留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐镉互作下盐地碱蓬和碱蓬生长及镉吸收的比较研究

吴玉洁 封晓辉 张睿 李静 刘小京

吴玉洁, 封晓辉, 张睿, 李静, 刘小京. 盐镉互作下盐地碱蓬和碱蓬生长及镉吸收的比较研究[J]. 中国生态农业学报 (中英文), 2022, 30(7): 1186−1193 doi: 10.12357/cjea.20210778
引用本文: 吴玉洁, 封晓辉, 张睿, 李静, 刘小京. 盐镉互作下盐地碱蓬和碱蓬生长及镉吸收的比较研究[J]. 中国生态农业学报 (中英文), 2022, 30(7): 1186−1193 doi: 10.12357/cjea.20210778
WU Y J, FENG X H, ZHANG R, LI J, LIU X J. Comparative study on the growth and Cd uptake of Suaeda salsa and Suaeda glauca under the stress of salt and Cd and their interaction[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1186−1193 doi: 10.12357/cjea.20210778
Citation: WU Y J, FENG X H, ZHANG R, LI J, LIU X J. Comparative study on the growth and Cd uptake of Suaeda salsa and Suaeda glauca under the stress of salt and Cd and their interaction[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1186−1193 doi: 10.12357/cjea.20210778

盐镉互作下盐地碱蓬和碱蓬生长及镉吸收的比较研究

doi: 10.12357/cjea.20210778
基金项目: 中国科学院工程实验室建设项目(KFJ-PTXM-017)和河北省重点研发计划项目(20327002D)资助
详细信息
    作者简介:

    吴玉洁, 主要从事盐生植物利用的研究。E-mail: wuyujie19@mails.ucas.ac.cn

    通讯作者:

    刘小京, 主要从事缺水盐渍区水土资源高效利用研究。E-mail: xjliu@sjziam.ac.cn

  • 中图分类号: X53

Comparative study on the growth and Cd uptake of Suaeda salsa and Suaeda glauca under the stress of salt and Cd and their interaction

Funds: This study was supported by the Construction Project of Engineering Laboratory of Chinese Academy of Sciences (KFJ-PTXM-017) and the Hebei Key Technology R&D Program (20327002D).
More Information
  • 摘要: 利用盐生植物修复盐碱地重金属污染是一种经济有效且安全性高的生物修复方法, 但盐和重金属互作对不同盐生植物生长和重金属元素吸收的研究不足。本研究采用水培试验, 比较盐和镉互作对典型聚盐盐生植物盐地碱蓬(Suaeda salsa)和碱蓬(Suaeda glauca)生长及对重金属Cd吸收的影响, 分析盐对镉吸收的调节作用。试验设置两个盐水平(0 g∙L−1、10 g∙L−1 NaCl)和两个Cd水平(0 mg∙L−1、5 mg∙L−1 Cd), 共4个处理。研究结果表明, Cd处理显著抑制两种植物的生长, 降低了叶片肉质化程度和根冠比, 且对盐地碱蓬的抑制作用大于碱蓬, 对根部的抑制更明显。10 g∙L−1 NaCl盐处理均促进两种植物地上部的生长, 且对盐地碱蓬地上部生长的促进作用显著大于碱蓬; 但显著抑制碱蓬根系的生长。Cd处理下施加NaCl显著缓解Cd对两种植物的抑制作用, 且对盐地碱蓬的缓解作用大于碱蓬, 对Cd抑制盐地碱蓬根系生长的缓解作用为极显著。盐地碱蓬和碱蓬地上部Cd含量差异不显著, 盐处理显著降低两种植物地上部Cd含量。盐处理显著促进两种植物地上部对Na+的吸收, 盐地碱蓬地上部Na+含量和Na+/Cd高于碱蓬, 但K+含量、K+/Na+和K+/Cd显著低于碱蓬, 且Cd处理进一步促进了两种植物地上部对Na+的吸收; 盐处理降低K+的吸收和K+/Na+, 碱蓬地上部K+的吸收和K+/Na+均大于盐地碱蓬。盐、Cd处理下两种植物间地上部脯氨酸含量差异不明显, 但盐、Cd及其互作有增加地上部脯氨酸含量的趋势。在无胁迫和单一Cd处理下, 盐地碱蓬地上部可溶性糖含量显著高于碱蓬; 盐处理显著降低了盐地碱蓬地上部可溶性糖含量, Cd处理显著增加了碱蓬地上部可溶性糖的含量。上述结果表明, 盐地碱蓬和碱蓬的生长对盐、Cd及其互作的响应不同, 盐分可以缓解Cd对其生长的抑制作用, 特别是Cd对盐地碱蓬根系生长的抑制作用, 盐地碱蓬更趋向于积累无机渗透调节物质如Na+, 而碱蓬更趋向于积累无机渗透调节物质(K+)和有机渗透调节物质(可溶性糖)来抵御盐、镉胁迫。
  • 图  1  盐处理对盐地碱蓬和碱蓬地上部Cd含量的影响

