Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China
-
摘要: 北方农业生态系统在保障我国粮食安全和生态安全方面具有举足轻重的地位, 尤其在氧化亚氮(N2O)减排和土壤固碳方面具有巨大的潜力, 但在“碳达峰”与“碳中和”实施过程中, 在保障粮食安全的基础上, 农田土壤固碳和非二氧化碳减排的路径如何选择?不同区域典型农业生态系统固碳减排模式是什么?固碳减排实施过程需要注意哪些问题?这些问题尚缺乏系统研究。因此, 本文在系统分析北方不同区域农业生产特点的基础上, 提出北方农业生态系统温室气体减排遵循“稳能减排”、固碳遵循“减速双增”的路径, 并指出不同区域固碳减排重点内容; 归纳提出低碳循环、扩容增碳、碳优化养殖、节氮保碳等4种模式的技术构成、固碳减排效应及其适应区域; 进而探究了北方农业生产助力“碳达峰”与“碳中和”过程需要关注“固碳与减排协同、固碳减排效率、技术模式大规模实施”等问题, 为我国北方低碳绿色农业发展提供思路和支撑。Abstract: “Carbon peak and carbon neutrality” is a commitment of the country to achieve sustainable development in “response and mitigate climate change”, and agroecosystems should bear the corresponding share of non-CO2 greenhouse gas emission mitigation and farmland soil carbon sequestration. Northern agroecosystems play a pivotal role in ensuring food and ecological security in China, and many previous studies have shown that northern agroecosystems have great potential in N2O emission mitigation and soil carbon sequestration. However, to ensure food security during the implementation of “carbon peak and carbon neutrality”, how do we choose the path of soil carbon sequestration and non-CO2 emission mitigation in farmland soil? What are the carbon sequestration and emission mitigation modes of typical agroecosystems in different regions? What problems should be addressed in the implementation of carbon sequestration and emission mitigation? Other issues remain inconclusive or lack systematic research. Therefore, according to the method of agricultural division, the north of China is divided into three agricultural regions, i. e. Northeast China, North China and Northwest China. Based on the systematic analysis of the characteristics of agricultural production in different regions of northern China, this study proposed that the greenhouse gas emission reduction of the northern agroecosystems follows the path of “optimizing production capacity and mitigating emissions (stabilization of productivity of farming and breeding; and mitigation of N2O emission from farmland, carbon emission from agricultural energy consumption and breeding and its’ wastes)”, and carbon sequestration follows the path of “slow-down and double increase (slow down of the decrease of soil organic carbon of black soil in the Northeast China and increase soil carbon storage of medium and low-yield field and grazing grassland)”. The study puts forward the key contents of carbon sequestration and emission mitigation in different regions. This paper summarizes the technical composition, carbon sequestration and emission mitigation effects, and adaptation area of four modes, namely low carbon cycle mode, capacity expansion and carbon increase mode, carbon optimized breeding mode, and nitrogen saving and carbon conservation mode. Furthermore, this study illustrates that the process of “carbon peak and carbon neutrality” assisted by agricultural production in northern China needs to focus on “coordination of carbon sequestration and emission mitigation, efficiency of carbon sequestration and emission mitigation, large-scale implementation of technology and mode” to provide ideas and support for the development of “low-carbon” green agroecosystems in northern China.
