philippines)[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 37−53
    [85] WASSMANN R, BUENDIA L V, LANTIN R S, et al. Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines[M]//WASSMANN R, LANTIN R S, NEUE H U. Methane Emissions from Major Rice Ecosystems in Asia. Dordrecht: Springer Netherlands, 2000: 107–119
    [86] 秦晓波, 李玉娥, 刘克樱, 等. 不同施肥处理稻田甲烷和氧化亚氮排放特征[J]. 农业工程学报, 2006, 22(7): 143−148

    QIN X B, LI Y E, LIU K Y, et al. Methane and nitrous oxide emission from paddy field under different fertilization treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 143−148
    [87] WANG D D, ZHU Z K, SHAHBZA M, et al. Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: a 100-day incubation experiment[J]. Biology and Fertility of Soils, 2019, 55: 701–712
  • 加载中
图(1)
计量
  • 文章访问数:  1978
  • HTML全文浏览量:  302
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 录用日期:  2021-12-07
  • 网络出版日期:  2021-12-31
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回