    图中不同小写字母表示两种植物不同处理在P<0.05水平差异显著; **表示在P<0.01水平差异显著; NS表示无显著性差异。S0Cd1表示单一Cd处理, S1Cd1表示盐Cd互作处理。Different lowercase letters mean significant differences among treatments of two plants at P<0.05 level. ** means significant differences at P<0.01. NS means no significant difference. S0Cd1 is single Cd treatment, S1Cd1 is salt and Cd interactive treatment. The treatments are described in Table 1.

    Figure  1.  Effects of salt treatment on shoot Cd content of Suaeda salsa and Suaeda glauca

    图  2  盐镉互作处理对盐地碱蓬和碱蓬地上部Na+(A), K+(B)含量和K+/Na+比(C)的影响

    图中不同小写字母表示两种植物的不同处理在P<0.05水平差异显著; S0Cd0 表示无盐无Cd处理, S0Cd1表示单一Cd处理, S1Cd0表示单一盐处理, S1Cd1表示盐Cd互作处理。Different lowercase letters mean significant differences among treatments of two plants at P<0.05 level. S0Cd0 is no salt and no Cd treatment, S0Cd1 is single Cd treatment, S1Cd0 is single salt treatment, S1Cd1 is salt and Cd interactive treatment. The treatments are discribed in Table 1.

    Figure  2.  Effects of salt-Cd interactions on shoot Na+(A), K+ (B) contents and K+/Na+ ratio (C) in Suaeda salsa and Suaeda glauca

    图  3  盐处理对盐地碱蓬和碱蓬地上部Na+/Cd比(A)和K+/Cd比(B)的影响

    不同小写字母表示两种植物不同处理在P<0.05水平差异显著; *表示在P<0.05水平差异显著; **表示在P<0.01水平差异显著; NS表示无显著性差异。S0Cd1表示单一Cd处理, S1Cd1表示盐Cd互作处理。Different lowercase letters mean significant differences among different treatments of two plants at P<0.05 level. * means significant difference at P<0.05; ** means significant difference at P<0.01. NS means no significant difference. S0Cd1 is single Cd treatment, S1Cd1 is salt and Cd interactive treatment. The treatments are discribed in Table 1.

    Figure  3.  Effects of salt treatment on shoot Na+/Cd ratio (A) and K+/Cd ratio (B) of Suaeda salsa and Suaeda glauca

    图  4  盐镉互作处理对盐地碱蓬和碱蓬地上部脯氨酸(A)和可溶性糖(B)含量的影响

    不同小写字母表示两种植物不同处理在P<0.05水平差异显著; S0Cd0 表示无盐无Cd处理, S0Cd1表示单一Cd处理, S1Cd0表示单一盐处理, S1Cd1表示盐Cd互作处理。Different lowercase letters mean significant differences among different treatments of two plants at P<0.05 level. S0Cd0 is no salt and no Cd treatment, S0Cd1 is single Cd treatment, S1Cd0 is single salt treatment, S1Cd1 is salt and Cd interactive treatment. The treatments are discribed in Table 1.

    Figure  4.  Effects of salt-Cd interactions on shoot proline (A) and soluble sugar (B) contents of Suaeda salsa and Suaeda glauca

    表  1  盐和Cd互作处理对盐地碱蓬和碱蓬生长的影响

    Table  1.   Effects of salt, Cd and their interaction on the growth of Suaeda salsa and Suaeda glauca

