留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钾硅肥配施对胡麻茎秆木质素代谢及抗倒伏特性的影响

徐清 郭丽琢 刘亚辉 高玉红

徐清, 郭丽琢, 刘亚辉, 高玉红. 钾硅肥配施对胡麻茎秆木质素代谢及抗倒伏特性的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1451−1463 doi: 10.12357/cjea.20210849
引用本文: 徐清, 郭丽琢, 刘亚辉, 高玉红. 钾硅肥配施对胡麻茎秆木质素代谢及抗倒伏特性的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1451−1463 doi: 10.12357/cjea.20210849
XU Q, GUO L Z, LIU Y H, GAO Y H. Effects of potassium and silicon fertilization on lignin metabolism and lodging resistance of oil flax stem[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1451−1463 doi: 10.12357/cjea.20210849
Citation: XU Q, GUO L Z, LIU Y H, GAO Y H. Effects of potassium and silicon fertilization on lignin metabolism and lodging resistance of oil flax stem[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1451−1463 doi: 10.12357/cjea.20210849

钾硅肥配施对胡麻茎秆木质素代谢及抗倒伏特性的影响

doi: 10.12357/cjea.20210849
基金项目: 财政部和农业农村部国家现代农业产业技术体系(CARS-14-1-16)资助
详细信息
    作者简介:

    徐清, 研究方向为作物栽培与生理生态。E-mail: 2542665068@qq.com

    通讯作者:

    郭丽琢, 研究方向为作物栽培与生理生态研究。E-mail: guolz@gsau.edu.cn

  • 中图分类号: S565.9

Effects of potassium and silicon fertilization on lignin metabolism and lodging resistance of oil flax stem

Funds: This study was supported by the China Agriculture Research System of Mninistry of Finance and Ministry of Agriculture and Rural Affairs, the People’s Republic of China.
More Information
  • 摘要: 通过田间试验, 探讨了钾硅养分耦合对胡麻茎秆木质素代谢及抗倒伏特性的调控效应, 以期为肥料运筹抗倒伏提供依据。选用三因素裂区试验设计, 以两个胡麻品种‘陇亚11号’(V1)、‘定亚23号’(V2)为主区因素; 钾肥为副区因素, 设0 kg(K2O)∙hm−2 (K0)、52.5 kg(K2O)∙hm−2 (K1)、105 kg(K2O)∙hm−2 (K2) 3个水平; 硅肥为副副区因素, 设0 kg(SiO2)∙hm−2 (Si0)、90 kg(SiO2)∙hm−2 (Si1)两个水平。结果表明, V1和V2的茎秆木质素含量及代谢酶活性具有显著差异。施钾显著提高了木质素含量及苯丙氨酸解氨酶(PAL)、4-香豆酸辅酶A连接酶(4CL)和肉桂醇脱氢酶(CAD)的活性, 且始终保持K1>K2>K0的趋势; 施硅对上述试验指标无显著的主效应, 但钾硅肥互作效应显著提升了现蕾前的木质素含量及整个生育期的PAL、4CL和CAD的活性, 且K1Si1处理的提升效果最佳。木质素含量与整个生育期的CAD活性极显著或显著正相关, CAD活性的提高是胡麻茎秆木质素含量增加的重要酶学基础。V1的抗折力和抗倒伏指数极显著高于V2; 与K0相比, K1显著提高了茎秆抗折力和抗倒伏指数, K2水平下变化趋势相反, 且始终保持K1>K0>K2的趋势; 施硅可提高茎秆的抗折力和抗倒伏指数, 且低钾配施硅肥可显著提升茎秆抗折力和抗倒伏指数。木质素含量与抗折力、抗倒伏指数显著正相关, 与实际倒伏率负相关。低钾处理及低钾配施硅肥均显著提高了籽粒产量。综上, ‘陇亚11号’胡麻的抗倒伏性能显著优于‘定亚23号’; 52.5 kg(K2O)∙hm−2+90 kg(SiO2)∙hm−2对木质素含量及其代谢酶活性、抗倒伏能力和籽粒产量的提升效果最佳, 且单施钾肥对木质素代谢及抗倒伏特性的提升效果优于单施硅肥。
  • 图  1  钾硅肥配施下不同胡麻品种各生育时期的茎秆木质素含量

    V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1和K2分别表示施钾量为0 kg(K2O)∙hm−2、52.5 kg(K2O)∙hm−2和105 kg(K2O)∙hm−2; Si0和Si1分别表示施硅量为0 kg(SiO2)∙hm−2和90 kg(SiO2)∙hm−2。同一时期不同小写字母表示处理间在P<0.05水平差异显著。V1 and V2 are flax varieties ‘Longya 11’ and ‘Dingya 23’, respectively. K0, K1 and K2 represent potassium application rates of 0, 52.5 and 105 kg(K2O)∙hm−2, respectively; Si0 and Si1 represent silicon application rates of 0 and 90 kg(SiO2)∙hm−2, respectively. Different lowercase letters in the same growth stage indicate significant differences among treatments at P<0.05 level.

