留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北平原小麦新型耕作施肥播种方式增产增效研究

徐萍 杨宪杰 冯佐龙 孙彦玲 杨震 张西群 邓学斌 史家益 张正斌

徐萍, 杨宪杰, 冯佐龙, 孙彦玲, 杨震, 张西群, 邓学斌, 史家益, 张正斌. 华北平原小麦新型耕作施肥播种方式增产增效研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 831−841 doi: 10.12357/cjea.20210851
引用本文: 徐萍, 杨宪杰, 冯佐龙, 孙彦玲, 杨震, 张西群, 邓学斌, 史家益, 张正斌. 华北平原小麦新型耕作施肥播种方式增产增效研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 831−841 doi: 10.12357/cjea.20210851
XU P, YANG X J, FENG Z L, SUN Y L, YANG Z, ZHANG X Q, DENG X B, SHI J Y, ZHANG Z B. Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 831−841 doi: 10.12357/cjea.20210851
Citation: XU P, YANG X J, FENG Z L, SUN Y L, YANG Z, ZHANG X Q, DENG X B, SHI J Y, ZHANG Z B. Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 831−841 doi: 10.12357/cjea.20210851

华北平原小麦新型耕作施肥播种方式增产增效研究

doi: 10.12357/cjea.20210851
基金项目: 河北省重点研发计划项目(20326403D)资助
详细信息
    作者简介:

    徐萍, 主要研究方向为粮食丰产增效科技创新。E-mail: xuping@sjziam.ac.cn

    通讯作者:

    张正斌, 主要研究方向为黄淮海现代农业。E-mail: zzb@sjziam.ac.cn

  • 中图分类号: S513

Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain

Funds: The study was supported by the Key Research and Development Program of Hebei Province (20326403D).
More Information
  • 摘要: 华北平原是我国夏玉米-冬小麦主产区, 但长期大面积免耕播种玉米和旋耕播种小麦, 导致耕层普遍变浅, 增产增效幅度下降, 同时华北平原又是地下水严重超采区和现代节水农业发展重点区。为了打破犁底层、提高水分和养分等资源利用效率, 减少耕种作业次数、降低生产成本并增产增效, 本研究采用裂区试验设计, 主区为前茬设置免耕玉米播种和遁耕分层施肥玉米播种2个处理, 免耕玉米播种主区里设置人工施肥-旋耕-小麦条播(T1)、人工施肥-旋耕深松-小麦条播(T2) 2个副区; 玉米遁耕分层施肥处理主区后茬为人工施肥-旋耕-小麦条播(T3)、旋耕深松分层施肥小麦宽幅匀播(T4) 2个副区处理, 在分蘖期、拔节期、开花期、灌浆期和成熟期, 对小麦生长发育、干物质积累和产量构成性状进行了调查和差异比较; 最后对小麦水分利用效率和偏氮肥生产力、玉米-小麦周年总产及产出/投入比进行了分析。结果表明, T4处理模式明显能够降低0~40 cm耕层土壤容重, 增加深层土壤含水率, 同时优化了耕层养分分布, 增加了小麦株高、分蘖、地上部干物质重量、0~40 cm耕层的根干重, 进而提高了单位面积穗数和穗粒数, 实现节水高产; 籽粒产量表现为T4 (8333.75 kg∙hm−2)>T3 (8222.63 kg∙hm−2)>T2 (7778.17 kg∙hm−2)>T1 (7000.35 kg∙hm−2); T4、T3、T2处理分别比T1处理显著增产19.05%、17.46%和11.1%; 提高了水分利用效率和偏氮肥生产力; T4处理累计全年粮食总产达19 469.7 kg∙hm−2, 超过了吨粮田(15 000 kg∙hm−2), 产出/投入比达3.76, 是华北平原玉米-小麦周年节水绿色提质增产增效的耕作模式。本文揭示了不同耕作施肥播种条件下, 小麦产量形成的生长发育特征和增产要素及玉米-小麦周年增产增效特征。建议加快在华北平原示范推广“小麦旋耕深松分层施肥宽幅匀播技术”。
  • 图  1  研究区小麦生育期降雨量(2020—2021年)