-
表 1 北方典型农业生态系统固碳减排模式
Table 1. Carbon sequestration and emission mitigation models of typical agro-ecosystems in the northern China
模式分类
Mode classification模式内容
Mode content典型案例
Classic case固碳减排效应
Effects of carbon sequestration and emission mitigation适宜区域
Suitable area低碳循环模式
Low carbon cycle modes农牧结合模式、种养结合模式、“四位一体”和“五配套”生态农业模式等
Combination mode of agriculture and animal husbandry, combination mode of planting-breeding, “Four in One” and “Five Supporting Facilities” ecological agriculture mode, etc.东北农牧交错区物质循环“新型农牧结合模式”[39]
“New agricultural and pastoral binding mode” of material circulation in agro-pastoral ecotones of Northeast China该模式在吉林省五棵树累计减排温室气体1.8×107 t CO2当量、增加土壤有机质储量5.1×105 t
The mode has total reduced greenhouse gas emissions by 1.8×107 t CO2-eq and increased soil organic matter reserves by 5.1×105 t in Wukeshu, Jilin Province农牧交错区、种养殖相对集中的地区、西北和东北等区域
Agro-pastoral ecotones, areas with relatively concentrated planting and breeding, Northwest China and Northeast China, etc.扩容增碳模式
Capacity expansion and carbon increase mode免耕模式、深松结合秸秆还田模式、增加植被覆盖度模式、合理轮作模式等
No-tillage mode, Subsoiling combined with straw application mode, vegetation cover-increasing mode, reasonable rotation mode, etc.东北黑土增产保碳“梨树模式”[40]
“Pear tree mode” of increasing yield and carbon conservation in black soil in Northeast China连续免耕覆盖5年后, 土壤有机质增加20%, 减少化肥施用量20%
After continuous no-tillage and straw mulching for 5 years, soil organic matter increased by 20% and chemical fertilizer application decreased by 20%东北、华北和西北粮食主要种植区域
Major grain growing areas in Northeast, North and Northwest China碳优化养殖模式
Carbon optimized breeding mode禁牧围封模式、季节性轮牧模式、划区轮牧模式、TMR日粮结合废弃物优化处理模式
Livestock exclusion mode, seasonal rotational grazing mode, zoning rotational grazing mode, optimal treatment mode of TMR diet combined with waste河北农牧交错区优化养殖“季节性轮牧和禁牧围封模式”[41]
“Seasonal rotational grazing and livestock exclusion mode” for optimizing the breeding in an agro-pastoral ecotones of Hebei Province夏季放牧和冬季放牧草地为温室气体源[温室气体净排放量为2249 kg(CO2-eq)∙a−1和1665 kg(CO2-eq)∙a−1], 长期禁牧草地为温室气体汇[温室气体净排放量为−1826 kg(CO2-eq)∙a−1]
Summer-grazed steppe and winter-grazed steppe are the sources of greenhouse gases with net greenhouse gas exchange of 2249 and 1665 kg(CO2-eq)∙a−1, long-term ungrazed steppe is the sink of greenhouse gases with net greenhouse gas exchange of −1826 kg(CO2-eq)∙a−1.北方牧区及农牧交错区, 如内蒙古、新疆、青海等地
Northern pastoral areas and agro-pastoral ecotones, such as Inner Mongolia, Xinjiang, Qinghai, etc.节氮保碳模式
Nitrogen saving and carbon conservation mode合理施肥模式、添加抑制剂模式、添加生物炭模式
Rational fertilization mode, adding inhibitor mode, adding biochar mode内蒙古河套灌区“玉米秸秆炭化还田模
式”[42]
“Corn straw carbonization application mode” in Hetao Irrigation Area, Inner Mongolia与不施加生物炭相比, 施加15 t·hm−2、30 t·hm−2和45 t·hm−2生物炭的温室气体排放强度分别降低88.9%、121.6%和100.0%, 作物产量分别增加6.3%、7.3%和1.7%
Compared with non biochar application, application of 15, 30 and 45 t∙hm−2 biochar decreases greenhouse gas emission intensity by 88.9%, 121.6% and 100.0%, respectively; increased crop yield by 6.3%, 7.3% and 1.7%, respectively.适宜应用粮食种植区和蔬菜种植区
Grain and vegetable growing areas -
[1] MANN W, LIPPER L, TENNIGKEIT T, et al. Food security and agricultural mitigation in developing countries: options for capturing synergies[EB/OL]. FAO, 2009. https://www.researchgate.net/publication/283569057_Food_Security_ and_Agricultural_Mitigation_in_developing_Countries_Options_for_Capturing_Synergies [2] IPCC. Climate Change 2013: The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014 [3] CAVIGELLI M A. Agriculture and the nitrogen cycle[J]. Ecology, 2005, 86(9): 2548−2550 doi: 10.1890/0012-9658(2005)86[2548:AATNC]2.0.CO;2 [4] LAL R. Agricultural activities and the global carbon cycle[J]. Nutrient Cycling in Agroecosystems, 2004, 70(2): 103−116 doi: 10.1023/B:FRES.0000048480.24274.0f [5] CORSI S, FRIEDRICH T, KASSAM A, et al. Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review[J]. Communications in Algebra, 2012, 41(11): 4104−4115 [6] FEI R L, YOU W H, WANG H L. Can China achieve its CO2 emission reduction targets in agriculture sector? Evidence from technological efficiency analysis[J]. International Journal of Environmental Science and Technology, 2020, 17(10): 4249−4264 doi: 10.1007/s13762-020-02754-5 [7] LAL R, NEGASSA W, LORENZ K. Carbon sequestration in soil[J]. Current Opinion in Environmental Sustainability, 2015, 15: 79−86 doi: 10.1016/j.cosust.2015.09.002 [8] 叶瑶, 全占军, 肖能文, 等. 煤炭资源开采对植被影响综述[J]. 安徽农业科学, 2013, 41(26): 10796−10798 doi: 10.3969/j.issn.0517-6611.2013.26.087YE Y, QUAN Z J, XIAO N W, et al. A review of impact of coal mining on vegetation[J]. Journal of Anhui Agricultural Sciences, 2013, 41(26): 10796−10798 doi: 10.3969/j.issn.0517-6611.2013.26.087 [9] 崔宁波, 董晋. 主产区粮食生产安全: 地位、挑战与保障路径[J]. 农业经济问题, 2021, 42(7): 130−144CUI N B, DONG J. Grain production security in major grain-producing areas: status, challenges and guarantee path[J]. Issues in Agricultural Economy, 2021, 42(7): 130−144 [10] 闫冠华, 李巧萍, 吕冬红. 中国北方农牧交错带气候变化特征及未来趋势[J]. 南京气象学院学报, 2008(5): 671−678YAN G H, LI Q P, LYU D H. Climate change and future trends of the farming-grazing zone in northern China[J]. Journal of Nanjing Institute of Meteorology, 2008(5): 671−678 [11] 韦沁, 曲建升, 白静, 等. 我国农业碳排放的影响因素和南北区域差异分析[J]. 生态与农村环境学报, 2018, 34(4): 318−325 doi: 10.11934/j.issn.1673-4831.2018.04.004WEI Q, QU J S, BAI J, et al. Influencing factors of agricultural carbon emission and regional differences between south and north in China[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 318−325 doi: 10.11934/j.issn.1673-4831.2018.04.004 [12] 孙丽惠, 李中强. 北方旱地农田主要温室气体排放研究进展[J]. 辽宁农业科学, 2020(2): 52−56 doi: 10.3969/j.issn.1002-1728.2020.02.012SUN L H, LI Z Q. Progresses in the research on major greenhouse gas emissions in the northern dry farmland[J]. Liaoning Agricultural Sciences, 2020(2): 52−56 doi: 10.3969/j.issn.1002-1728.2020.02.012 [13] 张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011 [14] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020 [15] 谭方颖, 王建林, 宋迎波, 等. 华北平原近45年农业气候资源变化特征分析[J]. 中国农业气象, 2009, 30(1): 19−24 doi: 10.3969/j.issn.1000-6362.2009.01.005TAN F Y, WANG J L, SONG Y B, et al. Analysis of changing characteristics of agricultural climate resources over last 45 years in North China Plain[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 19−24 doi: 10.3969/j.issn.1000-6362.2009.01.005 [16] YANG W Z, SHAO M A. Soil Water Research on the Loess Plateau[M]. Beijing: Science Press, 2000 [17] 白重九. 1980—2010年北方旱地农田土壤有机碳变化特征及其主控因素研究[D]. 北京: 中国农业科学院, 2021BAI C J. A study on variation characteristics and main controlling factors of soil organic carbon of dryland farmland in northern China in 1980–2010[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021 [18] XIE Z B, ZHU J G, LIU G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s[J]. Global Change Biology, 2007, 13(9): 1989−2007 doi: 10.1111/j.1365-2486.2007.01409.x [19] YU Y Y, GUO Z T, WU H B, et al. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000[J]. Global Biogeochemical Cycles, 2009, 23(2): 1−11 [20] 冯保清. 我国不同分区灌溉水有效利用系数变化特征及其影响因素分析[J]. 节水灌溉, 2013(6): 29−32, 35 doi: 10.3969/j.issn.1007-4929.2013.06.008FENG B Q. Analysis on variation characteristics and influencing factors of effective utilization coefficient of irrigation water in different districts in China[J]. Water Saving Irrigation, 2013(6): 29−32, 35 doi: