留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北方典型农业生态系统的固碳减排路径及模式

蔡育蓉 王立刚

蔡育蓉, 王立刚. 北方典型农业生态系统的固碳减排路径及模式[J]. 中国生态农业学报 (中英文), 2022, 30(4): 641−650 doi: 10.12357/cjea.20210789
引用本文: 蔡育蓉, 王立刚. 北方典型农业生态系统的固碳减排路径及模式[J]. 中国生态农业学报 (中英文), 2022, 30(4): 641−650 doi: 10.12357/cjea.20210789
CAI Y R, WANG L G. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 641−650 doi: 10.12357/cjea.20210789
Citation: CAI Y R, WANG L G. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 641−650 doi: 10.12357/cjea.20210789

北方典型农业生态系统的固碳减排路径及模式

doi: 10.12357/cjea.20210789
基金项目: 国家自然科学基金项目(32171564)和国家重点研发计划项目(2021YFD1901002)资助
详细信息
    作者简介:

    蔡育蓉, 主要研究方向为气候变化与生物地球化学循环。E-mail: c1363859143@163.com

    通讯作者:

    王立刚, 主要研究方向为气候变化与生物地球化学循环。E-mail: wangligang@caas.cn

  • 中图分类号: S-3

Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China

Funds: The study was supported by the National Natural Science Foundation of China (32171564) and The National Key Research & Development Project (2021YFD1901002).
More Information
  • 摘要: 北方农业生态系统在保障我国粮食安全和生态安全方面具有举足轻重的地位, 尤其在氧化亚氮(N2O)减排和土壤固碳方面具有巨大的潜力, 但在“碳达峰”与“碳中和”实施过程中, 在保障粮食安全的基础上, 农田土壤固碳和非二氧化碳减排的路径如何选择?不同区域典型农业生态系统固碳减排模式是什么?固碳减排实施过程需要注意哪些问题?这些问题尚缺乏系统研究。因此, 本文在系统分析北方不同区域农业生产特点的基础上, 提出北方农业生态系统温室气体减排遵循“稳能减排”、固碳遵循“减速双增”的路径, 并指出不同区域固碳减排重点内容; 归纳提出低碳循环、扩容增碳、碳优化养殖、节氮保碳等4种模式的技术构成、固碳减排效应及其适应区域; 进而探究了北方农业生产助力“碳达峰”与“碳中和”过程需要关注“固碳与减排协同、固碳减排效率、技术模式大规模实施”等问题, 为我国北方低碳绿色农业发展提供思路和支撑。
  • 图  1  2019年我国北方和南方农产品产量占全国产量比例[14]

    Figure  1.  Proportions of output of agricultural products and livestock products in southern China and northern China in the national output in 2019[14]

    图  2  北方农业生态系统固碳减排路径图

    Figure  2.  Carbon sequestration and emission mitigation pathes of agricultural ecosystem in North China

    表  1  北方典型农业生态系统固碳减排模式

    Table  1.   Carbon sequestration and emission mitigation models of typical agro-ecosystems in the northern China