    Figure  1.  Precipitation during wheat growth season of 2020−2021 in the study area

    图  2  不同耕作处理土壤容重(A)和土壤含水率(B)差异比较

    T1: 玉米免耕播种+人工施肥-小麦旋耕-条播; T2: 玉米免耕播种+人工施肥-小麦旋耕深松一体机-条播; T3: 玉米遁耕分层施肥+人工施肥-小麦旋耕-条播; T4: 玉米遁耕分层施肥+小麦旋耕深松分层施肥宽幅匀播。不同小写字母表示同一土层4个处理间差异显著(P<0.05)。T1: no-tillage seeding of corn, and artificial fertilization-rotary tillage and drill sowing of wheat; T2: no-tillage seeding of corn, and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat; T3: deep tillage-delamination fertilization and sowing of corn, and artificial fertilization-rotary tillage and strip seeding of wheat; T4: deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat. Different lowercase letters mean significances among four treatments in the same soil layer at P<0.05 level.

    Figure  2.  Comparison of soil bulk density (A) and soil water content (B) under different tillage treatments

    图  3  不同耕作处理在不同土层中全氮(A)、碱解氮(B)、速效磷(C)和速效钾(D)含量差异比较

    T1: 玉米免耕播种+人工施肥-小麦旋耕-条播; T2: 玉米免耕播种+人工施肥-小麦旋耕深松一体机-条播; T3: 玉米遁耕分层施肥+人工施肥-小麦旋耕-条播; T4: 玉米遁耕分层施肥+小麦旋耕深松分层施肥宽幅匀播。不同小写字母表示同一处理两个土层间差异显著(P<0.05)。T1: no-tillage seeding of corn, and artificial fertilization-rotary tillage and drill sowing of wheat; T2: no-tillage seeding of corn, and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat; T3: deep tillage-delamination fertilization and sowing of corn, and artificial fertilization-rotary tillage and strip seeding of wheat; T4: deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat. Different lowercase letters mean significances between two soil layers in the same treatment at P<0.05 level.

    Figure  3.  Contents of total nitrogen (A), alkali-hydrolysis nitrogen (B), available phosphorus (C) and available potassium (D) under different tillage treatments

    图  4  不同耕作处理下小麦不同生育期株高(A)、分蘖数(B)、地上部干物质量(C)和根干重(D)的差异

    T1: 玉米免耕播种+人工施肥-小麦旋耕-条播; T2: 玉米免耕播种+人工施肥-小麦旋耕深松一体机-条播; T3: 玉米遁耕分层施肥+人工施肥-小麦旋耕-条播; T4: 玉米遁耕分层施肥+小麦旋耕深松分层施肥宽幅匀播。不同小写字母表示同一生育期4个处理间差异显著(P<0.05)。T1: no-tillage seeding of corn, and artificial fertilization-rotary tillage and drill sowing of wheat; T2: no-tillage seeding of corn, and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat; T3: deep tillage-delamination fertilization and sowing of corn, and artificial fertilization-rotary tillage and strip seeding of wheat; T4: deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat. TS: tillering stage; JS: jointing stage; FS: flowering stage; FP: filling period; MS: mature stage. Different lowercase letters mean significances among four treatments in the same growth stage at P<0.05 level.

