留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国农田氨挥发研究进展与减排对策

刘伯顺 黄立华 黄金鑫 黄广志 蒋小曈

刘伯顺, 黄立华, 黄金鑫, 黄广志, 蒋小曈. 我国农田氨挥发研究进展与减排对策[J]. 中国生态农业学报 (中英文), 2022, 30(6): 875−888 doi: 10.12357/cjea.20210820
引用本文: 刘伯顺, 黄立华, 黄金鑫, 黄广志, 蒋小曈. 我国农田氨挥发研究进展与减排对策[J]. 中国生态农业学报 (中英文), 2022, 30(6): 875−888 doi: 10.12357/cjea.20210820
LIU B S, HUANG L H, HUANG J X, HUANG G Z, JIANG X T. Research progress toward and emission reduction measures of ammonia volatilization from farmlands in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 875−888 doi: 10.12357/cjea.20210820
Citation: LIU B S, HUANG L H, HUANG J X, HUANG G Z, JIANG X T. Research progress toward and emission reduction measures of ammonia volatilization from farmlands in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 875−888 doi: 10.12357/cjea.20210820

我国农田氨挥发研究进展与减排对策

doi: 10.12357/cjea.20210820
基金项目: 国家自然科学基金面上项目(41977148)、国家重点研发计划课题(2016YFD02003003-2)和吉林省科技发展计划项目(20190303090SF)资助
详细信息
    作者简介:

    刘伯顺, 主要研究方向为盐碱地氮素转化与利用。E-mail: liubaishun@iga.ac.cn

    通讯作者:

    黄立华, 主要研究方向为盐碱地改良与地力培育。E-mail: huanglihua@iga.ac.cn

  • 中图分类号: S158.3

Research progress toward and emission reduction measures of ammonia volatilization from farmlands in China

Funds: This study was supported by the National Natural Science Foundation of China (41977148), the National Key Research and Development Project of China (2016YFD02003003-2), and Jilin Province Science and Technology Development Plan Project (20190303090SF).
More Information
  • 摘要: 氨挥发是我国农田氮肥损失的主要途径, 不仅降低了氮肥利用效率, 还会造成雾霾、大气干湿沉降和温室效应等生态环境问题。本文简要分析了近10年(2011—2020年)我国农田氨挥发研究现状, 总体上呈迅速发展态势且国际化趋势显著, 但研究的影响力有待提升; 由于我国幅员辽阔, 农田氨挥发呈现较大的时空变异特点, 与作物种类、施肥、气候、土壤以及作物生长期等密切相关, 氨挥发的调控必须因地制宜对氮肥进行科学管理; 农田氨挥发测定方法历经200多年的发展, 由最初的间接估算逐渐发展为化学测量和光谱分析, 测量的精确性和范围都得到了大幅提升。本文也概括总结了我国在农田氨挥发减排上的主要措施以及存在的问题, 提出未来应加强农田氨挥发的微生物学机理和时空变异性研究, 做好测定方法的对比研究及空天地一体化技术的应用, 加强耕作机械化与智能化, 逐步完善减排评价体系等减排对策。旨在为我国未来氨挥发研究和制定合理的减排政策提供参考。
  • 图  1  2011—2020年我国和其他国家关于农田氨挥发研究的发文量及其占比的变化

    Figure  1.  Amount and proportion changes of the articles about ammonia volatilization from farmland in China and other countries from 2011 to 2020

    图  2  我国不同耕地类型(A)和作物种类(B)氨挥发损失率

    所有数据经过了log10(X+1)标准化处理, X为氨挥发损失率的实际值。ns表示无显著差异; *表示差异显著(P<0.05); **表示差异极显著(P<0.01); 不同小写字母表示作物种类间差异显著(P<0.05)。The data have been standardized by log10(X+1), X is the actual value of ammonia volatilization loss rate. “ns” means no significant difference; “*” means a significant difference (P<0.05); “**” means a very significant difference (P<0.01); different lowercase letters indicate significant differences among different crop types at P<0.05 level.

    Figure  2.  Ammonia volatilization loss rates of different arable land (A) and crop (B) types in China

    图  3  水田和旱地施用尿素后氨挥发过程图

    图中实线箭头的方向表示促进氨挥发, 虚线箭头的方向表示抑制氨挥发。①尿素水解; ②硝化作用; ③异化硝酸盐还原作用; ④吸附作用; ⑤释放NH4+; ⑥藻类光合作用。The direction of the solid arrow in the figure shows ammonia volatilization promotion, and the direction of the dashed arrow shows ammonia volatilization inhibition. ① hydrolysis of urea; ② nitrification; ③ reduction of alienated nitrate; ④ adsorption; ⑤ release NH4+; ⑥ algal photosynthesis.