    模式分类
    Mode classification
    模式内容
    Mode content
    典型案例
    Classic case
    固碳减排效应
    Effects of carbon sequestration and emission mitigation
    适宜区域
    Suitable area
    低碳循环模式
    Low carbon cycle modes
    农牧结合模式、种养结合模式、“四位一体”和“五配套”生态农业模式等
    Combination mode of agriculture and animal husbandry, combination mode of planting-breeding, “Four in One” and “Five Supporting Facilities” ecological agriculture mode, etc.
    东北农牧交错区物质循环“新型农牧结合模式”[39]
    “New agricultural and pastoral binding mode” of material circulation in agro-pastoral ecotones of Northeast China
    该模式在吉林省五棵树累计减排温室气体1.8×107 t CO2当量、增加土壤有机质储量5.1×105 t
    The mode has total reduced greenhouse gas emissions by 1.8×107 t CO2-eq and increased soil organic matter reserves by 5.1×105 t in Wukeshu, Jilin Province
    农牧交错区、种养殖相对集中的地区、西北和东北等区域
    Agro-pastoral ecotones, areas with relatively concentrated planting and breeding, Northwest China and Northeast China, etc.
    扩容增碳模式
    Capacity expansion and carbon increase mode
    免耕模式、深松结合秸秆还田模式、增加植被覆盖度模式、合理轮作模式等
    No-tillage mode, Subsoiling combined with straw application mode, vegetation cover-increasing mode, reasonable rotation mode, etc.
    东北黑土增产保碳“梨树模式”[40]
    “Pear tree mode” of increasing yield and carbon conservation in black soil in Northeast China
    连续免耕覆盖5年后, 土壤有机质增加20%, 减少化肥施用量20%
    After continuous no-tillage and straw mulching for 5 years, soil organic matter increased by 20% and chemical fertilizer application decreased by 20%
    东北、华北和西北粮食主要种植区域
    Major grain growing areas in Northeast, North and Northwest China
    碳优化养殖模式
    Carbon optimized breeding mode
    禁牧围封模式、季节性轮牧模式、划区轮牧模式、TMR日粮结合废弃物优化处理模式
    Livestock exclusion mode, seasonal rotational grazing mode, zoning rotational grazing mode, optimal treatment mode of TMR diet combined with waste
    河北农牧交错区优化养殖“季节性轮牧和禁牧围封模式”[41]
    “Seasonal rotational grazing and livestock exclusion mode” for optimizing the breeding in an agro-pastoral ecotones of Hebei Province
    夏季放牧和冬季放牧草地为温室气体源[温室气体净排放量为2249 kg(CO2-eq)∙a−1和1665 kg(CO2-eq)∙a−1], 长期禁牧草地为温室气体汇[温室气体净排放量为−1826 kg(CO2-eq)∙a−1]
    Summer-grazed steppe and winter-grazed steppe are the sources of greenhouse gases with net greenhouse gas exchange of 2249 and 1665 kg(CO2-eq)∙a−1, long-term ungrazed steppe is the sink of greenhouse gases with net greenhouse gas exchange of −1826 kg(CO2-eq)∙a−1.
    北方牧区及农牧交错区, 如内蒙古、新疆、青海等地
    Northern pastoral areas and agro-pastoral ecotones, such as Inner Mongolia, Xinjiang, Qinghai, etc.
    节氮保碳模式
    Nitrogen saving and carbon conservation mode
    合理施肥模式、添加抑制剂模式、添加生物炭模式
    Rational fertilization mode, adding inhibitor mode, adding biochar mode
    内蒙古河套灌区“玉米秸秆炭化还田模
    式”[42]
    “Corn straw carbonization application mode” in Hetao Irrigation Area, Inner Mongolia
    与不施加生物炭相比, 施加15 t·hm−2、30 t·hm−2和45 t·hm−2生物炭的温室气体排放强度分别降低88.9%、121.6%和100.0%, 作物产量分别增加6.3%、7.3%和1.7%
    Compared with non biochar application, application of 15, 30 and 45 t∙hm−2 biochar decreases greenhouse gas emission intensity by 88.9%, 121.6% and 100.0%, respectively; increased crop yield by 6.3%, 7.3% and 1.7%, respectively.
    适宜应用粮食种植区和蔬菜种植区
    Grain and vegetable growing areas
    下载: 导出CSV
  • [1] MANN W, LIPPER L, TENNIGKEIT T, et al. Food security and agricultural mitigation in developing countries: options for capturing synergies[EB/OL]. FAO, 2009. https://www.researchgate.net/publication/283569057_Food_Security_ and_Agricultural_Mitigation_in_developing_Countries_Options_for_Capturing_Synergies
    [2] IPCC. Climate Change 2013: The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014
    [3] CAVIGELLI M A. Agriculture and the nitrogen cycle[J]. Ecology, 2005, 86(9): 2548−2550 doi: 10.1890/0012-9658(2005)86[2548:AATNC]2.0.CO;2
    [4] LAL R. Agricultural activities and the global carbon cycle[J]. Nutrient Cycling in Agroecosystems, 2004, 70(2): 103−116 doi: 10.1023/B:FRES.0000048480.24274.0f
    [5] CORSI S, FRIEDRICH T, KASSAM A, et al. Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review[J]. Communications in Algebra, 2012, 41(11): 4104−4115
    [6] FEI R L, YOU W H, WANG H L. Can China achieve its CO2 emission reduction targets in agriculture sector? Evidence from technological efficiency analysis[J]. International Journal of Environmental Science and Technology, 2020, 17(10): 4249−4264 doi: 10.1007/s13762-020-02754-5
    [7] LAL R, NEGASSA W, LORENZ K. Carbon sequestration in soil[J]. Current Opinion in Environmental Sustainability, 2015, 15: 79−86 doi: 10.1016/j.cosust.2015.09.002
    [8] 叶瑶, 全占军, 肖能文, 等. 煤炭资源开采对植被影响综述[J]. 安徽农业科学, 2013, 41(26): 10796−10798 doi: 10.3969/j.issn.0517-6611.2013.26.087

