留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生草对果园生态系统服务功能的影响: 全球数据整合分析研究

呼盼 高晓东 赵西宁 于流洋 何娜娜

呼盼, 高晓东, 赵西宁, 于流洋, 何娜娜. 生草对果园生态系统服务功能的影响: 全球数据整合分析研究[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1238−1248 doi: 10.12357/cjea.20210752
引用本文: 呼盼, 高晓东, 赵西宁, 于流洋, 何娜娜. 生草对果园生态系统服务功能的影响: 全球数据整合分析研究[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1238−1248 doi: 10.12357/cjea.20210752
HU P, GAO X D, ZHAO X N, YU L Y, HE N N. Effects of grassing on orchard ecosystem services: a global meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1238−1248 doi: 10.12357/cjea.20210752
Citation: HU P, GAO X D, ZHAO X N, YU L Y, HE N N. Effects of grassing on orchard ecosystem services: a global meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1238−1248 doi: 10.12357/cjea.20210752

生草对果园生态系统服务功能的影响: 全球数据整合分析研究

doi: 10.12357/cjea.20210752
基金项目: 国家重点研发计划项目(2021YFD1900700)和陕西省杰出青年科学基金项目(2021JC-19)资助
详细信息
    作者简介:

    呼盼, 主要研究方向为农业水土资源高效利用, E-mail: 1966610618@qq.com

    通讯作者:

    高晓东, 主要研究方向为农业水土资源高效利用, E-mail: gao_xiaodong@nwafu.edu.cn

  • 中图分类号: S665.9

Effects of grassing on orchard ecosystem services: a global meta-analysis

Funds: This study was supported by the National Key Research and Development Program of China (2021YFD1900700) and Shaanxi Province National Science Fund for Distinguished Young Scholars of China (2021JC-19).
More Information
  • 摘要: 定量分析生草对果园生态系统服务功能的影响可为果园土壤管理与生草技术推广应用提供科学依据。本研究搜集了1996—2020年公开发表的相关文献118篇, 从中获得了1387组数据。利用整合分析(meta-analysis)定量研究了果园生草对供给(果实产量和品质)、调节(土壤水分、温度和有机碳)、支持(土壤全氮)等生态系统服务功能的影响, 并从海拔、气候、生草种类和果园类型4个方面阐述生草对果园生态系统服务影响的异质性。结果表明, 与清耕果园相比, 果园生草复合系统显著提高了果实产量与可溶性固形物含量等供给服务功能, 土壤有机碳含量与土壤含水量等调节服务功能, 及土壤全氮含量等支持服务功能, 5项指标的平均增长率分别为20.7%、5.1%、24.7%、8.1%和15.6%。生草对果实可滴定酸含量和土壤温度的影响为负效应, 较清耕果园分别平均降低10.8%和10.6%, 但这种负效应实际上提高了鲜食水果的品质和避免高温对果树的伤害, 因此有利于果园生态系统服务功能提升。果园类型、生草种类、气候、海拔等均对果园生草的生态系统服务效应产生了重要影响, 其中果园类型、气候、海拔对供给服务的影响最为显著。综述研究发现, 果园生草显著提升了果园的供给、调控和支持服务功能, 可为我国清耕果园发展生草管理模式提供重要的科学依据, 对我国果园的提质增效和可持续发展具有重要借鉴意义。
  • 图  1  生草对生态系统服务功能的总体影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。Bars with error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    Figure  1.  General effects of sod-culture on orchard ecosystem services function

    图  2  不同条件下生草对果园产量的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  2.  Effects of sod-culture on yield of orchard under different factors

    Bars with error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  3  不同条件下生草对果实可溶性固形物影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  3.  Effects of sod-culture on soluble solid in fruit under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  4  不同条件下生草对果实可滴定酸的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  4.  Effects of sod-culture on titratable acid in fruit under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  5  不同条件下生草对果园土壤水分的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  5.  Effects of sod-culture on soil moisture in orchard under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  6  不同条件下生草对果园土壤温度的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  6.  Effects of sod-culture on soil temperature in orchard under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  7  不同条件下生草对果园土壤有机碳含量的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  7.  Effects of sod-culture on soil organic carbon content in orchard under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