    Figure  3.  Diagram of ammonia volatilization process after applying urea in paddy and upland

    表  1  农田氨挥发领域SCI发文量TOP 10国家论文发表情况

    Table  1.   Conditions of publication of SCI papers in the field of farmland ammonia volatilization in top 10 countries

    国家
    Nation
    SCI发文量
    SCI papers
    发文量占比Proportion of documents
    issued (%)
    国际合著文章占比Proportion of international
    co-authored paper (%)
    总引用频次
    Total citation frequency
    平均单篇引用频次
    Average single citation frequency
    中国 China28629.737.4570919.96
    美国 USA18819.521.3255013.56
    巴西 Brazil12412.921.8160912.98
    加拿大 Canada474.917.067214.30
    澳大利亚 Australia404.235.0110327.57
    德国 Germany394.138.552513.46
    西班牙 Spain262.734.675429.00
    新西兰 New Zealand222.336.480136.41
    意大利 Italy212.214.350323.95
    日本 Japan181.938.923012.78
    下载: 导出CSV

    表  2  化学吸收法测定氨挥发的原理及优缺点

    Table  2.   Principles, advantages and disadvantages of chemical absorption method for determination of ammonia volatilization

    方法
    Method
    原理
    Principle
    装置示意图
    Device schematic
    优点
    Advantage
    缺点
    Disadvantage
    参考文献
    Reference
    密闭室法
    Chamber Technique
    密闭室内部放置酸液吸收土壤挥发出的NH3, 测定吸收液中的${\rm{NH}}_4^ + $-N浓度计算氨挥发损失速率An acid solution is placed inside the airtight chamber to absorb the NH3 from the soil, and the ${\rm{NH}}_4^ + $-N concentration in the absorption solution is measured to calculate the loss rate of ammonia volatilization简单方便, 可移动性好
    Simple, convenient, good mobility
    忽视了通气条件的影响, 误差较大Ignoring the influence of ventilation conditions with large error[39,41]
    德尔格氨管法
    Dräger-Tube Method
    用手泵抽气, 使NH3经过装有酸性混合物的德尔格氨检测管, 记录检测管上的读数以及手泵抽气的次数和时间、测定时期的平均大气压等数据计算氨挥发损失率It draws air by hand pump, makes NH3 pass through the Dräger ammonia detection tube containing the acid mixture, records the readings on the detection tube, the number and time of air pumping by hand pump, the average atmospheric pressure during the measurement period and other data to calculate the loss rate of ammonia volatilization测量时间短, 受外界环境的影响小, 无需实验室分析Short measurement time with less of external environment, not requirement for laboratory analysis室内空气交换率低, 实际氨挥发损失被低估, 需校正Low indoor air exchange rate, underestimation of the actual loss of ammonia volatilization, calibration required[42]
    密闭室间歇抽气法 Dynamic Chamber Technique用真空泵将密闭室中的NH3抽出, 让抽出的气体被洗气瓶中的酸液吸收, 测定吸收液中的${\rm{NH}}_4^ + $-N浓度计算氨挥发损失速率The NH3 in the closed chamber is extracted by a vacuum pump, and is absorbed by the acid liquid in the gas washing cylinder; and the concentration of ${\rm{NH}}_4^ + $-N in the absorption liquid is measured to calculate the loss rate of ammonia volatilization简单易行, 回收率高
    Simple, high recovery rate
    结果受抽气速率和抽气时间影响较大Greatly affected by the pumping rate and pumping time[43-44]
    通气法
    Venting Method
    使用2~5 cm浸有磷酸甘油溶液的海绵为吸收介质, 利用NH3向上的扩散作用吸收NH3, 其中, 下层海绵用来吸收农田挥发的NH3, 上层海绵防止空气中的NH3进入The 2−5 cm sponges soaked in phosphate glycerol solution is used as the absorption medium according to the upward diffusion of NH3. Among them, the lower layer of sponge is used to absorb NH3 volatilized in farmland, and the upper layer of sponge prevents the entry of NH3 in the air操作简单, 无需动力设备, 精度高Easy to operate, no power equipment required, and high precision结果易受人为操作和降雨影响
    Susceptible to human manipulation and rainfall
    [37]
    风洞法
    Wind-Tunnel System
    在风扇驱动下, 气流稳定地流过风洞洞体, 风洞内装有NH3吸收液, 通过测量风洞进气前后的NH3质量差来获得氨挥发通量Driven by the fan, the air flow stably flows through the wind tunnel body and the wind tunnel is filled with ammonia absorbing liquid. The ammonia volatilization flux is obtained by measuring the mass difference of NH3 before and after the wind tunnel intake不受天气的影响, 精度高
    Not affected by the weather with high precision
    成本较高, 不能模拟静风和静水状态下氨挥发High cost, unable to simulate ammonia volatilization in still wind and still water conditions[43,45]
    质量平衡法
    Mass Balance Approach
    离地面不同高度安装迎风采样器, 采样器内的酸液可吸收NH3, 同时测定挥发源下风向和上风向处NH3的通量, 通过计算差值估算氨挥发速率The samplers is installed upwind at different heights from the ground, which can absorb ammonia by acid liquid. At the same time, the flux of NH3 in the downwind and upwind directions of the volatilization source is measured and the ammonia volatilization rate is estimated by calculating the difference.对田间自然环境干扰较小, 能监测大面积农田氨挥发量Little disturbance to the natural environment in the field, and monitoring ammonia volatilization in a large area of farmland设备昂贵, 对气象和下垫面条件要求较高Expensive equipment, and higher requirements for weather and underlying surface conditions[46]
    下载: 导出CSV

    表  3  常见的光学测定法测定氨挥发的原理及优缺点

    Table  3.   Principles, advantages and disadvantages of common optical measurement methods for determination of ammonia volatilization

    方法
    Method
    原理
    Principle
    优点
    Advantage
    缺点
    Disadvantage
    参考文献
    Reference
    非分散红外法 Nondispersive infrared
    (NDIR)
    使红外光穿过腔室和两个滤波器, 由光电探测器进行监测Infrared light passes through the chamber and two filters, which are monitored by photodetectors 简单, 响应速度快, 稳定性好
    Simple, fast response and good stability
    选择性差, 分辨率低
    Poor selectivity and low resolution
    [47]
    腔衰荡光谱技术
    Cavity ring-down spectroscopy (CRDS)
    通过其中一个反射镜镜头注入腔中的激光脉冲在其中多次反射, 将其波长调整到NH3光谱线, 以测量内部所含NH3的吸收系数The laser pulse injected into the cavity through one of the mirror lenses is reflected in it multiple times, and its wavelength is adjusted to the NH3 spectral line to measure the absorption coefficient of the ammonia contained inside 灵敏度高, 稳定性好
    High sensitivity and good stability
    要求激光频率与腔模式精确匹配, 受不稳定机械能影响Requirement for precisely match of laser frequency to cavity mode, and affected by unstable mechanical energy [49]
    离轴积分腔输出光谱技术Off-axis intergrated cavity output spectroscopy (OA-ICOS) 使一束激光在光腔中不断反射, 测量透过光腔的时间积分光强, 通过与入射光强的差值, 计算待测物质的浓度A laser beam is continuously reflected in the optical cavity and the time-integrated light intensity transmitted through the optical cavity is measured. The concentration of the substance to be tested is calculated by the difference with the incident light intensity 结构简单, 对环境要求低, 能适应更多的要求It has a simple structure, low environmental requirements and can adapt to more requirements 为实现高信噪比, 须在腔镜尺寸和探测器性能之间进行最佳权衡To achieve a high signal-to-noise ratio, an optimal trade-off between mirror size and detector performance must be made [48]
    波长调制量子级联激光吸收光谱技术 Wavelength modulated quantum cascade laser absorption spectroscopy(WM-QCLAS) 用高反射率镜对中红外激光进行多次反射, 有效光程达数十米, 测量氨气对特征吸收峰处中红外激光能量的微弱吸收, 通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演The mid-infrared laser is reflected multiple times with a high-reflectivity mirror, and the effective optical path reaches tens of meters. The weak absorption of the mid-infrared laser energy at the characteristic absorption peak by the target gas is measured, and concentration of trace gases is inverted by real-time integration of absorption peak spectral curves 对氨气浓度变化的响应时间短, 功耗低, 携带方便Fast response to changes in ammonia concentration, low power consumption and easy portability [49]
    可调谐二极管激光吸收光谱技术 Tunable diode laser absorption spectroscopy(TDLAS) 可调谐二极管激光器发射的激光会随注入电流的调整达到所需的波长, 使用光路扩展技术提高信噪比(SNR)来实现较低的检测极限Tunable diode lasers emit laser that is tuned to the desired wavelength with injection current, the optical path expansion techniques is used to improve signal-to-noise ratio (SNR) to achieve lower detection limits 选择性高, 灵敏度好, 应用范围广High selectivity, good sensitivity and wide application range 实际应用中易受光强波动和粉尘等因素的影响, 造成误差In practical applications, it is easily affected by factors such as light intensity fluctuation and dust, resulting in errors [38,49-50]
    光声光谱法
    Photoacoustic spectrometry (PAS)
    当激光周期性照射气体时, 光能变为热能的同时也会产生声波信号, 通过监测激光周期性变化与声波信号强度之间的关系计算气体浓度When the laser irradiates the gas periodically, the light energy becomes heat energy and an acoustic signal is also generated. The gas concentration is calculated by monitoring the relationship between the periodic variation of the laser and the intensity of the acoustic signal 具有非常高的检测灵敏度
    It has very high detection sensitivity
    受干扰气体的影响大, 共振模式不易达到Greatly affected by the interfering gas, not easy to reach the resonance mode [47,49]
    下载: 导出CSV