    植物
    Plant species
    处理
    Treatment
    生物量 Biomass (g·pot−1)根冠比
    Root/shoot ratio
    叶片肉质化程度
    Degree of leaf succulence
    地上部 Shoot地下部 Root总计 Total
    盐地碱蓬
    Suaeda salsa
    S0 Cd01.21±0.05bc0.25±0.02b1.47±0.07bc0.21±0.01a7.89±0.17ab
      Cd10.59±0.09e0.05±0.01e0.63±0.09e0.08±0.01f5.78±0.82c
    S1 Cd01.44±0.06b0.22±0.01bc1.65±0.07b0.15±0.01c7.67±0.28ab
      Cd10.93±0.05d0.11±0.01d1.04±0.05d0.12±0.01d6.66±0.35bc
    碱蓬
    Suaeda glauca
    S0 Cd02.03±0.14a0.35±0.03a2.38±0.17a0.17±0.00b8.12±0.40a
      Cd11.11±0.08cd0.11±0.01d1.22±0.08cd0.10±0.00de5.76±0.12c
    S1 Cd02.19±0.04a0.20±0.01c2.40±0.05a0.09±0.00ef6.68±0.15bc
      Cd11.25±0.13bc0.10±0.01d1.35±0.14c0.08±0.00f6.51±0.70bc
    显著性 Significance
    物种 Species********NS
    盐 Salt******NS
    镉 Cd**********
    物种×盐 Species × saltNS**NS**NS
    物种×镉 Species × Cd*NS***NS
    盐×镉 Salt × CdNS**NS***
    物种×盐×Cd Species × salt ×CdNSNSNS**NS
      表中同列不同小写字母表示在P<0.05水平差异显著; *和**分别表示在P<0.05和P<0.01水平差异显著; NS表示无显著性差异。S0: NaCl添加量为0 g∙L−1; S1: NaCl添加量为10 g∙L−1; Cd0: Cd添加量为0 mg∙L−1; Cd1: Cd添加量为5 mg∙L−1。In this table, different lowercase letters in the same column mean significant difference at P<0.05. * and ** mean significant differences at P<0.05 and P<0.01, respectively. NS means no significant difference. S0: 0 g∙L−1 NaCl; S1: 10 g∙L−1 NaCl ; Cd0: 0 mg∙L−1 Cd; S1: 5 mg∙L−1 Cd.
    下载: 导出CSV

    表  2  盐镉互作处理下盐地碱蓬和碱蓬离子含量的三因素方差分析

    Table  2.   Three-way ANOVA of salt-Cd interactions on ions content of two plants

    Na+K+K+/Na+
    物种 Species18.18**194.46**100.55**
    盐 Salt9364.87**479.61**894.42**
    镉 Cd42.29**31.47**130.55**
    物种×盐 Species × salt0.87NS1.30NS85.41**
    物种×镉 Species × Cd0.01NS5.12*5.71**
    盐×镉 Salt × Cd1.15NS55.59**130.25**
    物种×盐×Cd Species ×salt ×Cd0.68NS15.53**5.10*
      *和**分别表示在P<0.05和P<0.01水平差异显著, NS表示无显著性差异。* and ** mean significant differences at P<0.05 and P<0.01, respectively. NS means no significant difference.
    下载: 导出CSV

    表  3  盐镉互作处理下两种植物渗透调节物质的三因素方差分析

    Table  3.   Three-way ANOVA of salt-Cd interactions on two osmotic regulators of two plants

    脯氨酸
    Proline
    可溶性糖 Soluble sugar
    物种 Species0.02NS5.26*
    盐 Salt2.55NS12.89**
    镉 Cd0.18NS5.52*
    物种×盐 Species × salt0.56NS14.89**
    物种×镉 Species × Cd0.10NS0.16NS
    盐×镉 Salt × Cd0.89NS2.58NS
    物种×盐×镉 Species × salt × Cd0.05NS0.78NS
      *表示在P<0.05水平差异显著; **表示P<0.01水平差异极显著; NS表示无显著性差异。* means significant difference at P<0.05; ** means significant difference at P<0.01; NS means no significant difference.
    下载: 导出CSV
  • [1] VASSILEV A, TSONEV T, YORDANOV I. Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis[J]. Environmental Pollution, 1998, 103(2/3): 287−293
    [2] CHANEY R L. Food safety issues for mineral and organic fertilizers[M]//Advances in Agronomy. Amsterdam: Elsevier, 2012: 51–116
    [3] 葛晓颖, 欧阳竹, 杨林生, 等. 环渤海地区土壤重金属富集状况及来源分析[J]. 环境科学学报, 2019, 39(6): 1979−1988