    图  8  不同条件下生草对果园土壤全氮的影响

    条棒和误差线分别代表响应比及其95%的置信区间, 如果误差线没有跨越零线表示处理与对照存在显著差异; 括号内的数值代表样本数。

    Figure  8.  Effects of sod-culture on soil total N in orchard under different factors

    Bars and error bars denote the overall mean response ratio and 95% confidence interval, respectively. The 95% confidence interval that do not go across the zero line mean significant difference between treatment and control. The values in parentheses are independent sample size.

  • [1] DEMESTIHAS C, PLÉNET D, GÉNARD M, et al. Ecosystem services in orchards. A review[J]. Agronomy for Sustainable Development, 2017, 37(2): 1−21
    [2] GAO X D, ZHAO X N, WU P T, et al. The economic-environmental trade-off of growing apple trees in the drylands of China: a conceptual framework for sustainable intensification[J]. Journal of Cleaner Production, 2021, 296: 126497 doi: 10.1016/j.jclepro.2021.126497
    [3] 付学琴, 陈登云, 杨星鹏, 等. ‘南丰蜜橘’园生草对土壤团聚体养分和微生物特性及果实品质的影响[J]. 果树学报, 2020, 37(11): 1655−1666

    FU X Q, CHEN D Y, YANG X P, et al. Effects of grass cover in ‘Nanfeng’ tangerine orchard on nutrients and microbial characteristics in soil aggregates and fruit quality[J]. Journal of Fruit Science, 2020, 37(11): 1655−1666
    [4] 杨露, 毛云飞, 胡艳丽, 等. 生草改善果园土壤肥力和苹果树体营养的效果[J]. 植物营养与肥料学报, 2020, 26(2): 325−337 doi: 10.11674/zwyf.19104

    YANG L, MAO Y F, HU Y L, et al. Effects of orchard grass on soil fertility and apple tree nutrition[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 325−337 doi: 10.11674/zwyf.19104
    [5] 秦秦, 宋科, 孙丽娟, 等. 猕猴桃园行间生草对土壤养分的影响及有效性评价[J]. 果树学报, 2020, 37(1): 68−76

    QIN Q, SONG K, SUN L J, et al. Effect of inter-row sod system on the contents and availability of soil nutrients in a kiwifruit orchard[J]. Journal of Fruit Science, 2020, 37(1): 68−76
    [6] PECK G M, MERWIN I A, THIES J E, et al. Soil properties change during the transition to integrated and organic apple production in a New York orchard[J]. Applied Soil Ecology, 2011, 48(1): 18−30 doi: 10.1016/j.apsoil.2011.02.008
    [7] 高大同, 吴伟, 周福光. 皖北地区规模化果园生草技术探析[J]. 现代农业科技, 2021(22): 59−61, 66 doi: 10.3969/j.issn.1007-5739.2021.22.026

    GAO D T, WU W, ZHOU F G. Analysis on grass growing technique in large-scale orchards in northern Anhui Province[J]. Modern Agricultural Science and Technology, 2021(22): 59−61, 66 doi: 10.3969/j.issn.1007-5739.2021.22.026
    [8] 寇建村, 杨文权, 韩明玉, 等. 我国果园生草研究进展[J]. 草业科学, 2010, 27(7): 154−159 doi: 10.3969/j.issn.1001-0629.2010.07.026

    KOU J C, YANG W Q, HAN M Y, et al. Research progress on interplanting grass in orchard in China[J]. Pratacultural Science, 2010, 27(7): 154−159 doi: 10.3969/j.issn.1001-0629.2010.07.026
    [9] 李会科, 赵政阳, 张广军. 果园生草的理论与实践−以黄土高原南部苹果园生草实践为例[J]. 草业科学, 2005, 22(8): 32−37 doi: 10.3969/j.issn.1001-0629.2005.08.009