    表  4  我国农田氨挥发主要减排措施的优势及存在的问题

    Table  4.   Advantages and problems of the main emission reduction measures for ammonia volatilization from farmland in China

    减排措施
    Emission reduction measure
    减排效率
    Emission reduction efficiency (%)
    主要优势
    Main advantage
    存在的问题
    Existing problem
    改进方向
    Improvement direction
    参考文献
    Reference
    研发新型肥料
    Research and development of new fertilizers
    缓/控释肥料
    Slow/controlled release fertilizers
    11.53~25.33 能有效减少养分的损失
    Effectively reducing the loss of nutrients
    成本较高, 膜材料的稳定性受气温和降水的影响较大The cost is high and the stability of the membrane material is greatly affected by temperature and precipitation 降低研发成本, 增加膜材料的稳定性Reducing research costs and increasing the stability of membrane materials [57]
    生物肥料Biological fertilizers
    32.42~42.21 避免环境污染, 减少农药的投入Avoiding environmental pollution and reducing the input of pesticides 对温度和水分等环境条件要求较高High requirements for environmental conditions such as temperature and moisture 创造有利于有效微生物生存的条件, 增加产品有效期Creating conditions conducive to the survival of effective microorganisms, and extending product shelf life [58]
    改进施肥方式
    Improving fertilization methods
    氮肥减施
    Reduction of nitrogen fertilization
    24 成本低, 简单有效
    Low cost, simple and effective
    减量施氮具有盲目性
    Nitrogen reduction is blind
    因地制宜确定氮肥用量Determining the amount of nitrogen fertilizer according to local conditions [53]
    氮肥深施
    Nitrogen fertilizer deep placement
    20~45 能有效降低氨挥发并提高产量Effectively reducing ammonia volatilization and increasing production 深施的机械化水平低, 部分地区受地形限制明显The mechanization level of deep nitrogen fertilizer application is low and some areas are obviously restricted by terrain 加快深施机械的研发和推广, 降低深施成本Accelerating the research and development, and promoting nitrogen fertilizer deep application machinery and reducing the cost [60]
    有机和无机肥配施
    Combination of organic and inorganic fertilizers
    17 可以实现NH3和N2O的同步减排, 提高产量Simultaneous emission reduction of NH3 and N2O to increase yield 有机和无机肥各自所占的比例难以确定The proportion of organic and inorganic fertilizers is difficult to determine 结合当地的产量和减排效果等指标确定合适的配施比例Determining the appropriate proportion of fertilization based on local production, emission reduction effect and other indicators [55]
    完善管理方式
    Perfect management method
    控制灌溉
    Controlled irrigation
    14 可以有效提高氮素和水分利用效率Effectively improving nitrogen and water use efficiency 不合理的灌溉量会增加氮素淋溶损失Unreasonable irrigation rate will increase nitrogen leaching loss 选择适宜的灌溉量和灌溉时间, 避免氮素淋溶损失Choosing appropriate irrigation quantity and time to avoid nitrogen leaching loss [61]
    合理轮作
    Reasonable crops rotation
    31.3~38.0 能有效减少氮素投入量和氮素污染
    Reducing nitrogen input and nitrogen pollution
    轮作作物选择不合理可能影响农民收益Unreasonable selection of crops rotation may affect farmers’ income 结合实际选择适宜的轮作制度, 实现经济和环境效益的平衡Choosing an appropriate crops rotation system based on the actual situation to achieve a balance between economic and environmental benefits [64]
    添加土壤添加剂
    Addition of soil additives
    秸秆还田
    Straw return to soil
    30 能够有效利用农业废弃物
    Effective use of agricultural waste
    减排效果存在争议且差异较大Emission reduction effects are controversial and vary widely 深入研究秸秆还田对氨挥发影响的机理Focusing on the mechanism of the effect of straw returning on ammonia volatilization [66]
    脲酶抑制剂
    Urease inhibitor
    41~96 环境友好, 肥效期长, 潜力巨大Environment friendly, long fertilizer effect period and huge potential 受环境的影响大, 稳定性较差Greatly affected by the environment with poor stability 充分考虑不同种类脲酶抑制剂的应用条件和施用量Fully considering the application conditions and dosage of different types of urease inhibitors [71]
    生物炭
    Biochar
    20.00~32.42 较大的表面积和良好的吸附性可以有效降低氨挥发
    Effectively reducing ammonia volatilization
    减排效果存在争议, 不同类型生物炭的减排效果有所不同The emission reduction effect of biochar is controversial and different types of biochar have different emission reduction effects 重点关注生物炭对农田土壤氨挥发影响机理的研究Focusing on the research of the mechanism of biochar’s effect on ammonia volatilization in farmland [76, 79]
    下载: 导出CSV
  • [1] 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): 1−6

    ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1−6
    [2] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095−1103 doi: 10.3321/j.issn:0578-1752.2002.09.012

    PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095−1103 doi: 10.3321/j.issn:0578-1752.2002.09.012
    [3] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311−1324

    YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311−1324
    [4] MA R Y, ZOU J W, HAN Z Q, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2021, 27(4): 855−867 doi: 10.1111/gcb.15437
    [5] ANDERSON N, STRADER R, DAVIDSON C. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources[J]. Environment International, 2003, 29(2/3): 277−286
    [6] AN Z S, HUANG R J, ZHANG R Y, et al. Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8657−8666 doi: 10.1073/pnas.1900125116
    [7] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475−493 doi: 10.17521/cjpe.2019.0163

    FU W, WU H, ZHAO A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects[J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475−493 doi: 10.17521/cjpe.2019.0163
    [8] 徐仁扣. 我国降水中的NH4+及其在土壤酸化中的作用[J]. 农业环境保护, 1996, 15(3): 139−140, 142

    XU R K. NH4+ in precipitation in my country and its role in soil acidification[J]. Agro-Environmental Protection, 1996, 15(3): 139−140, 142
    [9] LAM S K, SUTER H, DAVIES R, et al. Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor[J]. Soil Biology and Biochemistry, 2018, 116: 48−51 doi: 10.1016/j.soilbio.2017.10.008
    [10] ZHANG X M, GU B J, VAN GRINSVEN H, et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs[J]. Nature Communications, 2020, 11(1): 4357 doi: 10.1038/s41467-020-18196-z
    [11] 田玉华, 曾科, 姚元林, 等. 基于不同监测方法的太湖地区水稻穗肥期氨排放研究[J]. 土壤学报, 2019, 56(3): 693−702 doi: 10.11766/trxb201806280349

    TIAN Y H, ZENG K, YAO Y L, et al. Ammonia emission following fertilization at booting stage of rice crop in Taihu Lake region relative to monitoring techniques[J]. Acta Pedologica Sinica, 2019, 56(3): 693−702 doi: 10.11766/trxb201806280349
    [12] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1), doi: 10.1029/2011GB004161
    [13] 李红莉, 张卫峰, 张福锁, 等. 中国主要粮食作物化肥施用量与效率变化分析[J]. 植物营养与肥料学报, 2010, 16(5): 1136−1143 doi: 10.11674/zwyf.2010.0514

    LI H L, ZHANG W F, ZHANG F S, et al. Chemical fertilizer use and efficiency change of main grain crops in China[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(5): 1136−1143 doi: 10.11674/zwyf.2010.0514
    [14] SHANG Q Y, GAO C M, YANG X X, et al. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments[J]. Biology and Fertility of Soils, 2014, 50(5): 715−725 doi: 10.1007/s00374-013-0891-6
    [15] 阙华礼, 杨文亮, 信秀丽, 等. 基于激光吸收光谱技术的农田氨挥发研究[J]. 光谱学与光谱分析, 2020, 40(3): 885−890

    QUE H L, YANG W L, XIN X L, et al. Ammonia volatilization from farmland measured by laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 885−890
    [16] 王峰, 陈玉真, 吴志丹, 等. 酸性茶园土壤氨挥发及其影响因素研究[J]. 农业环境科学学报, 2016, 35(4): 808−816 doi: 10.11654/jaes.2016.04.027

    WANG F, CHEN Y Z, WU Z D, et al. Ammonia volatilization and its influencing factors in tea garden soils[J]. Journal of Agro-Environment Science, 2016, 35(4): 808−816 doi: 10.11654/jaes.2016.04.027
    [17] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19

    LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19
    [18] 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411−1419 doi: 10.11674/zwyf.2013.0615

    ZHANG W X, SUN G, HE P, et al. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1411−1419 doi: 10.11674/zwyf.2013.0615
    [19] 肖其亮, 朱坚, 彭华, 等. 稻田氨挥发损失及减排技术研究进展[J]. 农业环境科学学报, 2021, 40(1): 16−25 doi: 10.11654/jaes.2020-0767