    YE Y, QUAN Z J, XIAO N W, et al. A review of impact of coal mining on vegetation[J]. Journal of Anhui Agricultural Sciences, 2013, 41(26): 10796−10798 doi: 10.3969/j.issn.0517-6611.2013.26.087
    [9] 崔宁波, 董晋. 主产区粮食生产安全: 地位、挑战与保障路径[J]. 农业经济问题, 2021, 42(7): 130−144

    CUI N B, DONG J. Grain production security in major grain-producing areas: status, challenges and guarantee path[J]. Issues in Agricultural Economy, 2021, 42(7): 130−144
    [10] 闫冠华, 李巧萍, 吕冬红. 中国北方农牧交错带气候变化特征及未来趋势[J]. 南京气象学院学报, 2008(5): 671−678

    YAN G H, LI Q P, LYU D H. Climate change and future trends of the farming-grazing zone in northern China[J]. Journal of Nanjing Institute of Meteorology, 2008(5): 671−678
    [11] 韦沁, 曲建升, 白静, 等. 我国农业碳排放的影响因素和南北区域差异分析[J]. 生态与农村环境学报, 2018, 34(4): 318−325 doi: 10.11934/j.issn.1673-4831.2018.04.004

    WEI Q, QU J S, BAI J, et al. Influencing factors of agricultural carbon emission and regional differences between south and north in China[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 318−325 doi: 10.11934/j.issn.1673-4831.2018.04.004
    [12] 孙丽惠, 李中强. 北方旱地农田主要温室气体排放研究进展[J]. 辽宁农业科学, 2020(2): 52−56 doi: 10.3969/j.issn.1002-1728.2020.02.012

    SUN L H, LI Z Q. Progresses in the research on major greenhouse gas emissions in the northern dry farmland[J]. Liaoning Agricultural Sciences, 2020(2): 52−56 doi: 10.3969/j.issn.1002-1728.2020.02.012
    [13] 张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011

    ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011
    [14] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020

    National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020
    [15] 谭方颖, 王建林, 宋迎波, 等. 华北平原近45年农业气候资源变化特征分析[J]. 中国农业气象, 2009, 30(1): 19−24 doi: 10.3969/j.issn.1000-6362.2009.01.005

    TAN F Y, WANG J L, SONG Y B, et al. Analysis of changing characteristics of agricultural climate resources over last 45 years in North China Plain[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 19−24 doi: 10.3969/j.issn.1000-6362.2009.01.005
    [16] YANG W Z, SHAO M A. Soil Water Research on the Loess Plateau[M]. Beijing: Science Press, 2000
    [17] 白重九. 1980—2010年北方旱地农田土壤有机碳变化特征及其主控因素研究[D]. 北京: 中国农业科学院, 2021