    LI H K, ZHAO Z Y, ZHANG G J. The theory and practice of grass interplanting in orchards[J]. Pratacultural Science, 2005, 22(8): 32−37 doi: 10.3969/j.issn.1001-0629.2005.08.009
    [10] 同晓蕾, 豆攀, 张伯虎, 等. 旱地果园生草栽培技术研究进展[J]. 黑龙江农业科学, 2021(2): 127−131

    TONG X L, DOU P, ZHANG B H, et al. Research progress of sod-culture techniques in dryland orchard[J]. Heilongjiang Agricultural Sciences, 2021(2): 127−131
    [11] 刘传和, 陈杰忠. 我国果园生草栽培研究概况[J]. 亚热带植物科学, 2005, 34(2): 76−80 doi: 10.3969/j.issn.1009-7791.2005.02.026

    LIU C H, CHEN J Z. A review of study on sod cultivation in fruit orchard[J]. Subtropical Plant Science, 2005, 34(2): 76−80 doi: 10.3969/j.issn.1009-7791.2005.02.026
    [12] 王艳廷, 冀晓昊, 吴玉森, 等. 我国果园生草的研究进展[J]. 应用生态学报, 2015, 26(6): 1892−1900

    WANG Y T, JI X H, WU Y S, et al. Research progress of cover crop in Chinese orchard[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1892−1900
    [13] 惠竹梅, 岳泰新, 张瑾, 等. 西北半干旱区葡萄园生草体系中土壤生物学特性与土壤养分的关系[J]. 中国农业科学, 2011, 44(11): 2310−2317 doi: 10.3864/j.issn.0578-1752.2011.11.013

    XI Z M, YUE T X, ZHANG J, et al. Relationship between soil biological characteristics and nutrient content under intercropping system of vineyard in northwestern semiarid area[J]. Scientia Agricultura Sinica, 2011, 44(11): 2310−2317 doi: 10.3864/j.issn.0578-1752.2011.11.013
    [14] 高登涛, 郭景南, 魏志峰, 等. 果园地面覆盖对土壤质量和苹果生长发育的影响[J]. 果树学报, 2010, 27(5): 770−777

    GAO D T, GUO J N, WEI Z F, et al. Effect of orchard mulch on soil quality, growth and development of apple trees[J]. Journal of Fruit Science, 2010, 27(5): 770−777
    [15] 白岗栓, 邹超煜, 杜社妮. 渭北旱塬果园自然生草对土壤水分及苹果树生长的影响[J]. 农业工程学报, 2018, 34(3): 151−158 doi: 10.11975/j.issn.1002-6819.2018.03.020

    BAI G S, ZOU C Y, DU S N. Effects of self-sown grass on soil moisture and tree growth in apple orchard on Weibei dry plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 151−158 doi: 10.11975/j.issn.1002-6819.2018.03.020
    [16] 刘小勇, 李红旭, 李建明, 等. 不同覆盖方式对旱地果园水热特征的影响[J]. 生态学报, 2014, 34(3): 746−754

    LIU X Y, LI H X, LI J M, et al. The effects of different mulching way on soil water thermal characteristics in pear orchard in the arid area[J]. Acta Ecologica Sinica, 2014, 34(3): 746−754
    [17] 吴玉森, 张艳敏, 冀晓昊, 等. 自然生草对黄河三角洲梨园土壤养分、酶活性及果实品质的影响[J]. 中国农业科学, 2013, 46(1): 99−108 doi: 10.3864/j.issn.0578-1752.2013.01.012

    WU Y S, ZHANG Y M, JI X H, et al. Effects of natural grass on soil nutrient, enzyme activity and fruit quality of pear orchard in Yellow River Delta[J]. Scientia Agricultura Sinica, 2013, 46(1): 99−108 doi: 10.3864/j.issn.0578-1752.2013.01.012
    [18] 刘业萍, 毛云飞, 胡艳丽, 等. 苹果园生草对土壤微生物多样性、酶活性及碳组分的影响[J]. 植物营养与肥料学报, 2021, 27(10): 1792−1805 doi: 10.11674/zwyf.2021140

    LIU Y P, MAO Y F, HU Y L, et al. Effects of grass planting in apple orchard on soil microbial diversity, enzyme activities and carbon components[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1792−1805 doi: 10.11674/zwyf.2021140
    [19] 郭晓睿, 宋涛, 邓丽娟, 等. 果园生草对中国果园土壤肥力和生产力影响的整合分析[J]. 应用生态学报, 2021, 32(11): 4021−4028

    GUO X R, SONG T, DENG L J, et al. Effects of grass growing on soil fertility and productivity of orchards in China: a meta-analysis[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4021−4028
    [20] 陈久红, 马建江, 李永丰, 等. 行间生草对‘库尔勒香梨’果园小气候、光合特性及果实品质的影响[J]. 北方园艺, 2019(22): 49−59

    CHEN J H, MA J J, LI Y F, et al. Effects of herbage on ecological environment and photosynthetic characteristics fruits quality of ‘Korla fragrant pear’[J]. Northern Horticulture, 2019(22): 49−59
    [21] SOMARRIBA E, CERDA R, OROZCO L, et al. Carbon stocks and cocoa yields in agroforestry systems of Central America[J]. Agriculture, Ecosystems & Environment, 2013, 173: 46−57
    [22] TSCHARNTKE T, CLOUGH Y, BHAGWAT S A, et al. Multifunctional shade-tree management in tropical agroforestry landscapes — a review[J]. Journal of Applied Ecology, 2011, 48(3): 619−629 doi: 10.1111/j.1365-2664.2010.01939.x
    [23] WANG Y J, LIU L, TIAN Y L, et al. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover[J]. Soil and Tillage Research, 2020, 202: 104666 doi: 10.1016/j.still.2020.104666
    [24] GU J X, NIE H H, GUO H J, et al. Nitrous oxide emissions from fruit orchards: a review[J]. Atmospheric Environment, 2019, 201: 166−172 doi: 10.1016/j.atmosenv.2018.12.046
    [25] SIMON S, BOUVIER J C, DEBRAS J F, et al. Biodiversity and pest management in orchard systems. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 139−152 doi: 10.1051/agro/2009013
    [26] KUYAH S, WHITNEY C W, JONSSON M, et al. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis[J]. Agronomy for Sustainable Development, 2019, 39(5): 1−18
    [27] SILESHI G, AKINNIFESI F K, AJAYI O C, et al. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa[J]. Plant and Soil, 2008, 307(1/2): 1−19
    [28] ADAMS D C, GUREVITCH J, ROSENBERG M S. Resampling tests for meta-analysis of ecological data[J]. Ecology, 1997, 78(4): 1277−1283 doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
    [29] HASSAN A, IJAZ S S, LAL R, et al. Depth distribution of soil organic carbon fractions in relation to tillage and cropping sequences in some dry lands of punjab, Pakistan[J]. Land Degradation & Development, 2016, 27(4): 1175−1185
    [30] LING Q, ZHAO X N, WU P T, et al. Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China[J]. Plant and Soil, 2020, 453(1/2): 209−228
    [31] ZHAO Z Y, ZHENG W, MA Y T, et al. Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China[J]. Agricultural Water Management, 2020, 240: 106325 doi: 10.1016/j.agwat.2020.106325
    [32] 梅立新, 李会科. 渭北旱地苹果园生草小气候效应研究[J]. 干旱地区农业研究, 2010, 28(1): 187−192