    XIAO Q L, ZHU J, PENG H, et al. Ammonia volatilization loss and emission reduction measures in paddy fields[J]. Journal of Agro-Environment Science, 2021, 40(1): 16−25 doi: 10.11654/jaes.2020-0767
    [20] WANG H Y, ZHANG D, ZHANG Y T, et al. Ammonia emissions from paddy fields are underestimated in China[J]. Environmental Pollution, 2018, 235: 482−488 doi: 10.1016/j.envpol.2017.12.103
    [21] HUDA A, GAIHRE Y K, ISLAM M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2016, 104(1): 53−66 doi: 10.1007/s10705-015-9758-6
    [22] 史鑫蕊, 梁浩, 周丰, 等. 稻田土壤-作物系统模型参数敏感性分析与模型验证[J]. 农业机械学报, 2020, 51(5): 252−262, 271 doi: 10.6041/j.issn.1000-1298.2020.05.028

    SHI X R, LIANG H, ZHOU F, et al. Sensitivity analysis and parameter estimation for soil-rice system model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 252−262, 271 doi: 10.6041/j.issn.1000-1298.2020.05.028
    [23] PRIESTLEY J. Experiments and Observations on Different Kinds of Air[M]. Cambridge: Cambridge University Press, 2009
    [24] SUTTON M A, ERISMAN J W, DENTENER F, et al. Ammonia in the environment: from ancient times to the present[J]. Environmental Pollution, 2008, 156(3): 583−604 doi: 10.1016/j.envpol.2008.03.013
    [25] POTTS T. The British Farmers Cyclopaedia Being a New and Complete Agricultural Dictionary of Improved Modern Husbandry[M]. London: Scatchard & Letterman,1808
    [26] FRESENIUS R. Ueber den ammongehalt der atmosphärischen luft[J]. Journal Für Praktische Chemie, 1849, 46(1): 100−106
    [27] JEWITT T N. Loss of ammonia from ammonium sulfate applied to alkaline soils[J]. Soil Science, 1942, 54(6): 401−410 doi: 10.1097/00010694-194212000-00002
    [28] VOLK G M. Volatile loss of ammonia following surface application of urea to turf or bare soils[J]. Agronomy Journal, 1959, 51(12): 746−749 doi: 10.2134/agronj1959.00021962005100120016x
    [29] FENN L B, KISSEL D E. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: Ⅰ. general theory[J]. Soil Science Society of America Journal, 1973, 37(6): 855−859 doi: 10.2136/sssaj1973.03615995003700060020x
    [30] BOUWMEESTER R J B, VLEK P L G. Wind-tunnel simulation and assessment of ammonia volatilization from ponded water[J]. Agronomy Journal, 1981, 73(3): 546−552 doi: 10.2134/agronj1981.00021962007300030033x
    [31] DENMEAD O T, SIMPSON J R, FRENEY J R. Ammonia flux into the atmosphere from a grazed pasture[J]. Science, 1974, 185(4151): 609−610 doi: 10.1126/science.185.4151.609
    [32] 谢梓豪, 樊品镐, 武华, 等. 基于氨挥发因子方法的中国农田氨排放量估算[J]. 环境科学学报, 2020, 40(11): 4180−4188

    XIE Z H, FAN P G, WU H, et al. Deriving volatile factors and estimating direct ammonia emissions for crop cultivation in China[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4180−4188
    [33] WARLAND J S, DIAS G M, THURTELL G W. A tunable diode laser system for ammonia flux measurements over multiple plots[J]. Environmental Pollution, 2001, 114(2): 215−221 doi: 10.1016/S0269-7491(00)00218-9
    [34] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003

    ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003
    [35] 赵振达, 张金盛, 任顺荣. 无机氮肥中氮的挥发损失与有效利用[J]. 环境科学丛刊, 1983(7): 34−40

    ZHAO Z D, ZHANG J S, REN S R. Volatilization loss and effective utilization of nitrogen in inorganic nitrogen fertilizer[J]. Chinese Journal of Environmental Engineering, 1983(7): 34−40
    [36] FRENCY J R, TREVITI A C F, 朱兆良, 等. 水田氨挥发的测定方法[J]. 土壤学报, 1987, 24(2): 142−151

    FRENCY J R, TREVITI A C F, ZHU Z L, et al. Methods for estimating volatilization of ammonia from flooded rice fields[J]. Acta Pedologica Sinica, 1987, 24(2): 142−151
    [37] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定−通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014

    WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014
    [38] 杨文亮, 朱安宁, 张佳宝, 等. 基于TDLAS-bLS方法的夏玉米农田氨挥发研究[J]. 光谱学与光谱分析, 2012, 32(11): 3107−3111 doi: 10.3964/j.issn.1000-0593(2012)11-3107-05