    BAI C J. A study on variation characteristics and main controlling factors of soil organic carbon of dryland farmland in northern China in 1980–2010[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021
    [18] XIE Z B, ZHU J G, LIU G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s[J]. Global Change Biology, 2007, 13(9): 1989−2007 doi: 10.1111/j.1365-2486.2007.01409.x
    [19] YU Y Y, GUO Z T, WU H B, et al. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000[J]. Global Biogeochemical Cycles, 2009, 23(2): 1−11
    [20] 冯保清. 我国不同分区灌溉水有效利用系数变化特征及其影响因素分析[J]. 节水灌溉, 2013(6): 29−32, 35 doi: 10.3969/j.issn.1007-4929.2013.06.008

    FENG B Q. Analysis on variation characteristics and influencing factors of effective utilization coefficient of irrigation water in different districts in China[J]. Water Saving Irrigation, 2013(6): 29−32, 35 doi: 10.3969/j.issn.1007-4929.2013.06.008
    [21] YANG X Y, SUN B H, ZHANG S L. Trends of yield and soil fertility in a long-term wheat-maize system[J]. Journal of Integrative Agriculture, 2014, 13(2): 402−414 doi: 10.1016/S2095-3119(13)60425-6
    [22] 李凤民. 黄土高原旱作农业生态化与高质量发展[J]. 科技导报, 2020, 38(17): 52−59 doi: 10.3981/j.issn.1000-7857.2020.17.005

    LI F M. Ecologicalization and high-quality development of dryland farming in the Loess Plateau of NW China[J]. Science & Technology Review, 2020, 38(17): 52−59 doi: 10.3981/j.issn.1000-7857.2020.17.005
    [23] 魏丹, 匡恩俊, 迟凤琴, 等. 东北黑土资源现状与保护策略[J]. 黑龙江农业科学, 2016(1): 158−161

    WEI D, KUANG E J, CHI F Q, et al. Status and protection strategy of black soil resources in northeast of China[J]. Heilongjiang Agricultural Sciences, 2016(1): 158−161
    [24] 李加旺, 张文珠. 21世纪我国蔬菜生产的发展趋势与对策[J]. 中国农学通报, 2001, 17(2): 65−66, 68 doi: 10.3969/j.issn.1000-6850.2001.02.021

    LI J W, ZHANG W Z. Development trend and countermeasures of vegetable production in China in the 21st Century[J]. Chinese Agricultural Science Bulletin, 2001, 17(2): 65−66, 68 doi: 10.3969/j.issn.1000-6850.2001.02.021
    [25] 李敬东. 基于“寿光模式”的设施蔬菜产业高质量发展路径探析[J]. 中国国情国力, 2021(10): 72−76

    LI J D. High quality development path of protected vegetable industry based on “Shouguang model”[J]. China National Conditions and Strength, 2021(10): 72−76
    [26] 栾江, 仇宏伟, 赵静. 中国农业生产中化肥过度使用状况及地域分布差异[J]. 青岛农业大学学报(自然科学版), 2018, 35(1): 40−48

    LUAN J, QIU H W, ZHAO J. Excessive use of fertilizer and its difference of geographical distribution in China agricultural production[J]. Journal of Qingdao Agricultural University (Natural Science), 2018, 35(1): 40−48
    [27] 赵婷. 内蒙古草原家庭牧户养殖模式和牧企合作研究——以赤峰市阿鲁科尔沁旗为例[D]. 呼和浩特: 内蒙古大学, 2019

    ZHAO T. Study on family pastoral vreeding model and cooperation between pastoral and enterprise in Inner Mongolia grassland — Take Alu Korqin Banner of Chifeng City as an example[D]. Hohhot: Inner Mongolia University, 2019
    [28] 侯向阳, 刘旭, 杨理. 草地生态建设战略重点研究[C]//中国草业可持续发展战略论坛论文集. 北京, 2004: 45–52

    HOU X Y, LIU X, YANG L. Key research on grassland ecological construction strategy[C]//Proceedings of China Grassland Sustainable Development Strategy Forum. Beijing, 2004: 45–52
    [29] 王旖. 华北平原灌区农田水循环健康评价——以军留灌区为例[D]. 邯郸: 河北工程大学, 2021