    MEI L X, LI H K. Effects of interplanting different herbage on microclimate in apple orchards in the area of Weibei Plateau[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 187−192
    [33] 张义, 谢永生, 郝明德, 等. 不同地表覆盖方式对苹果园土壤性状及果树生长和产量的影响[J]. 应用生态学报, 2010, 21(2): 279−286

    ZHANG Y, XIE Y S, HAO M D, et al. Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 279−286
    [34] DENG L, HAN Q S, ZHANG C, et al. Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development[J]. Land Degradation & Development, 2017, 28(3): 906−917
    [35] GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206: 46−59
    [36] PEI J M, LI J Q, MIA S, et al. Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time[J]. Geoderma, 2021, 382: 114710 doi: 10.1016/j.geoderma.2020.114710
    [37] YADAV G S, DAS A, LAL R, et al. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India[J]. Agriculture, Ecosystems & Environment, 2019, 275: 81−92
    [38] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. The Science of the Total Environment, 2016, 571: 206−217 doi: 10.1016/j.scitotenv.2016.07.135
    [39] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [40] SHEEHY J, REGINA K, ALAKUKKU L, et al. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems[J]. Soil and Tillage Research, 2015, 150: 107−113 doi: 10.1016/j.still.2015.01.015
    [41] LEHMANN J, KLEBER. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60−68
    [42] ALVAREZ C, ALVAREZ C R, COSTANTINI A, et al. Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina)[J]. Soil and Tillage Research, 2014, 142: 25−31 doi: 10.1016/j.still.2014.04.005
    [43] 张超, 李爱梅, 周旭, 等. 地面覆盖对渭北旱地苹果园土壤理化性质与果实产量、品质的影响[J]. 西北农业学报, 2017, 26(4): 609−616 doi: 10.7606/j.issn.1004-1389.2017.04.017

    ZHANG C, LI A M, ZHOU X, et al. Effect of different ground-mulching patterns on soil physicochemical properties and yield and fruit quality in non-irrigated apple orchard in Weibei highland[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(4): 609−616 doi: 10.7606/j.issn.1004-1389.2017.04.017
    [44] 李尚玮, 杨文权, 赵冉, 等. 果树行间生草对苹果园土壤肥力的影响[J]. 草地学报, 2016, 24(4): 895−900

    LI S W, YANG W Q, ZHAO R, et al. Effects of growing grass on soil fertility of the apple orchard[J]. Acta Agrestia Sinica, 2016, 24(4): 895−900
    [45] YANG J F, DUAN Y M, ZHANG R Q, et al. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard[J]. Industrial Crops and Products, 2020, 149: 112344 doi: 10.1016/j.indcrop.2020.112344
    [46] 刘蝴蝶, 郝淑英, 曹琴, 等. 生草覆盖对果园土壤养分、果实产量及品质的影响[J]. 土壤通报, 2003, 34(3): 184−186 doi: 10.3321/j.issn:0564-3945.2003.03.006

    LIU H D, HAO S Y, CAO Q, et al. Effect of grass cover on soil nutrient and yleld and quality of apple[J]. Chinese Journal of Soil Science, 2003, 34(3): 184−186 doi: 10.3321/j.issn:0564-3945.2003.03.006
    [47] MAURO R P, ANASTASI U, LOMBARDO S, et al. Cover crops for managing weeds, soil chemical fertility and nutritional status of organically grown orange orchard in Sicily[J]. Italian Journal of Agronomy, 2015, 10(2): 101 doi: 10.4081/ija.2015.641
    [48] 史进, 李文胜, 张俊苗. 生草对树冠不同部位果实产量和品质的影响[J]. 北方园艺, 2016(19): 22−27

    SHI J, LI W S, ZHANG J M. Influence of sod culture to yield and quality of different parts of apple tree crown[J]. Northern Horticulture, 2016(19): 22−27
  • 加载中
图(8)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  47
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 录用日期:  2021-11-03
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回