    Figure  1.  Stem lignin contents of two flax varieties at different growth stages under combined application of potassium and silicon fertilizers

    图  2  钾硅肥配施对胡麻不同生育时期茎秆木质素代谢酶活性的影响

    V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1和K2分别表示施钾量为0 kg(K2O)∙hm−2、52.5 kg(K2O)∙hm−2和105 kg(K2O)∙hm−2; Si0和Si1分别表示施硅量为0 kg(SiO2)∙hm−2和90 kg(SiO2)∙hm−2。同一时期不同小写字母表示处理间在P<0.05水平差异显著。V1 and V2 are flax varieties ‘Longya 11’ and ‘Dingya 23’, respectively. K0, K1 and K2 represent potassium application rates of 0, 52.5 and 105 kg(K2O)∙hm−2, respectively; Si0 and Si1 represent silicon application rates of 0 and 90 kg(SiO2)∙hm−2, respectively. Different lowercase letters in the same growth stage indicate significant differences among treatments at P<0.05 level.

    Figure  2.  Effects of combined application of potassium and silicon fertilizers on lignin metabolism enzymes activities in stems at different growth stages of different flax varities

    图  3  钾硅肥配施下胡麻不同生育时期的茎秆抗折力

    V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1和K2分别表示施钾量为0 kg(K2O)∙hm−2、52.5 kg(K2O)∙hm−2和105 kg(K2O)∙hm−2; Si0和Si1分别表示施硅量为0 kg(SiO2)∙hm−2和90 kg(SiO2)∙hm−2。同一时期不同小写字母表示处理间在P<0.05水平差异显著。V1 and V2 are flax varieties ‘Longya 11’ and ‘Dingya 23’, respectively. K0, K1 and K2 represent potassium application rates of 0, 52.5 and 105 kg(K2O)∙hm−2, respectively; Si0 and Si1 represent silicon application rates of 0 and 90 kg(SiO2)∙hm−2, respectively. Different lowercase letters in the same growth stage indicate significant differences among treatments at P<0.05 level.

    Figure  3.  Stems breaking resistance under combined application of potassium and silicon fertilizers at different growth stages

    图  4  钾硅肥配施下胡麻不同生育时期茎秆的抗倒伏指数

    V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1和K2分别表示施钾量为0 kg(K2O)∙hm−2、52.5 kg(K2O)∙hm−2和105 kg(K2O)∙hm−2; Si0和Si1分别表示施硅量为0 kg(SiO2)∙hm−2和90 kg(SiO2)∙hm−2。同一时期不同小写字母表示处理间在P<0.05水平差异显著。V1 and V2 are flax varieties ‘Longya 11’ and ‘Dingya 23’, respectively. K0, K1 and K2 represent potassium application rates of 0, 52.5 and 105 kg(K2O)∙hm−2, respectively; Si0 and Si1 represent silicon application rates of 0 and 90 kg(SiO2)∙hm−2, respectively. Different lowercase letters in the same growth stage indicate significant differences among treatments at P<0.05 level.

    Figure  4.  Lodging resistance index of flax stem under combined application of potassium and silicon fertilizers at different growth stages

    图  5  钾硅肥配施对不同胡麻品种产量的影响

    V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1和K2分别表示施钾量为0 kg(K2O)∙hm−2、52.5 kg(K2O)∙hm−2和105 kg(K2O)∙hm−2; Si0和Si1分别表示施硅量为0 kg(SiO2)∙hm−2和90 kg(SiO2)∙hm−2。不同小写字母表示处理间在P<0.05水平差异显著。V1 and V2 are flax varieties ‘Longya 11’ and ‘Dingya 23’, respectively. K0, K1 and K2 represent potassium application rates of 0, 52.5 and 105 kg(K2O)∙hm−2, respectively; Si0 and Si1 represent silicon application rates of 0 and 90 kg(SiO2)∙hm−2, respectively. Different lowercase letters indicate significant differences among treatments at P<0.05 level.

    Figure  5.  Effect of combined application of potassium and silicon fertilizers on yield of different flax varieties

    表  1  钾硅肥配施对胡麻不同生育时期茎秆木质素含量影响的方差分析(P值)

    Table  1.   P values in variance analysis of the effects of potassium and silicon fertilizers on lignin content of stems at different growth stages of different flax varieties

    处理 Treatment分茎期 Branching现蕾期 Budding盛花期 Anthesis青果期 Kernel成熟期 Maturity
    品种 Variety (V)0.1150.0860.032*0.0830.386
    钾肥 Potassium fertilizer (K)0.027*0.049*0.010**0.000**0.035*
    硅肥 Silicon fertilizer (Si)0.9130.3450.4810.1090.103
    V×K0.5310.3550.9400.6730.795
    V×Si0.8560.4080.7000.9740.755
    K×Si0.010**0.011*0.2820.1140.443
    V×K×Si0.032*0.1530.9870.8490.676
      *: P<0.05; **: P<0.01.
    下载: 导出CSV

    表  2  钾硅肥配施对胡麻不同生育时期茎秆木质素合成相关酶活性影响的方差分析(P值)

    Table  2.   P values in variance analysis of the effects of potassium and silicon fertilizers on lignin metabolism-related enzymes activities of stems at different growth stages of different flax varieties

    酶 Enzyme处理 Treatment分茎期 Branching现蕾期 Budding盛花期 Anthesis青果期 Kernel
    苯丙氨酸解氨酶
    Phenylalnine ammonialyase (PAL)
    品种 Variety (V)0.6000.3310.1660.003**
    钾肥 Potassium fertilizer (K)0.000**0.000**0.000**0.000**
    硅肥 Silicon fertilizer (Si)0.5520.2190.4170.039*
    V×K0.002**0.2820.000**0.042*
    V×Si0.5840.2100.5230.003**
    K×Si0.000**0.000**0.000**0.000**
    V×K×Si0.0670.5420.6160.012*
    4-香豆酸: CoA连接酶
    4-coumaric acid: COA ligase (4CL)
    品种 Variety (V)0.001**0.020*0.001**0.011*
    钾肥 Potassium fertilizer (K)0.000**0.000**0.011*0.004**
    硅肥 Silicon fertilizer (Si)0.010**0.4030.1640.213
    V×K0.1070.0720.0800.104
    V×Si0.7880.4090.1040.662
    K×Si0.000**0.002**0.002**0.010**
    V×K×Si0.1040.7550.033*0.646
    肉桂醇脱氢酶
    Cinnamyl alcohol dehydrogenase (CAD)
    品种 Variety (V)0.8000.036*0.011*0.171
    钾肥 Potassium fertilizer (K)0.000**0.000**0.000**0.000**
    硅肥 Silicon fertilizer (Si)0.7710.8900.001**0.118
    V×K0.000**0.0590.0930.000**
    V×Si0.1130.0540.6100.000**
    K×Si0.000**0.000**0.011*0.000**
    V×K×Si0.0590.048*0.2370.001**
      *: P<0.05; **: P<0.01.
    下载: 导出CSV

    表  3  胡麻不同生育时期茎秆木质素含量和代谢相关酶活性的相关系数

    Table  3.   Correlation coefficients between lignin content and its metabolism-related enzymes activities in flax stem at different growth stages


    Enzyme
    木质素 Lignin
    分茎期
    Branching
    现蕾期
    Budding
    盛花期
    Anthesis
    青果期
    Kernel
    苯丙氨酸解氨酶 Phenylalnine ammonialyase (PAL) 0.427** 0.535** 0.347* −0.228
    4-香豆酸: CoA连接酶 4-coumaric acid:COA ligase (4CL) 0.257 0.421* −0.269 −0.015
    肉桂醇脱氢酶 Cinnamyl alcohol dehydrogenase (CAD) 0.393* 0.451** 0.502** 0.402*
      *: P<0.05; **: P<0.01.
    下载: 导出CSV

    表  4  钾硅肥配施对胡麻不同生育时期茎秆抗折力影响的方差分析(P值)

    Table  4.   P value in variance analysis of the effects of potassium and silicon fertilizers on stem breaking resistance of different flax varieties

    处理 Treatment现蕾期 Budding盛花期 Anthesis青果期 Kernel成熟期 Maturity
    品种 Variety (V)0.001**0.001**0.001**0.005**
    钾肥 Potassium fertilizer (K)0.002**0.000**0.000**0.019*
    硅肥 Silicon fertilizer (Si)0.0660.000**0.000**0.067
    V×K0.022*0.000**0.010**0.045*
    V×Si0.0750.6600.001**0.016*
    K×Si0.000**0.000**0.000**0.009**
    V×K×Si0.001**0.002**0.037*0.024*
      *: P<0.05; **: P<0.01.
    下载: 导出CSV

    表  5  钾硅肥处理对胡麻不同生育时期抗倒伏指数影响的方差分析(P值)

    Table  5.   P value in variance analysis of the effects of potassium and silicon fertilizers on lodging resistance index at different growth stages of different flax varieties

    处理 Treatment现蕾期 Budding盛花期 Anthesis青果期 Kernel成熟期 Maturity
    品种 Variety (V)0.000**0.000**0.000**0.000**
    钾肥 Potassium fertilizer (K)0.0720.045*0.000**0.406
    硅肥 Silicon fertilizer (Si)0.1040.002**0.1290.756
    V×K0.2660.8500.044*0.424
    V×Si0.2070.2020.028*0.146
    K×Si0.6850.016*0.046*0.569
    V×K×Si0.1480.016*0.0610.693
      *: P<0.05; **: P<0.01.
    下载: 导出CSV

    表  6  胡麻不同生育时期茎秆木质素含量与抗倒伏能力相关分析

    Table  6.   Correlation analysis of lignin content and lodging resistance indexes in flax stem at different growth stages

    抗倒伏指标
    Lodging resistance properties
    木质素 Lignin
    现蕾期 Budding盛花期 Anthesis青果期 Kernel成熟期 Maturity
    抗折力 Stem breaking resistance0.495**0.726**0.490**0.222
    抗倒伏指数 Lodging resistance index0.3220.720**0.555**0.091
    倒伏率 Lodging rate−0.556**−0.314
      **: P<0.01.
    下载: 导出CSV
  • [1] 谢亚萍, 牛俊义, 王利民, 等. 磷对旱地胡麻氮吸收转运及利用的影响[J]. 中国农学通报, 2021, 37(25): 17−26 doi: 10.11924/j.issn.1000-6850.casb2020-0711

    XIE Y P, NIU J Y, WANG L M, et al. Effects of phosphorus on nitrogen absorption, translocation and utilization in dryland flax[J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 17−26 doi: 10.11924/j.issn.1000-6850.casb2020-0711
    [2] 孙旭映, 庞朝云, 李宝梓, 等. 甘肃冰雹灾害对农业的影响及其防御对策研究[J]. 干旱区资源与环境, 2004(5): 34−37 doi: 10.3969/j.issn.1003-7578.2004.05.007

    SUN X Y, PANG Z Y, LI B Z, et al. Defense countermeasures for hail-calamity in Gansu agriculture[J]. Journal of Arid Land Resources and Environment, 2004(5): 34−37 doi: 10.3969/j.issn.1003-7578.2004.05.007
    [3] 杨东贵, 陆万芳. 倒伏对胡麻农艺性状及品质的影响[J]. 甘肃农业科技, 2012(11): 15−17

    YANG D G, LU W F. Effect of lodging on agronomic traits and quality in oil flax[J]. Gansu Agricultural Science and Technology, 2012(11): 15−17
    [4] 李政升, 麻丽娟, 董宏伟, 等. 钾肥用量对不同品种旱地胡麻抗倒伏能力及产量的影响[J]. 中国农学通报, 2021, 37(23): 69−76 doi: 10.11924/j.issn.1000-6850.casb2020-0597

    LI Z S, MA L J, DONG H W, et al. Effects of potassium fertilizer application rate on lodging resistance and yield of oil flax varieties in dry land[J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 69−76 doi: 10.11924/j.issn.1000-6850.casb2020-0597
    [5] 朱新开, 王祥菊, 郭凯泉, 等. 小麦倒伏的茎秆特征及对产量与品质的影响[J]. 麦类作物学报, 2006, 26(1): 87−92 doi: 10.3969/j.issn.1009-1041.2006.01.020

    ZHU X K, WANG X J, GUO K Q, et al. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality[J]. Journal of Triticeae Crops, 2006, 26(1): 87−92 doi: 10.3969/j.issn.1009-1041.2006.01.020
    [6] 熊明彪, 雷孝章, 田应兵, 等. 钾素对小麦茎、叶解剖结构的影响[J]. 麦类作物学报, 2003, 23(3): 53−57 doi: 10.3969/j.issn.1009-1041.2003.03.014

    XIONG M B, LEI X Z, TIAN Y B, et al. Effects of potassium on wheat stem-leaf anatomical structure[J]. Journal of Triticeae Crops, 2003, 23(3): 53−57 doi: 10.3969/j.issn.1009-1041.2003.03.014
    [7] 何巧林, 张绍文, 李应洪, 等. 硅钾配施对水稻茎秆性状和抗倒伏能力的影响[J]. 杂交水稻, 2017, 32(1): 66−73

    HE Q L, ZHANG S W, LI Y H, et al. Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice[J]. Hybrid Rice, 2017, 32(1): 66−73
    [8] 金正勋, 郑冠龙, 朱立楠, 等. 不同氮钾肥施用方法对水稻产量及抗倒伏性的影响[J]. 东北农业大学学报, 2015, 46(3): 9−14 doi: 10.3969/j.issn.1005-9369.2015.03.002

    JIN Z X, ZHENG G L, ZHU L N, et al. Effect of different nitrogen and potassium fertilizer applications on rice yield and lodging resistance[J]. Journal of Northeast Agricultural University, 2015, 46(3): 9−14 doi: 10.3969/j.issn.1005-9369.2015.03.002
    [9] 李波, 张吉旺, 崔海岩, 等. 施钾量对高产夏玉米抗倒伏能力的影响[J]. 作物学报, 2012, 38(11): 2093−2099

    LI B, ZHANG J W, CUI H Y, et al. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions[J]. Acta Agronomica Sinica, 2012, 38(11): 2093−2099
    [10] 高建强. 不同氮、钾水平对花生农艺性状及产量的影响[J]. 山东农业科学, 2014, 46(8): 84−86 doi: 10.3969/j.issn.1001-4942.2014.08.022

    GAO J Q. Effects of different nitrogen and potassium levels on agronomic characters and yield of peanut[J]. Shandong Agricultural Sciences, 2014, 46(8): 84−86 doi: 10.3969/j.issn.1001-4942.2014.08.022
    [11] 刘玄, 董宏伟, 高玉红, 等. 不同供钾水平下胡麻木质素代谢及其抗倒伏特性研究[J]. 中国生态农业学报(中英文), 2021, 29(5): 821−832

    LIU X, DONG H W, GAO Y H, et al. Lignin metabolism and lodging resistance characteristics of oil flax at different potassium levels[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 821−832
    [12] XU Z Y, ZHANG D D, HU J, et al. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom[J]. BMC Bioinformatics, 2009, 10(S11): S3 doi: 10.1186/1471-2105-10-S11-S3
    [13] 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J]. 植物学报, 2001(8): 771−779

    WEI J H, SONG Y R. Recent advances in study of lignin biosynthesis and manipulation[J]. Acta Botanica Sinica, 2001(8): 771−779
    [14] KRAUSE J, REZNIK H. Investigation on flavol accumulation in fagopyrum esculorrtum moench as influenced by P and N deficiency I[J]. Pllan Zon Physiology, 1976, 79: 392−400
    [15] LI W H, BI Y, GE Y H, et al. Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit[J]. European Food Research and Technology, 2012, 234: 137−145 doi: 10.1007/s00217-011-1611-9
    [16] 赵淑娟, 刘涤, 胡之璧. 植物4-香豆酸: 辅酶A连接酶[J]. 植物生理学通讯, 2006, 42(3): 529−538

    ZHAO S J, LIU D, HU Z B. 4-coumarate: coenzyme: a ligase in plant[J]. Plant Physiology Journal, 2006, 42(3): 529−538
    [17] 陈晓光, 石玉华, 王成雨, 等. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J]. 中国农业科学, 2011, 44(17): 3529−3536 doi: 10.3864/j.issn.0578-1752.2011.17.005

    CHEN X G, SHI Y H, WANG C Y, et al. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat[J]. Scientia Agricultura Sinica, 2011, 44(17): 3529−3536 doi: 10.3864/j.issn.0578-1752.2011.17.005
    [18] 李文娟, 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系[J]. 中国农业科学, 2010, 43(4): 729−736 doi: 10.3864/j.issn.0578-1752.2010.04.009

    LI W J, HE P, JIN J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot[J]. Scientia Agricultura Sinica, 2010, 43(4): 729−736 doi: 10.3864/j.issn.0578-1752.2010.04.009
    [19] 邓文, 青先国, 王思哲, 等. 施硅对超级杂交稻抗倒性的影响[J]. 杂交水稻, 2009, 24(1): 56−61 doi: 10.3969/j.issn.1005-3956.2009.01.022

    DENG W, QING X G, WANG S Z, et al. Effects of applying silicon fertilizer on lodging resistance of super hybrid rice[J]. Hybrid Rice, 2009, 24(1): 56−61 doi: 10.3969/j.issn.1005-3956.2009.01.022
    [20] 邓权清. 硅对甘蔗黑穗病抗性的影响及生理基础[D]. 广州: 华南农业大学, 2018: 39–40

    DENG Q Q. Effect and physiological basis of exogenous silicon on smut resistance of sugarcane[D]. Guangzhou: South China Agricultural University, 2018: 39–40
    [21] 陈道钳. 硅增强高粱耐盐及耐缺钾能力机制研究[D]. 杨凌: 西北农林科技大学, 2017: 20–21

    CHEN D Q. Mechanisms of silicon on enhancing salt stress and potassium deficiency tolerance in Sorghum seedlings[D]. Yangling: Northwest A & F University, 2017: 20–21
    [22] MIAO B H, HAN X G, ZHANG W H. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium[J]. Annals of Botany, 2010, 105(6): 967−973 doi: 10.1093/aob/mcq063
    [23] 石扬娟. 施肥方式和栽插密度对水稻抗倒伏性状影响研究[D]. 合肥: 安徽农业大学, 2008: 38–40

    SHI Y J. Studies on traits correlating to lodging resistance under the different fertilization manner and planting density in rice[D]. Hefei: Anhui Agricultural University, 2008: 38–40
    [24] 何巧林. 钾硅配施对水稻抽穗扬花期耐高温能力及抗倒伏性的影响[D]. 雅安: 四川农业大学, 2017: 45–46

    HE Q L. Effects of potassium and silicon fertilizer combination on high temperature resistance during heading and flowering period and lodging resistance of rice[D]. Ya’an: Sichuan Agricultural University, 2017: 45–46
    [25] 范存留, 杨国涛, 范永义, 等. 钾、硅肥处理对杂交水稻Ⅱ优838抗倒伏性的作用研究[J]. 云南大学学报(自然科学版), 2015, 37(4): 623−631

    FAN C L, YANG G T, FAN Y Y, et al. Effect of potassium and silicon fertilizer treatments on lodging resistance of hybrid rice ⅡYou 838[J]. Journal of Yunnan University (Natural Sciences Edition), 2015, 37(4): 623−631
    [26] 范永义. 硅钾处理对杂交水稻B优827抗倒伏性和产量的影响[D]. 绵阳: 西南科技大学, 2018: 22–27

    FAN Y Y. The effects on lodging resistance and yield with potassium silicate treatments in hybrid rice B You 827[D]. Mianyang: Southwest University of Science and Technology, 2018: 22–27
    [27] 范永义, 杨国涛, 陈敬, 等. 硅钾肥配施对水稻茎秆理化性状及抗倒伏能力的影响[J]. 西北植物学报, 2017, 37(4): 751−757 doi: 10.7606/j.issn.1000-4025.2017.04.751

    FAN Y Y, YANG G T, CHEN J, et al. The physical, chemical characters and lodging resistance of rice stem with silicon potassium collocation application[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(4): 751−757 doi: 10.7606/j.issn.1000-4025.2017.04.751
    [28] 胡尚连, 曹颖, 卢学琴, 等. 氮钾对慈竹纤维素和木质素动态积累的调控效应[J]. 植物研究, 2009, 29(6): 728−733 doi: 10.7525/j.issn.1673-5102.2009.06.015

    HU S L, CAO Y, LU X Q, et al. Effects of nitrogen and potassium on dynamic accumulation of lignin and cellulose in Neosinocalamus affinis[J]. Bulletin of Botanical Research, 2009, 29(6): 728−733 doi: 10.7525/j.issn.1673-5102.2009.06.015
    [29] 汪磊, 严兴初, 谭美莲. 我国胡麻施肥技术研究进展[J]. 湖北农业科学, 2011, 50(2): 217−220 doi: 10.3969/j.issn.0439-8114.2011.02.001

    WANG L, YAN X C, TAN M L. Research progress of fertilization technology of flax (Linum usitatissimum L.) in China[J]. Hubei Agricultural Sciences, 2011, 50(2): 217−220 doi: 10.3969/j.issn.0439-8114.2011.02.001
    [30] 高珍妮, 郭丽琢, 李丽, 等. 氮肥对胡麻茎秆木质素合成酶活性及其抗倒性的影响[J]. 中国油料作物学报, 2014, 36(5): 610−615 doi: 10.7505/j.issn.1007-9084.2014.05.008

    GAO Z N, GUO L Z, LI L, et al. Effects of nitrogen on oilseed flax stem lignin and relative enzyme and lodging resistance[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(5): 610−615 doi: 10.7505/j.issn.1007-9084.2014.05.008
    [31] 刘亚辉, 郭丽琢, 高玉红, 等. 钾硅肥配施对胡麻茎秆碳水化合物及抗倒性的影响[J]. 中国油料作物学报, 2022, 44(2): 410−423

    LIU Y H, GUO L Z, GAO Y H, et al. Effects of combined application of potassium and silicon fertilizer on carbohydrate and lodging resistance of oil flax stem[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(2): 410−423
    [32] 张珍林, 孙立, 刘莉彬, 等. 霍山石斛苯丙氨酸解氨酶活力测定条件的优化[J]. 枣庄学院学报, 2020, 37(5): 66−72 doi: 10.3969/j.issn.1004-7077.2020.05.011

    ZHANG Z L, SUN L, LIU L B, et al. Optimization of determination conditions for phenylalanine ammonia-lyase activity of Dendrobium huoshanense[J]. Journal of Zaozhuang University, 2020, 37(5): 66−72 doi: 10.3969/j.issn.1004-7077.2020.05.011
    [33] 汪灿, 阮仁武, 袁晓辉, 等. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系[J]. 作物学报, 2014, 40(10): 1846−1856 doi: 10.3724/SP.J.1006.2014.01846

    WANG C, RUAN R W, YUAN X H, et al. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat[J]. Acta Agronomica Sinica, 2014, 40(10): 1846−1856 doi: 10.3724/SP.J.1006.2014.01846
    [34] 孙旭初. 水稻茎秆抗倒性的研究[J]. 中国农业科学, 1987, 20(4): 32−37

    SUN X C. Studies on the resistance of the culm of rice to lodging[J]. Scientia Agricultura Sinica, 1987, 20(4): 32−37
    [35] 林葵, 黄祥辉, 王隆华, 等. 甜瓜子叶不定芽分化过程中PAL活性和木质素含量变化研究[J]. 华东师范大学学报(自然科学版), 1996(2): 92–97

    LIN K, HUANG X H, WANG L H, et al. The change of PAL activity and lignin content during adventitious buds formation of Cotyledon in Cucumis melon L. [J]. Journal of East China Normal University (Natural Science), 1996(2): 92–97
    [36] 耿飒, 徐存拴, 李玉昌. 木质素的生物合成及其调控研究进展[J]. 西北植物学报, 2003, 23(1): 171−181 doi: 10.3321/j.issn:1000-4025.2003.01.033

    GENG S, XU C S, LI Y C. Advance in biosynthesis of lignin and its regulation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 171−181 doi: 10.3321/j.issn:1000-4025.2003.01.033
    [37] BOUDET A M, KAJITA S, GRIMA-PETTENATI J, et al. Lignins and lignocellulosics: a better control of synthesis for new and improved uses[J]. Trends in Plant Science, 2003, 8(12): 576−581 doi: 10.1016/j.tplants.2003.10.001
    [38] GUO D J, CHEN F, INOUE K, et al. Down regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. The Plant Cell, 2001, 13(1): 73 doi: 10.1105/tpc.13.1.73
    [39] RAES J, ROHDE A, CHRISTENSEN J H, et al. Genome-wide characterization of the lignification toolbox in Arabidopsis[J]. Plant Physiology, 2003, 133(3): 1051−1071 doi: 10.1104/pp.103.026484
    [40] 姚金保, 马鸿翔, 姚国才, 等. 小麦抗倒性研究进展[J]. 植物遗传资源学报, 2013, 14(2): 208−213 doi: 10.3969/j.issn.1672-1810.2013.02.003

    YAO J B, MA H X, YAO G C, et al. Research progress on lodging resistance in wheat (Triticum aestivum L.)[J]. Journal of Plant Genetic Resources, 2013, 14(2): 208−213 doi: 10.3969/j.issn.1672-1810.2013.02.003
    [41] 解新明, 赵燕慧, 霍松, 等. 象草不同品种木质素合成关键酶活性的动态变化[J]. 草地学报, 2010, 18(4): 523−527

    XIE X M, ZHAO Y H, HUO S, et al. Dynamic changes of enzyme activities related to lignin biosynthesis for elephantgrass cultivars[J]. Acta Agrestia Sinica, 2010, 18(4): 523−527
    [42] 杨向东. 木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究[D]. 北京: 中国农业科学院, 2006

    YANG X D. The study on the relationship between lignin biosynthesis manipulation and Brassica napus’ resistance to sclerotinia sclerotiorum and lodging[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006
    [43] 王庭杰. 水稻茎组织构建与木质素代谢对抗倒伏的影响[D]. 新乡: 河南师范大学, 2015

    WANG T J. Effect of stalk tissue and lignin metabolism on the lodging resistance resistance of rice[D]. Xinxiang: Henan Normal University, 2015
    [44] KOKUBO A, KYRAISHI S, SAKURAI N. Culm strength of barley: Correlation among maximum bending stress, cell wall dimensions, and cellulose content[J]. Plant Physiology, 1989, 91: 876−882 doi: 10.1104/pp.91.3.876
    [45] 高珍妮. 油用亚麻抗倒伏特性及对栽培措施的响应[D]. 兰州: 甘肃农业大学, 2015

    GAO Z N. Lodging resistance and the response to cultivation measures of oilseed flax[D]. Lanzhou: Gansu Agricultural University, 2015
    [46] 刘晓燕, 金继运, 何萍, 等. 氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系[J]. 中国农业科学, 2007, 40(12): 2780−2787 doi: 10.3321/j.issn:0578-1752.2007.12.017

    LIU X Y, JIN J Y, HE P, et al. Effect of potassium chloride on lignin metabolism and its relation to resistance of corn to stalk rot[J]. Scientia Agricultura Sinica, 2007, 40(12): 2780−2787 doi: 10.3321/j.issn:0578-1752.2007.12.017
    [47] 王千, 依艳丽, 张淑香. 不同钾肥对番茄幼苗酚类物质代谢作用的影响[J]. 植物营养与肥料学报, 2012, 18(3): 706−716 doi: 10.11674/zwyf.2012.11364

    WANG Q, YI Y L, ZHANG S X. Effects of different potassium on phenol metabolism of tomato seedlings[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 706−716 doi: 10.11674/zwyf.2012.11364
    [48] 段榕琦, 张祖新, 杨淑华, 等. 钾对小麦叶片感染叶锈病的减轻作用及对几种酶活性的影响[J]. 南开大学学报(自然科学版), 2000, 33(3): 89−92

    DUAN R Q, ZHANG Z X, YANG S H, et al. The reducing effect of potassium on severity of wheat leaf rust and its effects on activities of several enzymes[J]. Journal of Nankai University (Natural Science Edition), 2000, 33(3): 89−92
    [49] 佘恒志, 聂蛟, 李英双, 等. 施硅量对甜荞倒伏及产量的影响[J]. 中国农业科学, 2018, 51(14): 2664−2674 doi: 10.3864/j.issn.0578-1752.2018.14.004

    SHE H Z, NIE J, LI Y S, et al. Effects of silicon application rate on common buckwheat lodging and yield[J]. Scientia Agricultura Sinica, 2018, 51(14): 2664−2674 doi: 10.3864/j.issn.0578-1752.2018.14.004
    [50] 向达兵, 郭凯, 雷婷, 等. 磷钾营养对套作大豆茎秆形态和抗倒性的影响[J]. 中国油料作物学报, 2010, 32(3): 395−402

    XIANG D B, GUO K, LEI T, et al. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 395−402
    [51] 李刘杰, 汪强, 韩燕来, 等. 钾水平对小麦酚类物质、木质素代谢和接种蚜虫群体动态的影响[J]. 中国农学通报, 2009, 25(17): 143−148

    LI L J, WANG Q, HAN Y L, et al. Study of effects of potassium levels on phenolic and lignin metabolism of wheat and dynamic of aphid population[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 143−148
    [52] 吴海兵, 刘道红, 钟鸣, 等. 水分管理和钾肥施用对水稻产量和抗倒伏性的影响[J]. 作物杂志, 2019(1): 127−133

    WU H B, LIU D H, ZHONG M, et al. Effects of water management and potash application on grain yield and lodging resistance of rice[J]. Crops, 2019(1): 127−133
    [53] 孙世贤, 戴俊英, 顾慰连. 氮、磷、钾肥对玉米倒伏及其产量的影响[J]. 中国农业科学, 1989, 22(3): 28−33, 96 doi: 10.3321/j.issn:0578-1752.1989.03.011

    SUN S X, DAI J Y, GU W L. Effect of nitrogen, phosphate and potash fertilizers on lodging and yielid in maize[J]. Scientia Agricultura Sinica, 1989, 22(3): 28−33, 96 doi: 10.3321/j.issn:0578-1752.1989.03.011
    [54] 陈良松, 张海珊. 安徽六安地区油菜氮磷钾肥效应研究[J]. 湖南农业科学, 2010(3): 52−54 doi: 10.3969/j.issn.1006-060X.2010.03.018

    CHEN L S, ZHANG H S. Effect of N, P and K fertilizer on rape in Lu’an, Anhui Province[J]. Hunan Agricultural Sciences, 2010(3): 52−54 doi: 10.3969/j.issn.1006-060X.2010.03.018
    [55] 钟飞鸣, 徐一兰, 竺传松, 等. 洞庭湖平原区稻田施硅量对水稻抗性和产量的影响[J]. 湖南农业科学, 2012(17): 58−60 doi: 10.3969/j.issn.1006-060X.2012.17.018

    ZHONG F M, XU Y L, ZHU C S, et al. Effects of different silicon fertilizer rates on resistant and yield of rice in Dongting Lake Plain[J]. Hunan Agricultural Science, 2012(17): 58−60 doi: 10.3969/j.issn.1006-060X.2012.17.018
    [56] 张翠珍, 郑国红, 邵长泉, 等. 硅肥对糯玉米产量、品质及抗倒性的影响[J]. 山东农业大学学报(自然科学版), 2007, 38(3): 360−362

    ZHANG C Z, ZHENG G H, SHAO C Q, et al. Effect of silicon fertilizer on yield, quality and lodging resistance of waxy corn[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2007, 38(3): 360−362
    [57] 刘唐兴, 官春云, 傅爱斌, 等. 不同抗倒性甘蓝型油菜主茎的硅钾含量初探[J]. 安徽农业科学, 2008, 36(9): 3595, 3608

    LIU T X, GUAN C Y, FU A B, et al. Preliminary study on the contents of Si and K in main stem of Brassica napus L. with different lodging resistance[J]. Journal of Anhui Agricultural Sciences, 2008, 36(9): 3595, 3608
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  91
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回