    GE X Y, OUYANG Z, YANG L S, et al. Concentration, risk assessment and sources of heavy metals in soil around Bohai Rim[J]. Acta Scientiae Circumstantiae, 2019, 39(6): 1979−1988
    [4] 赵雪琴, 赵善道, 左平, 等. 江苏盐城原生湿地表层沉积物中的重金属污染评价[J]. 环境保护科学, 2010, 36(1): 64−68 doi: 10.3969/j.issn.1004-6216.2010.01.020

    ZHAO X Q, ZHAO S D, ZUO P, et al. Pollution assessment of heavy metals in coastal surface sediments in original salt marshes in Yancheng, Jiangsu Province, China[J]. Environmental Protection Science, 2010, 36(1): 64−68 doi: 10.3969/j.issn.1004-6216.2010.01.020
    [5] 刘芳文, 颜文, 王文质, 等. 珠江口沉积物重金属污染及其潜在生态危害评价[J]. 海洋环境科学, 2002, 21(3): 34−38 doi: 10.3969/j.issn.1007-6336.2002.03.008

    LIU F W, YAN W, WANG W Z, et al. Pollution of heavy metals in the Pearl River Estuary and its assessment of potential ecological risk[J]. Marine Environmental Science, 2002, 21(3): 34−38 doi: 10.3969/j.issn.1007-6336.2002.03.008
    [6] SHACKIRA A M, PUTHUR J T. Enhanced phytostabilization of cadmium by a halophyte — Acanthus ilicifolius L.[J]. International Journal of Phytoremediation, 2017, 19(4): 319−326 doi: 10.1080/15226514.2016.1225284
    [7] CAPARRÓS P G, OZTURK M, GUL A, et al. Halophytes have potential as heavy metal phytoremediators: a comprehensive review[J]. Environmental and Experimental Botany, 2022, 193: 104666 doi: 10.1016/j.envexpbot.2021.104666
    [8] AZIZ I, MUJEEB A. Halophytes for phytoremediation of hazardous metal(loid)s: a terse review on metal tolerance, bio-indication and hyperaccumulation[J]. Journal of Hazardous Materials, 2022, 424: 127309 doi: 10.1016/j.jhazmat.2021.127309
    [9] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals — Concepts and applications[J]. Chemosphere, 2013, 91(7): 869−881 doi: 10.1016/j.chemosphere.2013.01.075
    [10] 陈柯罕, 张科, 李取生, 等. 四种盐生植物对Cd, Pb复合污染提取修复效果比较研究[J]. 农业环境科学学报, 2017, 36(3): 458−465 doi: 10.11654/jaes.2016-1252

    CHEN K H, ZHANG K, LI Q S, et al. Remediation effects of four halophytes on Cd and Pb compound pollution[J]. Journal of Agro-Environment Science, 2017, 36(3): 458−465 doi: 10.11654/jaes.2016-1252
    [11] ZHANG Q H, SAIREBIELI K, ZHAO M M, et al. Nutrients have a different impact on the salt tolerance of two coexisting Suaeda species in the Yellow River Delta[J]. Wetlands, 2020, 40(7420): 1−13
    [12] 杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应[J]. 中国生态农业学报(中英文), 2019, 27(10): 1578−1586

    YANG C, CHEN H Y, LI J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1578−1586
    [13] HE Q, CUI B S, BERTNESS M D, et al. Testing the importance of plant strategies on facilitation using congeners in a coastal community[J]. Ecology, 2012, 93(9): 2023−2029 doi: 10.1890/12-0241.1
    [14] HE Q, CUI B S, CAI Y Z, et al. What confines an annual plant to two separate zones along coastal topographic gradients?[J]. Hydrobiologia, 2009, 630(1): 327−340 doi: 10.1007/s10750-009-9825-6
    [15] SONG J, SHI G W, GAO B, et al. Waterlogging and salinity effects on two Suaeda salsa populations[J]. Physiologia Plantarum, 2011, 141(4): 343−351 doi: 10.1111/j.1399-3054.2011.01445.x
    [16] 李劲松, 郭凯, 李晓光, 等. 模拟干旱和盐碱胁迫对碱蓬、盐地碱蓬种子萌发的影响[J]. 中国生态农业学报, 2018, 26(7): 1011−1018