    WANG Y. Evaluation of farmland water circulation health in irrigated area of North China Plain — A case study of Junliu Irrigated Area[D]. Handan: Hebei University of Engineering, 2021
    [30] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480−1493 doi: 10.11674/zwyf.17366

    HUANG S W, TANG J W, LI C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1480−1493 doi: 10.11674/zwyf.17366
    [31] 张怡彬, 李俊改, 王震, 等. 有机替代下华北平原旱地农田氨挥发的年际减排特征[J]. 植物营养与肥料学报, 2021, 27(1): 1−11 doi: 10.11674/zwyf.2021311

    ZHANG Y B, LI J G, WANG Z, et al. Substitution of chemical fertilizer with organic manure reduces ammonia volatilization in maize farmland in North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 1−11 doi: 10.11674/zwyf.2021311
    [32] 孙家英, 张志国, 孙家慧. 畜禽养殖粪污资源化利用技术模式探析[J]. 吉林畜牧兽医, 2021, 42(9): 118, 123

    SUN J Y, ZHANG Z G, SUN J H. Discussion on the technical mode of resource utilization of livestock and poultry manure[J]. Jilin Animal Husbandry and Veterinary Medicine, 2021, 42(9): 118, 123
    [33] 赵全刚. 京津冀地区“全混合日粮(TMR)饲喂管理体系”的建立与应用[D]. 北京: 中国农业科学院, 2014

    ZHAO Q G. Establishment and application of “Total Mixed Ration Feeding Management System” in Beijing-Tianjin-Hebei region[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014
    [34] 郭金瑞. 东北黑土区不同种植模式对玉米产量和土壤质量及温室气体排放影响研究[D]. 南京: 南京农业大学, 2015

    GUO J R. Imapcting of long-term cropping regimes on corn yield and soil quality, and greenhouse gas emissions effects on black soil region of Northeast China[D]. Nanjing: Nanjing Agricultural University, 2015
    [35] 王琦琪. 东北黑土区玉米大豆轮作模式及比价研究——以黑龙江省为例[D]. 北京: 中国农业科学院, 2018

    WANG Q Q. Analysis on the models and price ratio of Northeast China corn-soybean rotation system in Heilongjiang Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018
    [36] 姜明, 文亚, 孙命, 等. 用好养好黑土地的科技战略思考与实施路径−中国科学院“黑土粮仓”战略性先导科技专项的总体思路与实施方案[J]. 中国科学院院刊, 2021, 36(10): 1146−1154

    JIANG M, WEN Y, SUN M, et al. Thinking and implementation approach of science and technology strategy of well raising black soil — overall idea and implementation planning of Strategy Priority Research Program of Chinese Academy of Sciences on black soil conservation and utilization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1146−1154
    [37] 庞志华, 柯滨, 罗沛聪, 等. 东北地区畜禽养殖业污染物总量减排对策分析[J]. 环境保护科学, 2012, 38(3): 59−63 doi: 10.3969/j.issn.1004-6216.2012.03.015

    PANG Z H, KE B, LUO P C, et al. Strategy analysis on the total emission reduction of pollutants of livestock and poultry industry in the northeast of China[J]. Environmental Protection Science, 2012, 38(3): 59−63 doi: 10.3969/j.issn.1004-6216.2012.03.015
    [38] 苏冰倩, 王茵茵, 上官周平. 西北地区新一轮退耕还林还草规模分析[J]. 水土保持研究, 2017, 24(4): 59−65

    SU B Q, WANG Y Y, SHANGGUAN Z P. Analysis on the scale of a new period of returning farmland to forestland and grassland in Northwest China[J]. Research of Soil and Water Conservation, 2017, 24(4): 59−65
    [39] 郭聪. 新型农牧结合循环模式与传统线性生产模式生态经济效益比较研究[D]. 长春: 吉林农业大学, 2012

    GUO C. A comparative study on the ecological and economic benefits of new agricultural and pastoral binding mode and traditional linear production mode[D]. Changchun: Jilin Agricultural University, 2012
    [40] 何宇鹏. “梨树模式”的实践意义与创新价值[N]. 吉林日报, 2021-04-24(1)