    YANG W L, ZHU A N, ZHANG J B, et al. Use of open-path TDL technique and the backward Lagrangian stochastic model to monitor ammonia emission from summer maize field[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3107−3111 doi: 10.3964/j.issn.1000-0593(2012)11-3107-05
    [39] 宋勇生, 范晓晖. 稻田氨挥发研究进展[J]. 生态环境, 2003, 12(2): 240−244

    SONG Y S, FAN X H. Summanry of research on ammonia volatilization in paddy soil[J]. Ecology and Environment, 2003, 12(2): 240−244
    [40] 黄少辉, 杨云马, 侯亮, 等. 基于Nufer模型的京津冀农牧系统氮素平衡状况及化学氮肥减施潜力分析[J]. 植物营养与肥料学报, 2021, 27(1): 12−23

    HUANG S H, YANG Y M, HOU L, et al. Nitrogen balance and potential reduction of nitrogen fertilizer input in Beijing-Tianjin-Hebei crop-livestock system based on Nufer model[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 12−23
    [41] 颜晓元. 土壤氮循环实验研究方法[M]. 北京: 科学出版社, 2020

    YAN X Y. Experimental Methods for Nitrogen Cycling in Soils[M]. Beijing: Science Press, 2020
    [42] 李欠欠, 李雨繁, 高强, 等. 传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响[J]. 植物营养与肥料学报, 2015, 21(3): 571−579 doi: 10.11674/zwyf.2015.0303

    LI Q Q, LI Y F, GAO Q, et al. Effect of conventional and optimized nitrogen fertilization on spring maize yield, ammonia volatilization and nitrogen balance in soil-maize system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 571−579 doi: 10.11674/zwyf.2015.0303
    [43] 张翀, 李雪倩, 苏芳, 等. 施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J]. 农业环境科学学报, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024

    ZHANG C, LI X Q, SU F, et al. Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024
    [44] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [45] 黄彬香, 苏芳, 丁新泉, 等. 田间土壤氨挥发的原位测定−风洞法[J]. 土壤, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009

    HUANG B X, SU F, DING X Q, et al. German wind-tunnel system for measuring ammonia volatilization from agricultural soil[J]. Soils, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009
    [46] DENMEAD O T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere[J]. Plant and Soil, 2008, 309(1/2): 5−24
    [47] 鹿洪飞. 近红外VCSEL型TDLAS氨气检测系统的研制[D]. 北京: 中国科学院大学, 2020

    LU H F. Design of a near infrared ammonia gas detection system based on TDLAS technology with VCSEL laser[D]. Beijing: University of Chinese Academy of Sciences, 2020
    [48] WANG J J, TIAN X, DONG Y, et al. Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing[J]. Optics Express, 2019, 27(21): 30517−30529 doi: 10.1364/OE.27.030517
    [49] BIELECKI Z, STACEWICZ T, SMULKO J, et al. Ammonia gas sensors: comparison of solid-state and optical methods[J]. Applied Sciences, 2020, 10(15): 5111 doi: 10.3390/app10155111
    [50] 邓广福, 刘光达, 周志坚. 提高可调谐激光光谱气体检测精度的研究[J]. 激光与红外, 2008, 38(5): 462−464 doi: 10.3969/j.issn.1001-5078.2008.05.015

    DENG G F, LIU G D, ZHOU Z J. Research on improving gas detection precision based on tunable laser spectroscopy[J]. Laser & Infrared, 2008, 38(5): 462−464 doi: 10.3969/j.issn.1001-5078.2008.05.015
    [51] JIANG Y, DENG A X, BLOSZIES S, et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen[J]. Biology and Fertility of Soils, 2017, 53(3): 269−274 doi: 10.1007/s00374-017-1175-3
    [52] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106
    [53] LIU L, ZHANG X Y, XU W, et al. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems[J]. Environmental Pollution, 2020, 265: 114862 doi: 10.1016/j.envpol.2020.114862
    [54] 巨晓棠, 张翀. 论合理施氮的原则和指标[J]. 土壤学报, 2021, 58(1): 1−13

    JU X T, ZHANG C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2021, 58(1): 1−13
    [55] YANG Q L, LIU P, DONG S T, et al. Combined application of organic and inorganic fertilizers mitigates ammonia and nitrous oxide emissions in a maize field[J]. Nutrient Cycling in Agroecosystems, 2020, 117(1): 13−27 doi: 10.1007/s10705-020-10060-2
    [56] MATSUSHIMA M, LIM S S, KWAK J H, et al. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils[J]. Plant and Soil, 2009, 325(1/2): 187−196
    [57] LIU X D, CHEN L Y, HUA Z L, et al. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region[J]. Environmental Science and Pollution Research International, 2020, 27(8): 8386−8394 doi: 10.1007/s11356-019-07536-2
    [58] WANG X, XU S J, WU S H, et al. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in northern China[J]. Journal of Environmental Sciences, 2018, 66: 199−207 doi: 10.1016/j.jes.2017.05.016
    [59] SUN B, BAI Z H, BAO L J, et al. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes[J]. Environment International, 2020, 144: 105989 doi: 10.1016/j.envint.2020.105989
    [60] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80−90 doi: 10.1016/j.fcr.2015.09.011
    [61] XU J Z, PENG S Z, YANG S H, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements[J]. Agricultural Water Management, 2012, 104: 184−192 doi: 10.1016/j.agwat.2011.12.013
    [62] 苏芳, 丁新泉, 高志岭, 等. 华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J]. 中国环境科学, 2007, 27(3): 409−413 doi: 10.3321/j.issn:1000-6923.2007.03.025

    SU F, DING X Q, GAO Z L, et al. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain[J]. China Environmental Science, 2007, 27(3): 409−413 doi: 10.3321/j.issn:1000-6923.2007.03.025
    [63] XU J Z, LIU B Y, WANG H Y, et al. Ammonia volatilization and nitrogen leaching following top-dressing of urea from water-saving irrigated rice field: impact of two-split surge irrigation[J]. Paddy and Water Environment, 2019, 17(1): 45−51 doi: 10.1007/s10333-018-0682-7
    [64] ZHAO X, WANG S Q, XING G X. Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China[J]. Agriculture, Ecosystems & Environment, 2015, 202: 79−89
    [65] WANG W Y, YUAN J C, GAO S M, et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China[J]. Journal of Cleaner Production, 2020, 274: 122854 doi: 10.1016/j.jclepro.2020.122854
    [66] YAN L, ZHANG Z D, CHEN Y, et al. Effect of water and temperature on ammonia volatilization of maize straw returning[J]. Toxicological & Environmental Chemistry, 2016, 98(5/6): 638−647
    [67] SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97−105 doi: 10.1016/j.atmosenv.2018.02.050
    [68] SU W, LU J W, WANG W N, et al. Influence of rice straw mulching on seed yield and nitrogen use efficiency of winter oilseed rape (Brassica napus L.) in intensive rice-oilseed rape cropping system[J]. Field Crops Research, 2014, 159: 53−61 doi: 10.1016/j.fcr.2014.01.007
    [69] WANG J, WANG D J, ZHANG G, et al. Effect of wheat straw application on ammonia volatilization from urea applied to a paddy field[J]. Nutrient Cycling in Agroecosystems, 2012, 94(1): 73−84 doi: 10.1007/s10705-012-9527-8
    [70] LI J, YANG H, ZHOU F, et al. Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil[J]. Agricultural Water Management, 2019, 211: 132−141 doi: 10.1016/j.agwat.2018.09.049
    [71] SHA Z P, MA X, LOICK N, et al. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: field and laboratory investigation[J]. Journal of Cleaner Production, 2020, 258: 121025 doi: 10.1016/j.jclepro.2020.121025
    [72] SIGURDARSON J J, SVANE S, KARRING H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 241−258 doi: 10.1007/s11157-018-9466-1
    [73] SUN H J, ZHANG H L, POWLSON D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J]. Field Crops Research, 2015, 173: 1−7 doi: 10.1016/j.fcr.2014.12.012
    [74] LI W Y, XIAO Q, HU C S, et al. A comparison of the efficiency of different urease inhibitors and their effects on soil prokaryotic community in a short-term incubation experiment[J]. Geoderma, 2019, 354: 113877 doi: 10.1016/j.geoderma.2019.07.035
    [75] ZHU H, YANG J S, YAO R J, et al. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil[J]. CATENA, 2020, 190: 104527 doi: 10.1016/j.catena.2020.104527
    [76] SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512−518 doi: 10.1016/j.scitotenv.2018.12.450
    [77] WEI W L, YANG H Q, FAN M S, et al. Biochar effects on crop yields and nitrogen loss depending on fertilization[J]. Science of the Total Environment, 2020, 702: 134423 doi: 10.1016/j.scitotenv.2019.134423
    [78] SUN H J, LU H Y, CHU L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil[J]. Science of the Total Environment, 2017, 575: 820−825 doi: 10.1016/j.scitotenv.2016.09.137
    [79] 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2): 922−931

    YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922−931
    [80] DE LA ROSA J M, ROSADO M, PANEQUE M, et al. Effects of aging under field conditions on biochar structure and composition: implications for biochar stability in soils[J]. Science of the Total Environment, 2018, 613/614: 969−976 doi: 10.1016/j.scitotenv.2017.09.124
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  216
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-02-15
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回