    Figure  4.  Plant height (A), tillage number (B), shoot dry weight (C) and root dry weight (D) of wheat at different growth stages under different tillage treatments

    图  5  不同耕作处理下小麦株高(A)、穗数(B)、每穗小穗数(C)、穗粒数(D)、千粒重(E)、生物学产量(F)、产量(G)和收获指数(H)的差异

    T1: 玉米免耕播种+人工施肥-小麦旋耕-条播; T2: 玉米免耕播种+人工施肥-小麦旋耕深松一体机-条播; T3: 玉米遁耕分层施肥+人工施肥-小麦旋耕-条播; T4: 玉米遁耕分层施肥+小麦旋耕深松分层施肥宽幅匀播。不同小写字母表示不同处理间差异显著(P<0.05)。T1: no-tillage seeding of corn, and artificial fertilization-rotary tillage and drill sowing of wheat; T2: no-tillage seeding of corn, and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat; T3: deep tillage-delamination fertilization and sowing of corn, and artificial fertilization-rotary tillage and strip seeding of wheat; T4: deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat. Different lowercase letters mean significances among different treatments at P<0.05 level.

    Figure  5.  Plant height (A), spike number (B), spikelets per spike (C), grain number per spike (D), 1000-grain weight (E), biomass weight (F), yield (G) and harvest index (H) of wheat under different tillage treatments

    图  6  不同耕作处理下小麦水分利用效率(WUE, A)、氮肥偏生产力(PFPN, B)、玉米+小麦总产量(C)和产投比(D)的差异

    T1: 玉米免耕播种+人工施肥-小麦旋耕-条播; T2: 玉米免耕播种+人工施肥-小麦旋耕深松一体机-条播; T3: 玉米遁耕分层施肥+人工施肥-小麦旋耕-条播; T4: 玉米遁耕分层施肥+小麦旋耕深松分层施肥宽幅匀播。不同小写字母表示不同处理间差异显著(P<0.05)。T1: no-tillage seeding of corn, and artificial fertilization-rotary tillage and drill sowing of wheat; T2: no-tillage seeding of corn, and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat; T3: deep tillage-delamination fertilization and sowing of corn, and artificial fertilization-rotary tillage and strip seeding of wheat; T4: deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat. Different lowercase letters mean significances among different treatments at P<0.05 level.

    Figure  6.  Water use efficiency (WUE, A), partial factor productivity of nitrogen (PFPN, B), maize+wheat yield (C) and rate of output and input (D) of wheat under different tillage treatments

  • [1] ZHANG X F, ZHU A N, XIN X L, et al. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: Ⅰ. Crop yield and integrated soil fertility index[J]. Field Crops Research, 2018, 221: 157−165 doi: 10.1016/j.fcr.2018.02.025
    [2] 吴芬, 徐萍, 郭海谦, 等. 冬小麦产量差和资源利用效率差及调控途径研究进展[J]. 中国生态农业学报(中英文), 2020, 28(10): 1551−1567

    WU F, XU P, GUO H Q, et al. Research advance in the yield gap and resource use efficiency difference of winter wheat and regulatory approach[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1551−1567
    [3] ZHAI L C, XU P, ZHANG Z B, et al. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China[J]. Soil and Tillage Research, 2017, 170: 167−174 doi: 10.1016/j.still.2017.03.013
    [4] ZHAI L C, XU P, ZHANG Z B, et al. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate[J]. Agronomy Journal, 2019, 111(2): 666−676 doi: 10.2134/agronj2018.05.0347
    [5] MU X Y, ZHAO Y L, LIU K, et al. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain[J]. European Journal Agronomy, 2016, 78: 32−43 doi: 10.1016/j.eja.2016.04.010
    [6] 张正斌, 刘孟雨, 钟冠昌, 等. 应重视节水生物技术研究[J]. 中国科学院院刊, 2001, 16(4): 292−294 doi: 10.3969/j.issn.1000-3045.2001.04.015

    ZHANG Z B, LIU M Y, ZHONG G C, et al. Attention should be paid to the research of water-saving biotechnology[J]. Bulletin of the Chinese Academy of Sciences, 2001, 16(4): 292−294 doi: 10.3969/j.issn.1000-3045.2001.04.015
    [7] 张正斌, 徐萍. 建议加快小麦-玉米抗旱节水优质高产一体化简化技术体系研究与推行[J]. 科学新闻, 2008, 10(8): 38−39

    ZHANG Z B, XU P. Suggesting to accelerate the research and implementation of the integrated simplified technology system of drought resistance, water saving, high quality and high yield of wheat-maize[J]. Science News, 2008, 10(8): 38−39
    [8] 郑侃, 何进, 李洪文, 等. 中国北方地区深松对小麦玉米产量影响的meta分析[J]. 农业工程学报, 2015, 31(22): 7−15 doi: 10.11975/j.issn.1002-6819.2015.22.002

    ZHENG K, HE J, LI H W, et al. Meta-analysis on maize and wheat yield under subsoiling in northern China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 7−15 doi: 10.11975/j.issn.1002-6819.2015.22.002
    [9] 王景德, 崔德杰, 李帅, 等. 小麦-玉米连作模式下深松时间对砂姜黑土理化性状的影响[J]. 山东农业科学, 2019, 51(10): 86−90

    WANG J D, CUI D J, LI S, et al. Effect of subsoiling time on physical and chemical properties of lime concretion black soil under wheat-corn continuous cropping mode[J]. Shandong Agricultural Sciences, 2019, 51(10): 86−90
    [10] 孙彦玲, 冯佐龙, 韩继东, 等. 小麦深松旋耕施肥等深匀播机试验与分析[J]. 河北农机, 2016(12): 9−10

    SUN Y L, FENG Z L, HAN J D, et al. Test and analysis of machine with rotary tillage and deep loosening and fertilization and wide seedling machine for wheat[J]. Hebei Farm Machinery, 2016(12): 9−10
    [11] 郭丽果, 尹宝重, 郑佩佩, 等. 播前耕作方式对河北平原区节水冬小麦光合特性和籽粒产量的影响[J]. 江苏农业科学, 2017, 45(1): 69−72

    GUO L G, YIN B C, ZHENG P P, et al. Effects of pre-sowing tillage mode on photosynthetic characteristics and grain yield of water-saving winter wheat in Hebei Plain[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 69−72
    [12] 徐萍, 杨宪杰, 邓学斌, 等. 遁耕分层施肥对黄淮海平原夏玉米产量形成的调控效应研究[J]. 中国生态农业学报(中英文), 2022, 30(3): 389−398 doi: 10.12357/cjea.20210128

    XU P, YANG X J, DENG X B, et al. Regulating effect of deep tillage and delamination fertilization on the yield formation of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 389−398 doi: 10.12357/cjea.20210128
    [13] WU F, ZHAI L C, XU P, et al. Effects of tillage modes on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China[J]. Journal of Integrative Agriculture, 2021, 20(2): 593−605 doi: 10.1016/S2095-3119(20)63405-0
    [14] 张国合, 张博, 王海标, 等. 河南省夏玉米主产区土壤理化性状研究[J]. 中国农学通报, 2016, 32(20): 92−96 doi: 10.11924/j.issn.1000-6850.casb16040083

    ZHANG G H, ZHANG B, WANG H B, et al. Soil physical and chemical properties in main maize area of Henan Province[J]. Chinese Agricultural Science Bulletin, 2016, 32(20): 92−96 doi: 10.11924/j.issn.1000-6850.casb16040083
    [15] 程思贤, 刘卫玲, 靳英杰, 等. 深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响[J]. 中国生态农业学报, 2018, 26(9): 1355−1365

    CHENG S X, LIU W L, JIN Y J, et al. Effects of subsoiling depth on topsoil properties, crop yield and water use efficiency in Lime Concretion Black soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1355−1365
    [16] MOUSSA-MACHRAOUI S B, ERROUISSI F, BEN-HAMMOUDA M, et al. Comparative effects of conventional and no-tillage management on some soil properties under Mediterranean semi-arid conditions in northwestern Tunisia[J]. Soil and Tillage Research, 2010, 106: 247−253 doi: 10.1016/j.still.2009.10.009
    [17] SANG X G, WANG D, LIN X. Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture conditions[J]. Soil and Tillage Research, 2016, 163: 185−194 doi: 10.1016/j.still.2016.06.003
    [18] HOU X Q, LI R, JIA Z K, et al. Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China[J]. Field Crops Research, 2012, 129: 7−13 doi: 10.1016/j.fcr.2011.12.021
    [19] TERAVEST D, CARPENTER-BOGGS L, THIERFELDER C, et al. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malaw[J]. Agricuture Ecosystems and Environment, 2015, 212: 285−296 doi: 10.1016/j.agee.2015.07.011
    [20] 张胜爱, 马吉利, 崔爱珍, 等. 不同耕作方式对冬小麦产量及水分利用状况的影响[J]. 中国农学通报, 2006, 22(1): 110−113 doi: 10.3969/j.issn.1000-6850.2006.01.029

    ZHANG S A, MA J L, CUI A Z, et al. Effect of different tillage techniques on yield and water utilization in winter wheat[J]. Chinese Agricultural Science Bulletin, 2006, 22(1): 110−113 doi: 10.3969/j.issn.1000-6850.2006.01.029
    [21] 王丹, 李升东, 冯波, 等. 不同耕作方式对小麦光合性能和产量形成的影响[J]. 山东农业科学, 2019, 51(10): 35−39

    WANG D, LI S D, FENG B, et al. Effects of different tillage methods on photosynthetic performance and yield formation of wheat[J]. Shandong Agricultural Sciences, 2019, 51(10): 35−39
    [22] HE J, LI H W, WANG X Y, et al. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in Northern China[J]. Soil and Tillage Research, 2007, 94(2): 493−502 doi: 10.1016/j.still.2006.10.005
    [23] 王锡久, 孙茂真, 许卫霞, 等. 深松分层施肥技术对冬小麦产量及其构成因子的影响[J]. 山东农业科学, 2015, 47(3): 76−79

    WANG X J, SUN M Z, XU W X, et al. Effects of subsoiling and layered fertilization technology on winter wheat yield and its components[J]. Shandong Agricultural Sciences, 2015, 47(3): 76−79
    [24] HE J N, SHI Y, ZHAO J Y, et al. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling[J]. The Crop Journal, 2020, 8(2): 327−340 doi: 10.1016/j.cj.2019.08.007
    [25] LATIFMANESH H, DENG A X, NAWAZ M M, et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system[J]. Soil and Tillage Research, 2018, 184: 100−108 doi: 10.1016/j.still.2018.07.008
    [26] SHI Y, YU Z W, MAN J G, et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain[J]. Soil and Tillage Research, 2016, 160: 73−81 doi: 10.1016/j.still.2016.02.009
    [27] CHU P F, ZHANG Y L, YU Z W, et al. Winter wheat grain yield, water use, biomass accumulation and remobilisation under tillage in the North China Plain[J]. Field Crops Research, 2016, 193: 43−53 doi: 10.1016/j.fcr.2016.03.005
    [28] ZHAI L C, WANG Z B, SONG S J, et al. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity[J]. Agricultural Water Management, 2021, 245: 106600 doi: 10.1016/j.agwat.2020.106600
    [29] SENAPATI N, SEMENOV M A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe[J]. Global Food Security, 2020, 24: 100340 doi: 10.1016/j.gfs.2019.100340
    [30] 张正斌. 节水吨粮田: 华北水资源和粮食安全的必由之路[N]. 科学时报, 2009-04-16

    ZHANG Z B. Water-saving tone grain fields: The only way to water resources and food security in North China[N]. Science Times, 2009-04-16
  • 加载中
图(6)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  88
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 录用日期:  2021-11-20
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回