    HE Y P. Practical significance and innovative value of “Pear Tree Model”[N]. Jilin Daily, 2021-04-24(1)
    [41] 杨新明. 华北农牧交错区草地生态系统温室气体交换规律的研究[D]. 北京: 中国农业大学, 2015

    YANG X M. Exchanges of greenhouse gases from steppe ecosystems in an agro-pastoral ecotone of northern China[D]. Beijing: China Agricultural University, 2015
    [42] 屈忠义, 高利华, 李昌见, 等. 秸秆生物炭对玉米农田温室气体排放的影响[J]. 农业机械学报, 2016, 47(12): 111−118 doi: 10.6041/j.issn.1000-1298.2016.12.015

    QU Z Y, GAO L H, LI C J, et al. Impacts of straw biochar on emission of greenhouse gas in maize field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 111−118 doi: 10.6041/j.issn.1000-1298.2016.12.015
    [43] SUN W J, HUANG Y, ZHANG W, et al. Carbon sequestration and its potential in agricultural soils of China[J]. Global Biogeochemical Cycles, 2010, 24(3): 1302−1307
    [44] 梁二, 蔡典雄, 代快, 等. 中国农田土壤有机碳变化: Ⅱ 土壤固碳潜力估算[J]. 中国土壤与肥料, 2010(6): 87−92 doi: 10.3969/j.issn.1673-6257.2010.06.016

    LIANG E, CAI D X, DAI K, et al. Changes in soil organic carbon in croplands of China: Ⅱ Estimation of soil carbon sequestration potentials[J]. Soil and Fertilizer Sciences in China, 2010(6): 87−92 doi: 10.3969/j.issn.1673-6257.2010.06.016
    [45] LU F, WANG X K, HAN B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland[J]. Global Change Biology, 2009, 15(2): 281−305 doi: 10.1111/j.1365-2486.2008.01743.x
    [46] 李建政. 氮肥优化措施及其环境效应的研究——以山东省桓台县和吉林省公主岭为例[D]. 北京: 中国农业科学院, 2017

    LI J Z. Optimizing nitrogen management and quantitative analysis of their environmental effect — Case studies in Huantai County, Shandong Province and Gongzhuling County, Jilin Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017
    [47] YANG L, WANG L G, LI H, et al. Impacts of fertilization alternatives and crop straw incorporation on N2O emissions from a spring maize field in northeastern China[J]. Journal of Integrative Agriculture, 2014, 13(4): 881−892 doi: 10.1016/S2095-3119(13)60496-7
    [48] LI H, QIU J J, WANG L G, et al. Estimates of N2O emissions and mitigation potential from a spring maize field based on DNDC model[J]. Journal of Integrative Agriculture, 2012, 11(12): 2067−2078 doi: 10.1016/S2095-3119(12)60465-1
    [49] LI J Z, LUO Z K, WANG Y C, et al. Optimizing nitrogen and residue management to reduce GHG emissions while maintaining crop yield: a case study in a mono-cropping system of Northeast China[J]. Sustainability, 2019, 11(18): 5015 doi: 10.3390/su11185015
    [50] LI J Z, WANG L G, LUO Z K, et al. Reducing N2O emissions while maintaining yield in a wheat-maize rotation system modelled by APSIM[J]. Agricultural Systems, 2021, 194: 103277 doi: 10.1016/j.agsy.2021.103277
    [51] LI J Z, WANG E L, WANG Y C, et al. Reducing greenhouse gas emissions from a wheat-maize rotation system while still maintaining productivity[J]. Agricultural Systems, 2016, 145: 90−98 doi: 10.1016/j.agsy.2016.03.007
    [52] 逯非, 王效科, 韩冰, 等. 农田土壤固碳措施的温室气体泄漏和净减排潜力[J]. 生态学报, 2009, 29(9): 4993−5006 doi: 10.3321/j.issn:1000-0933.2009.09.048

    LU F, WANG X K, HAN B, et al. Researches on the greenhouse gas leakage and net mitigation potentials of soil carbon sequestration measures in croplands[J]. Acta Ecologica Sinica, 2009, 29(9): 4993−5006 doi: 10.3321/j.issn:1000-0933.2009.09.048
    [53] 逯非, 王效科, 韩冰, 等. 中国农田施用化学氮肥的固碳潜力及其有效性评价[J]. 应用生态学报, 2008, 19(10): 2239−2250

    LU F, WANG X K, HAN B, et al. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2239−2250
    [54] 逯非, 王效科, 韩冰, 等. 稻田秸秆还田: 土壤固碳与甲烷增排[J]. 应用生态学报, 2010, 21(1): 99−108

    LU F, WANG X K, HAN B, et al. Straw return to rice paddy: soil carbon sequestration and increased methane emission[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 99−108
    [55] 王小彬, 武雪萍, 赵全胜, 等. 中国农业土地利用管理对土壤固碳减排潜力的影响[J]. 中国农业科学, 2011, 44(11): 2284−2293 doi: 10.3864/j.issn.0578-1752.2011.11.010

    WANG X B, WU X P, ZHAO Q S, et al. Effects of cropland-use management on potentials of soil carbon sequestration and carbon emission mitigation in China[J]. Scientia Agricultura Sinica, 2011, 44(11): 2284−2293 doi: 10.3864/j.issn.0578-1752.2011.11.010
    [56] CARVALHO J L N, CERRI C E P, FEIGL B J, et al. Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon[J]. Soil and Tillage Research, 2009, 103(2): 342−349 doi: 10.1016/j.still.2008.10.022
    [57] 陈泮勤, 王效科, 王礼茂. 中国陆地生态系统碳收支与增汇对策[M]. 北京: 科学出版社, 2008

    CHEN P Q, WANG X K, WANG L M. Carbon Budget and Its Sink Promotion of Terrestrial Ecosystem in China[M]. Beijing: Science Press, 2008
    [58] KING J A, BRADLEY R I, HARRISON R, et al. Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England[J]. Soil Use and Management, 2006, 20(4): 394−402 doi: 10.1111/j.1475-2743.2004.tb00388.x
    [59] SIX J, OGLE S M, JAY BREIDT F, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term[J]. Global Change Biology, 2004, 10(2): 155−160 doi: 10.1111/j.1529-8817.2003.00730.x
    [60] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217−232
    [61] WEST T O, MARLAND G. Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses[J]. Environmental Pollution, 2002, 116(3): 439−444 doi: 10.1016/S0269-7491(01)00221-4
    [62] FOLLETT R F. Soil management concepts and carbon sequestration in cropland soils[J]. Soil and Tillage Research, 2001, 61(1/2): 77−92
    [63] LAL R. Management of Carbon Sequestration in Soil[M]. Boca Raton: CRC Press, 1997: 433–446
    [64] LI C S, FROLKING S, BUTTERBACH-BAHL K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing[J]. Climatic Change, 2005, 72(3): 321−338 doi: 10.1007/s10584-005-6791-5
    [65] SMITH P. Carbon sequestration in croplands: the potential in Europe and the global context[J]. European Journal of Agronomy, 2004, 20(3): 229−236 doi: 10.1016/j.eja.2003.08.002
    [66] SMITH P, POWLSON D S, GLENDINING M J, et al. Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming[J]. Global Change Biology, 1998, 4(6): 679−685 doi: 10.1046/j.1365-2486.1998.00185.x
    [67] WATSON R T, NOBLE I R, BOLIN B, et al. Land use, Land-use Change, and Forestry[M]. Cambridge, UK: Cambridge University Press, 2000
    [68] MARLAND G, GARTEN C T Jr, POST W M, et al. Studies on enhancing carbon sequestration in soils[J]. Energy, 2004, 29(9/10): 1643−1650
    [69] 王士超. 典型黑土区有机物料提升土壤碳氮固持的协同效应机制[D]. 北京: 中国农业科学院, 2019

    WANG S C. Synergistic effect and mechanisms of improving soil carbon and nitrogen sequestration with organic materials in black soil region of Northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
    [70] LU F. How can straw incorporation management impact on soil carbon storage? A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change, 2015, 20(8): 1545−1568 doi: 10.1007/s11027-014-9564-5
    [71] POWLSON D S, RICHE A B, COLEMAN K, et al. Carbon sequestration in European soils through straw incorporation: limitations and alternatives[J]. Waste Management, 2008, 28(4): 741−746 doi: 10.1016/j.wasman.2007.09.024
    [72] 芮雯奕. 长三角农田土壤固碳技术的固碳潜力及激励机制研究[D]. 南京: 南京农业大学, 2009

    RUI W Y. Potential and incentive mechanism of soil organic carbon sequestration in cropland of Yangtze Delta Plain[D]. Nanjing: Nanjing Agricultural University, 2009
    [73] WEST T O, SIX J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity[J]. Climatic Change, 2007, 80(1): 25−41
    [74] 邱俊明. 乡镇农业技术推广工作中存在的问题及解决措施初探[J]. 河南农业, 2021(20): 61−62

    QIU J M. Problems and solutions in township agricultural technology popularization[J]. Agriculture of Henan, 2021(20): 61−62
    [75] 王花. 浅谈基层农技推广工作的现状及发展对策[J]. 农家参谋, 2021(16): 17−18

    WANG H. On the current situation and development countermeasures of grass-roots agricultural technology popularization[J]. The Farmers Consultant, 2021(16): 17−18
    [76] 李军刚, 王瑶, 邹婷婷, 等. 黑龙江省小农户节能减排理念调查研究[J]. 邢台学院学报, 2018, 33(3): 100−102 doi: 10.3969/j.issn.1672-4658.2018.03.028

    LI J G, WANG Y, ZOU T T, et al. Investigation on the concept of energy conservation and emission reduction of small farmers in Heilongjiang Province[J]. Journal of Xingtai University, 2018, 33(3): 100−102 doi: 10.3969/j.issn.1672-4658.2018.03.028
    [77] 郑朝彬. 三位一体推动小农户与现代农业有效衔接[N]. 农民日报, 2021-10-16(3)

    ZHENG C B. Trinity promotes the effective connection between small farmers and modern agriculture[N]. Farmers’ Daily, 2021-10-16(3)
    [78] 陆宣伊. 农业机械自动化在现代农业中的应用与发展[J]. 新农业, 2021(17): 71

    LU X Y. Application and development of agricultural machinery automation in modern agriculture[J]. Modern Agriculture, 2021(17): 71
    [79] 齐延庆. 农业机械技术推广在现代农业中的作用[J]. 河北农机, 2021(7): 86−87

    QI Y Q. The role of agricultural machinery technology extension in modern agriculture[J]. Hebei Agricultural Machinery, 2021(7): 86−87
    [80] 王丽. 浅谈农业环保面临的问题及对策研究[J]. 农家参谋, 2021(15): 195−196

    WANG L. Problems and countermeasures of agricultural environmental protection[J]. The Farmers Consultant, 2021(15): 195−196
    [81] 龙木措. 青海海晏县牛羊产业发展现状、存在的问题及建议[J]. 养殖与饲料, 2018(8): 121−122 doi: 10.3969/j.issn.1671-427X.2018.08.071

    LONG M C. Development status, existing problems and suggestions of cattle and sheep industry in Haiyan County, Qinghai Province[J]. Animals Breeding and Feed, 2018(8): 121−122 doi: 10.3969/j.issn.1671-427X.2018.08.071
    [82] 洪学文. 浅析当前畜牧业发展的现状、问题及对策[J]. 湖北畜牧兽医, 2013, 34(9): 76−77 doi: 10.3969/j.issn.1007-273X.2013.09.042

    HONG X W. Analysis on the current situation, problems and countermeasures of animal husbandry development[J]. Hubei Journal of Animal and Veterinary Sciences, 2013, 34(9): 76−77 doi: 10.3969/j.issn.1007-273X.2013.09.042
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1096
  • HTML全文浏览量:  123
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 录用日期:  2021-12-03
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回