留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山区中段旱季土壤含水量的影响因素

付同刚 高玥 刘丽丽 高会 齐菲 王丰 刘金铜

付同刚, 高玥, 刘丽丽, 高会, 齐菲, 王丰, 刘金铜. 太行山区中段旱季土壤含水量的影响因素[J]. 中国生态农业学报(中英文), 2022, 30(7): 1054−1063 doi: 10.12357/cjea.20210793
引用本文: 付同刚, 高玥, 刘丽丽, 高会, 齐菲, 王丰, 刘金铜. 太行山区中段旱季土壤含水量的影响因素[J]. 中国生态农业学报(中英文), 2022, 30(7): 1054−1063 doi: 10.12357/cjea.20210793
FU T G, GAO Y, LIU L L, GAO H, QI F, WANG F, LIU J T. Factors influencing soil water content during dry period in the middle part of the Taihang Mountain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1054−1063 doi: 10.12357/cjea.20210793
Citation: FU T G, GAO Y, LIU L L, GAO H, QI F, WANG F, LIU J T. Factors influencing soil water content during dry period in the middle part of the Taihang Mountain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1054−1063 doi: 10.12357/cjea.20210793

太行山区中段旱季土壤含水量的影响因素

doi: 10.12357/cjea.20210793
基金项目: 国家自然科学基金项目(41807013, 41930651)资助
详细信息
    作者简介:

    付同刚, 主要从事脆弱生态系统水土过程研究, E-mail: tgfu@sjziam.ac.cn

    高玥, 主要从事生态廊道景观格局研究, E-mail: gao1007yue@163.com

    通讯作者:

    刘金铜, 主要从事生态工程方面研究。E-mail: jtliu@sjziam.ac.cn

  • 中图分类号: S152.6

Factors influencing soil water content during dry period in the middle part of the Taihang Mountain

Funds: The study was supported by the National Natural Science Foundation of China (41807013, 41930651).
More Information
  • 摘要: 太行山脉为我国第二、第三阶梯的重要分界线, 海拔自西向东迅速降低, 在这种自然条件复杂的地理空间过渡带内, 土壤含水量(SWC)空间格局特征及其影响因素亦复杂而不明确, 限制了对山区土壤水文过程的认知。本研究通过在太行山区中段设置间距约85 km的两条样线(长度分别为140 km和164 km), 在旱季采集土壤样品, 测定SWC、容重、毛管孔隙度、非毛管孔隙度、有机碳含量、机械组成等理化性质, 详细调查样点的地形条件(坡度、坡向、海拔等)和植被条件(植被类型、枯落物情况等), 利用经典统计和地统计的方法, 并结合结构方程模型, 分析了表层(0~10 cm)和次表层(10~20 cm) SWC在海拔梯度上的变异特征, 探讨了其主要影响因素。结果表明, 太行山区中段两条样线均表现为表层SWC显著小于次表层, 两条样线之间没有显著差异。地统计分析表明, 表层和次表层SWC分别适用线性模型和指数模型模拟, 说明表层SWC影响因素更加复杂, 随机因素占主导地位; 次表层呈现出块基效应, 随机因素和结构因素共同起作用。两条样线次表层SWC块基比分别为48.01%和31.62%, 说明次表层SWC属中等程度的空间相关性。影响SWC的主要环境因子为海拔和降水量, 坡度、坡向及植被类型没有达到显著水平; 土壤性质中, 表层SWC主要受容重的影响, 次表层主要受毛管孔隙度和黏粒含量的影响。结构方程模型显示, 土壤性质是影响旱季SWC的直接因素, 环境因子是间接因素。环境因子对旱季SWC的影响超过80%是通过土壤性质产生的间接影响。以上结果有助于深入了解太行山区SWC特征, 为水-土过程的深入研究提供科学依据。
  • 图  1  太行山中段样线位置及采样点设置

    Figure  1.  Location of sampling points in the middle part of the Taihang Mountain

    图  2  太行山区中段不同层次土壤含水量(SWC)在北部样线(a)和南部样线(b)上的分布特征

    Figure  2.  Spatial distribution of soil water content (SWC) of different layers along the north transect (a) and south transect (b) in the middle part of the Taihang Mountain

    图  3  太行山中段不同层次土壤含水量影响因素的结构方程模型

    a: 0~10 cm; b: 10~20 cm。Evn.为环境因子, Soil为土壤性质, SWC为土壤含水量, P为年降雨量, E为海拔, BD为土壤容重, CP为毛管孔隙度, Clay为黏粒含量, E为误差项。

    Figure  3.  Structural equation modeling of soil water content of different layers in the middle part of the Taihang Mountain

    Evn. means the environmental factors, Soil means the soil properties, SWC means soil water content, P means annual precipitation, E means elevation, BD means bulk density, CP means capillary porosity, E means error.

    表  1  太行山中段两条样线不同层次土壤属性及环境因子数据分布特征

    Table  1.   Data distribution of soil properties of different layers and environmental factors in two line transects of the middle part of the Taihang Mountain

    类别
    Category
    性质
    Property
    数据分布特征及转换 Data distribution and transformation
    0~10 cm10~20 cm
    土壤属性 Soil property含水量 Soil water content正态分布 Normal distribution正态分布 Normal distribution
    容重 Bulk density正态分布 Normal distributionlog转换 Logarithmic transformation
    毛管孔隙度 Capillary porosity秩排序 Rank casesLngamma转换 Lngamma transformation
    非毛管孔隙度 Non-capillary porosity秩排序 Rank caseslog转换 Logarithmic transformation
    有机碳含量 Soil organic carbon平方根转换 Square root transformation正态分布 Normal distribution
    砂粒 Sand contentlog转换 Logarithmic transformationlog转换 Logarithmic transformation
    粉粒 Silt contentLngamma转换 Lngamma transformation秩排序 Rank cases
    黏粒 Clay content平方根转换 Square root transformation正态分布 Normal distribution
    自然因子 Natural factor年降水量 Annual precipitation正态分布 Normal distribution
    海拔 Elevation秩排序 Rank cases
    坡度 Slope gradientlog转换 Logarithmic transformation
    坡向 Slope aspect正态分布 Normal distribution
    NDVI正态分布 Normal distribution
    枯落物厚度 Litter thicknesslog转换 Logarithmic transformation
    下载: 导出CSV

    表  2  太行山中段两条样线不同层次土壤含水量描述性统计

    Table  2.   Describe statistic of soil water contents of different layers in two line transects of the middle part of the Taihang Mountain

    样线
    Line transect
    土层
    Soil layer (cm)
    样本数
    Sampling number
    平均值
    Mean (%)
    标准偏差
    Standard deviation (%)
    变异系数
    Coefficient of variation
    北样线
    North transect
    0~103517.56bA6.420.37
    10~203520.62aA5.840.28
    南样线
    South transect
    0~104116.06bA6.850.43
    10~204121.08aA7.030.33
      不同小写字母表示不同层次之间差异显著(P<0.05), 不同大写字母表示不同样线之间差异显著(P<0.05)。Different lowercase letters mean significant differences between two soil layers at P<0.05, different capital letters mean significant differences between two line transects.
    下载: 导出CSV

    表  3  太行山区中段不同样线不同层次土壤含水量地统计学特征

    Table  3.   Geostatistical characteristic of soil water contents of different layers in two line transects of the middle part of the Taihang Mountain

    样线
    Line transect
    土层
    Soil layer (cm)
    模型
    Model
    C0C0+CC0/(C0+C)
    (%)
    变程
    Range (km)
    R2
    北样线
    North transect
    0~10线性
    Linear
    42.4642.46100.0065.70.22
    10~20指数
    Exponential
    24.2150.4348.01145.50.47
    南样线
    South transect
    0~10线性
    Linear
    52.0860.4886.1180.20.24
    10~20指数
    Exponential
    21.0066.4231.62128.40.90
    下载: 导出CSV

    表  4  太行山区中段不同层次土壤属性对土壤含水量的回归分析

    Table  4.   Regression analysis of soil water content of different layers and other soil properties in the middle part of the Taihang Mountain

    土层
    Soil layer (cm)
    模型变量
    Independent variable
    R2调整后R2
    Adjusted R2
    标准估算的错误
    Estimated standard error
    0~10容重 Bulk density0.4070.3565.34
    10~20 毛管孔隙度 Capillary porosity0.5650.5604.45
    黏粒含量 Clay content0.5960.5854.32
    下载: 导出CSV

    表  5  太行山区中段不同层次土壤含水量与地形因素的相关性分析

    Table  5.   Correlation analysis between soil water contents of different layers and geographical factors in the middle part of the Taihang Mountain

    土层
    Soil layer (cm)
    参数
    Parameter
    年降水量
    Annual precipitation
    海拔
    Elevation
    坡度
    Slope gradient
    坡向
    Slope aspect
    NDVI枯落物厚度
    Litter thickness
    0~10相关系数 Correlation coefficient (R)0.306**0.282*–0.045–0.2010.0180.037
    P0.0070.0140.6980.0820.8760.750
    样本数 Samples number767676767676
    10~20 相关系数 Correlation coefficient (R)0.310**0.306**–0.125–0.2050.1370.151
    P0.0060.0070.2820.0750.2380.194
    样本数 Samples number767676767676
    下载: 导出CSV

    表  6  太行山中段不同层次土壤含水量在不同地形部位和不同土地利用类型的方差分析

    Table  6.   Variance analysis of soil water contents of different layers at different topographical locations and land use types in the middle part of the Taihang Mountain

    土层
    Soil layer (cm)

    Source
    平方和
    Sum of squares
    自由度
    Degree
    均方
    Root mean square
    F显著性
    Significant value
    0~10校正模型
    Corrected model
    364.4681133.130.720.72
    截距
    Intercept
    21 322.11121 322.11461.400
    地形部位
    Topographical location
    203.49367.831.470.23
    土地利用
    Land use
    31.65215.830.340.71
    地形部位×土地利用
    Topographical location×land use
    129.31621.550.470.83
    10~20校正模型
    Corrected model
    758.851168.991.690.10
    截距
    Intercept
    26 603.80126 603.80650.160
    地形部位
    Topographical location
    289.61396.542.360.08
    土地利用
    Land use
    121.62260.811.490.23
    地形部位×土地利用
    Topographical location×land use
    347.62657.941.420.22
    下载: 导出CSV

    表  7  太行山中段不同层次土壤性质和环境因子对土壤含水量的直接影响和间接影响

    Table  7.   Direct and indirect effects of soil properties and environmental factors on soil water contents of different layers in the middle part of the Taihang Mountain

    土层
    Soil layer (cm)
    环境因子 Environmental factor土壤因子 Soil factor
    直接
    Direct effect
    百分比
    Percentage (%)
    间接
    Indirect effect
    百分比
    Percentage (%)
    环境因子总效应
    Total effect
    直接
    Direct effect
    间接
    Indirect effect
    0~100.0318.750.1381.250.16−0.550
    10~20 0.0310.000.3090.000.33−0.790
    下载: 导出CSV
  • [1] CASTILLO V M, GÓMEZ-PLAZA A, MARTı́NEZ-MENA M. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach[J]. Journal of Hydrology, 2003, 284(1/2/3/4): 114−130
    [2] WU Y Y, HE G J, OUYANG W, et al. Differences in soil water content and movement drivers of runoff under climate variations in a high-altitude catchment[J]. Journal of Hydrology, 2020, 587: 125024 doi: 10.1016/j.jhydrol.2020.125024
    [3] NAN W G, LIU S Q, YANG S J, et al. Changes of Sabina vulgaris growth and of soil moisture in natural stands and plantations in semi-arid Northern China[J]. Global Ecology and Conservation, 2020, 21: e00859 doi: 10.1016/j.gecco.2019.e00859
    [4] 易小波. 西北干旱区土壤含水量时空变化特征及土壤物理性质模拟试验研究[D]. 杨凌: 西北农林科技大学, 2017

    YI X B. Spatial and temporal variation of soil water content and modeling of soil physical properties in arid region of northwest China[D]. Yangling: Northwest A&F University, 2017
    [5] ZHANG J G, CHEN H S, SU Y R, et al. Spatial variability of surface soil moisture in a depression area of Karst region[J]. CLEAN - Soil, Air, Water, 2011, 39(7): 619−625 doi: 10.1002/clen.201000528
    [6] BARONI G, ORTUANI B, FACCHI A, et al. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field[J]. Journal of Hydrology, 2013, 489: 148−159 doi: 10.1016/j.jhydrol.2013.03.007
    [7] WANG Y Q, SHAO M A, LIU Z P, et al. Regional spatial pattern of deep soil water content and its influencing factors[J]. Hydrological Sciences Journal, 2012, 57(2): 265−281 doi: 10.1080/02626667.2011.644243
    [8] YANG J, CHEN H S, NIE Y P, et al. Dynamic variations in profile soil water on Karst hillslopes in Southwest China[J]. CATENA, 2019, 172: 655−663 doi: 10.1016/j.catena.2018.09.032
    [9] LEE Y, JUNG C, KIM S. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data[J]. Agricultural Water Management, 2019, 213: 580−593 doi: 10.1016/j.agwat.2018.09.004
    [10] 付同刚, 陈洪松, 张伟, 等. 喀斯特小流域土壤含水率空间异质性及其影响因素[J]. 农业工程学报, 2014, 30(14): 124−131 doi: 10.3969/j.issn.1002-6819.2014.14.016

    FU T G, CHEN H S, ZHANG W, et al. Spatial variability of soil moisture content and its influencing factors in small Karst catchment during dry period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 124−131 doi: 10.3969/j.issn.1002-6819.2014.14.016
    [11] GAO L, SHAO M G. Temporal stability of shallow soil water content for three adjacent transects on a hillslope[J]. Agricultural Water Management, 2012, 110: 41−54 doi: 10.1016/j.agwat.2012.03.012
    [12] 唐敏, 赵西宁, 高晓东, 等. 黄土丘陵区不同土地利用类型土壤水分变化特征[J]. 应用生态学报, 2018, 29(3): 765−774

    TANG M, ZHAO X N, GAO X D, et al. Characteristics of soil moisture variation in different land use types in the hilly region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 765−774
    [13] 徐飞, 赖晓明, 朱青, 等. 太湖流域丘陵区两种土地利用类型土壤水分分布控制因素[J]. 生态学报, 2016, 36(3): 592−599

    XU F, LAI X M, ZHU Q, et al. The controlling factors of soil moisture distribution under two typical land-use hillslopes in a hilly region of Taihu Lake Basin[J]. Acta Ecologica Sinica, 2016, 36(3): 592−599
    [14] 任启文, 王鑫, 李联地, 等. 小五台山不同海拔土壤理化性质垂直变化规律[J]. 水土保持学报, 2019, 33(1): 241−247

    REN Q W, WANG X, LI L D, et al. Vertical variation of soil physical and chemical properties at different altitudes in Xiaowutai Mountain[J]. Journal of Soil and Water Conservation, 2019, 33(1): 241−247
    [15] FAMIGLIETTI J S, RUDNICKI J W, RODELL M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas[J]. Journal of Hydrology, 1998, 210(1/2/3/4): 259−281
    [16] 宋献方, 李发东, 刘昌明, 等. 太行山区水循环及其对华北平原地下水的补给[J]. 自然资源学报, 2007, 22(3): 398−408 doi: 10.3321/j.issn:1000-3037.2007.03.009

    SONG X F, LI F D, LIU C M, et al. Water cycle in Taihang Mountains and its recharge to groundwater in North China Plain[J]. Journal of Natural Resources, 2007, 22(3): 398−408 doi: 10.3321/j.issn:1000-3037.2007.03.009
    [17] 曹建生. 太行山区岩土二元介质水分运移机制及高效利用研究[D]. 北京: 中国科学院研究生院, 2011

    CAO J S. Research on water movement and high-efficient utilization on slope characterized by a soil-rock binary medium in mountain area of Taihang Mountain[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011
    [18] 张志华, 郭加伟, 桑玉强, 等. 太行山南麓鱼鳞坑工程对坡面土壤水分空间变异性的影响[J]. 灌溉排水学报, 2021, 40(9): 85−92

    ZHANG Z H, GUO J W, SANG Y Q, et al. Spatial variation in soil water content over hillslopes engineered by fish-scale pits in Taihang Mountainous region[J]. Journal of Irrigation and Drainage, 2021, 40(9): 85−92
    [19] 王齐瑞, 谭晓风, 高峻. 太行山山前坡地不同土地利用方式下土壤水分的时空变异特征[J]. 水土保持学报, 2008, 22(4): 100−103 doi: 10.3321/j.issn:1009-2242.2008.04.022

    WANG Q R, TAN X F, GAO J. Spatiotemporal variability of soil moisture under different land use patterns of Taihang Mountains[J]. Journal of Soil and Water Conservation, 2008, 22(4): 100−103 doi: 10.3321/j.issn:1009-2242.2008.04.022
    [20] 朱奎, 夏军, 邓群, 等. 太行山山地丘陵区雨季土壤水分动态规律研究−以崇陵流域为研究区[J]. 水利水电技术, 2007, 38(10): 6−9 doi: 10.3969/j.issn.1000-0860.2007.10.002

    ZHU K, XIA J, DENG Q, et al. Study on dynamic law of soil moisture during rainy season in hilly area of Taihang Mountain: A case study on Chongling Watershed[J]. Water Resources and Hydropower Engineering, 2007, 38(10): 6−9 doi: 10.3969/j.issn.1000-0860.2007.10.002
    [21] 司梦可, 曹建生, 阳辉, 等. 太行山区不同植被条件下土壤水分动态变化特征研究[J]. 中国生态农业学报(中英文), 2020, 28(11): 1766−1777

    SI M K, CAO J S, YANG H, et al. Soil water variation of different vegetation community in Taihang Mountain Area[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1766−1777
    [22] 史薪钰, 刘洋, 齐国辉, 等. 太行山片麻岩山地坡面土壤含水率及其影响因子−以河北省阜平县为例[J]. 林业资源管理, 2015(3): 114−120

    SHI X Y, LIU Y, QI G H, et al. Study on soil moisture content and its impact factors in Taihangshan low gneiss mountainous area — take Fuping County, Hebei Province as an example[J]. Forest Resource Management, 2015(3): 114−120
    [23] WANG L, WANG Q J, WEI S P, et al. Soil desiccation for loess soils on natural and regrown areas[J]. Forest Ecology and Management, 2008, 255(7): 2467−2477 doi: 10.1016/j.foreco.2008.01.006
    [24] FU T G, CHEN H S, FU Z Y, et al. Surface soil water content and its controlling factors in a small Karst catchment[J]. Environmental Earth Sciences, 2016, 75(21): 1−11
    [25] 戴军杰, 章新平, 吕殿青, 等. 南方红壤丘陵区樟树林土壤水分动态变化[J]. 水土保持研究, 2019, 26(4): 123−131

    DAI J J, ZHANG X P, LYU D Q, et al. Dynamics of soil water in Cinnamomum camphora forest in the red soil hilly region of South China[J]. Research of Soil and Water Conservation, 2019, 26(4): 123−131
    [26] 邱扬, 傅伯杰, 王军, 等. 黄土丘陵小流域土壤水分的空间异质性及其影响因子[J]. 应用生态学报, 2001, 12(5): 715−720 doi: 10.3321/j.issn:1001-9332.2001.05.016

    QIU Y, FU B J, WANG J, et al. Spatial heterogeneity of soil moisture content on the Loess Plateau, China and its relation to influencing factors[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 715−720 doi: 10.3321/j.issn:1001-9332.2001.05.016
    [27] 王珊. 土壤水肥空间变异及对作物产量影响的研究[D]. 太原: 山西农业大学, 2019

    WANG S. Spatial variation of soil water and fertilizer and its effects on crop yield[D]. Taiyuan: Shanxi Agriculture University, 2019
    [28] PENNA D, BROCCA L, BORGA M, et al. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods[J]. Journal of Hydrology, 2013, 477: 55−71 doi: 10.1016/j.jhydrol.2012.10.052
    [29] ZHU Q, NIE X F, ZHOU X B, et al. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope[J]. CATENA, 2014, 119: 61−70 doi: 10.1016/j.catena.2014.03.010
    [30] SUN F X, LÜ Y, WANG J L, et al. Soil moisture dynamics of typical ecosystems in response to precipitation: a monitoring-based analysis of hydrological service in the Qilian Mountains[J]. CATENA, 2015, 129: 63−75 doi: 10.1016/j.catena.2015.03.001
    [31] 韩姣姣, 段旭, 赵洋毅, 等. 干热河谷不同土地利用类型坡面土壤水分时空变异[J]. 水土保持学报, 2017, 31(2): 129−136

    HAN J J, DUAN X, ZHAO Y Y, et al. Spatial and temporal variability of soil moisture on sloping lands of different land use types in a dry-hot valley[J]. Journal of Soil and Water Conservation, 2017, 31(2): 129−136
    [32] ZHAO W J, CUI Z, ZHANG J Y, et al. Temporal stability and variability of soil-water content in a gravel-mulched field in northwestern China[J]. Journal of Hydrology, 2017, 552: 249−257 doi: 10.1016/j.jhydrol.2017.06.031
    [33] 刘佩伶, 陈乐, 刘效东, 等. 鼎湖山不同演替阶段森林土壤水分时空变异研究[J]. 生态学报, 2021, 41(5): 1798−1807

    LIU P L, CHEN L, LIU X D, et al. Temporal and spatial variability of soil moisture in a forest succession series in Dinghushan[J]. Acta Ecologica Sinica, 2021, 41(5): 1798−1807
    [34] CHEN H S, ZHANG W, WANG K L, et al. Soil moisture dynamics under different land uses on Karst hillslope in northwest Guangxi, China[J]. Environmental Earth Sciences, 2010, 61(6): 1105−1111 doi: 10.1007/s12665-009-0428-3
    [35] 赵鑫, 辛一凡, 张应龙, 等. 不同植被类型对毛乌素沙地背风坡土壤水分时空变化的影响[J]. 西北林学院学报, 2021, 36(3): 36−43 doi: 10.3969/j.issn.1001-7461.2021.03.06

    ZHAO X, XIN Y F, ZHANG Y L, et al. Effects of different vegetation types on temporal and spatial variation of soil moisture on leeward slope of Mu Us sandy land[J]. Journal of Northwest Forestry University, 2021, 36(3): 36−43 doi: 10.3969/j.issn.1001-7461.2021.03.06
    [36] LLOYD C D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain[J]. Journal of Hydrology, 2005, 308(1/2/3/4): 128−150
    [37] 张伟, 陈洪松, 王克林, 等. 喀斯特地区典型峰丛洼地旱季表层土壤水分空间变异性初探[J]. 土壤学报, 2006, 43(4): 554−562 doi: 10.3321/j.issn:0564-3929.2006.04.004

    ZHANG W, CHEN H S, WANG K L, et al. Spatial variability of surface soil water in typical depressions between hills in Karst region in dry season[J]. Acta Pedologica Sinica, 2006, 43(4): 554−562 doi: 10.3321/j.issn:0564-3929.2006.04.004
    [38] 李增尧, 赵兴凯, 朱清科. 陕北黄土区陡坡坡面因子对土壤水分的影响[J]. 排灌机械工程学报, 2017, 35(9): 798−805 doi: 10.3969/j.issn.1674-8530.16.0114

    LI Z Y, ZHAO X K, ZHU Q K. Effects of farmland slope on soil moisture in semi-arid loess plateau of Northern Shaanxi[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(9): 798−805 doi: 10.3969/j.issn.1674-8530.16.0114
    [39] 陈有君, 关世英, 李绍良, 等. 内蒙古浑善达克沙地土壤水分状况的分析[J]. 干旱区资源与环境, 2000, 14(1): 80−85 doi: 10.3969/j.issn.1003-7578.2000.01.014

    CHEN Y J, GUAN S Y, LI S L, et al. Soil water regime of Hunshandake sandy land in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2000, 14(1): 80−85 doi: 10.3969/j.issn.1003-7578.2000.01.014
    [40] 李奕, 满秀玲, 蔡体久, 等. 大兴安岭山地樟子松天然林土壤水分物理性质及水源涵养功能研究[J]. 水土保持学报, 2011, 25(2): 87−91, 96

    LI Y, MAN X L, CAI T J, et al. Research on physical properties of soil moisture and water conservation of scotch pine forest in Da Xing’an Mountains[J]. Journal of Soil and Water Conservation, 2011, 25(2): 87−91, 96
    [41] 张敏, 刘爽, 刘勇, 等. 黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征[J]. 水土保持学报, 2019, 33(3): 115−120, 128

    ZHANG M, LIU S, LIU Y, et al. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of loess hilly region[J]. Journal of Soil and Water Conservation, 2019, 33(3): 115−120, 128
    [42] BUTTAFUOCO G, CASTRIGNANÒ A, BUSONI E, et al. Studying the spatial structure evolution of soil water content using multivariate geostatistics[J]. Journal of Hydrology, 2005, 311(1/2/3/4): 202−218
    [43] 赵世伟, 周印东, 吴金水. 子午岭北部不同植被类型土壤水分特征研究[J]. 水土保持学报, 2002, 16(4): 119−122, 94 doi: 10.3321/j.issn:1009-2242.2002.04.031

    ZHAO S W, ZHOU Y D, WU J S. Soil moisture characteristics of different vegetations in northern of Ziwuling[J]. Journal of Soil Water Conservation, 2002, 16(4): 119−122, 94 doi: 10.3321/j.issn:1009-2242.2002.04.031
    [44] 任婷婷, 王瑄, 孙雪彤, 等. 不同土地利用方式土壤物理性质特征分析[J]. 水土保持学报, 2014, 28(2): 123−126

    REN T T, WANG X, SUN X T, et al. Characterization of soil physical properties under different land use types[J]. Journal of Soil and Water Conservation, 2014, 28(2): 123−126
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  75
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-28
  • 刊出日期:  2022-07-05

目录

    /

    返回文章
    返回