    LI J S, GUO K, LI X G, et al. Effects of PEG, NaCl and Na2CO3 stresses on Suaeda glauca and Suaeda salsa seed germination[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7): 1011−1018
    [17] 陈雷, 杨亚洲, 郑青松, 等. 盐生植物碱蓬修复镉污染盐土的研究[J]. 草业学报, 2014, 23(2): 171−179 doi: 10.11686/cyxb20140221

    CHEN L, YANG Y Z, ZHENG Q S, et al. Phytoremediation of Cd polluted saline soils by the halophyte Suaeda salsa[J]. Acta Prataculturae Sinica, 2014, 23(2): 171−179 doi: 10.11686/cyxb20140221
    [18] 陈柯罕. 盐地碱蓬对Cd及Cd, Pb复合污染的提取修复效果研究[D]. 广州: 暨南大学, 2017

    CHEN K H. Phytoextraction in Cd or Cd-Pb contaminated soils by Suaeda salsa[D]. Guangzhou: Jinan University, 2017
    [19] GHNAYA T, SLAMA I, MESSEDI D, et al. Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl[J]. Journal of Plant Research, 2007, 120(2): 309−316 doi: 10.1007/s10265-006-0042-3
    [20] ZHANG S L, NI X L, ARIF M, et al. Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes, Suaeda glauca and Limonium aureum[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110230 doi: 10.1016/j.ecoenv.2020.110230
    [21] LEFÈVRE I, MARCHAL G, MEERTS P, et al. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L.[J]. Environmental and Experimental Botany, 2009, 65(1): 142−152 doi: 10.1016/j.envexpbot.2008.07.005
    [22] WALI M, GUNSÈ B, LLUGANY M, et al. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis[J]. Planta, 2016, 244(2): 333−346 doi: 10.1007/s00425-016-2515-5
    [23] CHENG M M, WANG A N, LIU Z Q, et al. Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii[J]. Annals of Botany, 2018, 122(3): 373−385 doi: 10.1093/aob/mcy077
    [24] 赵可夫, 李法曾, 樊守金, 等. 中国的盐生植物[J]. 植物学通报, 1999, 34(3): 201

    ZHAO K F, LI F Z, FAN S J, et al. Halophytes in China[J]. Chinese Bulletin of Botany, 1999, 34(3): 201
    [25] DONG X C, CHANG Y, ZHENG R, et al. Phytoremediation of cadmium contaminated soil: impacts on morphological traits, proline content and stomata parameters of sweet Sorghum seedlings[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(3): 528−535 doi: 10.1007/s00128-021-03125-7
    [26] 王亚男, 许静, 郝利君, 等. 修复剂对镉污染盐渍化土壤植物修复效率的影响[J]. 土壤学报, 2021, 58(2): 464−475

    WANG Y N, XU J, HAO L J, et al. Effects of soil remediation agents on the phytoremediation efficiency of cadmium-polluted salinized soil[J]. Acta Pedologica Sinica, 2021, 58(2): 464−475
    [27] CHAI M W, SHI F C, LI R L, et al. Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress[J]. South African Journal of Botany, 2013, 85: 63−69 doi: 10.1016/j.sajb.2012.12.004
    [28] 梁丽琛, 刘维涛, 张雪, 等. 盐土植物提取修复重金属污染盐土研究进展[J]. 农业环境科学学报, 2016, 35(7): 1233−1241 doi: 10.11654/jaes.2016.07.002

    LIANG L C, LIU W T, ZHANG X, et al. Research progress in phytoextraction of heavy metal contaminated saline soil[J]. Journal of Agro-Environment Science, 2016, 35(7): 1233−1241 doi: 10.11654/jaes.2016.07.002
    [29] LI T Q, DI Z Z, ISLAM E, et al. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredi involved in zinc accumulation[J]. Journal of Hazardous Materials, 2011, 185(2/3): 818−823
    [30] MUCHA A P, ALMEIDA C M R, BORDALO A A, et al. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments[J]. Estuarine, Coastal and Shelf Science, 2005, 65(1/2): 191−198
    [31] 柴民伟. 外来种互花米草和黄顶菊对重金属和盐碱胁迫的生态响应[D]. 天津: 南开大学, 2013

    CHAI M W. Ecological responses of exotic species Spartina alterniflora and Flaveria bidentis to heavy metal and saline-alkali stresses[D]. Tianjin: Nankai University, 2013
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  107
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-02-10
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-07-05

目录

    /

    返回文章
    返回