留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国稻田甲烷排放的时空特征与减排途径

唐志伟 张俊 邓艾兴 张卫建

唐志伟, 张俊, 邓艾兴, 张卫建. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报 (中英文), 2022, 30(4): 582−591 doi: 10.12357/cjea.20210887
引用本文: 唐志伟, 张俊, 邓艾兴, 张卫建. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报 (中英文), 2022, 30(4): 582−591 doi: 10.12357/cjea.20210887
TANG Z W, ZHANG J, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582−591 doi: 10.12357/cjea.20210887
Citation: TANG Z W, ZHANG J, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582−591 doi: 10.12357/cjea.20210887

我国稻田甲烷排放的时空特征与减排途径

doi: 10.12357/cjea.20210887
基金项目: 国家现代农业产业技术体系建设专项(CARS-22)、中国科学院学部咨询评议重点项目(2021-SM01-B-008)和中国农业科学院科技创新工程(Y2021YJ02, CAAS-XTCX2016008)资助
详细信息
    作者简介:

    唐志伟, 主要研究方向为耕作制度与农田生态。E-mail: 1623161491@qq.com

    通讯作者:

    张卫建, 主要从事农田生态系统和耕作制研究。E-mail: zhangweijian@caas.cn

  • 中图分类号: S5-33

Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China

Funds: This study was supported by the Modern Agro-industry Technology Research System of China (CARS-22), the Key Projects of Consultation and Evaluation of the Academic Department of the Chinese Academy of Sciences (2021-SM01-B-008) and the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Y2021YJ02, CAAS-XTCX2016008).
More Information
  • 摘要: 水稻是我国第一大口粮作物, 甲烷(CH4)是全球第二大温室气体, 稻田CH4减排意义重大。本文基于国家统计数据和文献收集, 计算分析了我国2001—2018年水稻播种面积和单位产量CH4排放的时空特征, 并进一步总结了稻田CH4排放的关键过程及其主要影响因子。研究结果表明, 2001—2018年我国水稻总播种面积和稻田CH4总排放量呈先降低后升高再降低的趋势, 单位水稻产量CH4排放则呈整体下降趋势。稻田CH4排放包括土壤CH4产生、氧化与传输3个过程, 主要受水稻品种、土壤特性、气候条件、农艺措施等因素影响。受水稻播种面积影响, 我国稻田CH4排放量呈东南高西北低的特征, 单位产量CH4排放量呈南高北低的特征。基于上述分析, 本文提出选用低排放水稻品种、应用减排稻作技术、施用CH4减排产品等水稻栽培减排途径。同时, 针对我国稻田CH4排放的区域特征, 提出在选用高产低排放品种基础上, 南方平原稻作区重点应用好氧耕作与控水增氧等减排技术, 南方丘陵稻作区重点应用生物炭和石灰等减排产品, 北方稻作区重点应用好氧耕作和硫酸铵替代部分尿素等减排技术。最后, 本文还提出了促进稻田CH4减排的科技创新与政策创设建议, 以期为实现水稻丰产与稻田CH4减排的协同提供理论参考。
  • 图  1  2001—2018年我国不同区域的水稻播种面积

    Figure  1.  Rice sown areas in different regions of China from 2001 to 2018

    图  2  2001—2018年我国不同区域稻田CH4排放总量(a)和单位产量CH4排放量(b)特征

    Figure  2.  Total CH4 emission (a) and yield-scaled CH4 emission (b) from rice fields in different regions of China from 2001 to 2018

    图  3  稻田CH4排放的关键过程

    图中白色虚线方框为CH4产生过程, 绿色虚线方框为CH4氧化过程, 红色虚线方框为CH4传输过程, 橙色虚线方框为CH4产生过程中排放的气体。

    Figure  3.  Key processes of methane emission from rice fields

    The white dashed box in the figure shows the methane production process, the green dashed box shows the methane oxidation process, the red dashed box shows the methane transport process, and the orange dashed box shows the gas emitted during the methane production process.

    图  4  影响稻田CH4排放的主要因素及其作用机制

    图中“⊕”表示正效应, “⊝”表示负效应, “”表示正效应和负效应并存; 红色、黄色、绿色、青色、紫色、橙色、蓝色线条和文字分别代表CH4传输、微生物介导、CH4氧化、水稻品种、气候条件、种植制度与耕作方式、有机物料和养分等过程和影响因素。

    Figure  4.  Main factors affecting methane emission from rice fields and their underlying mechanisms

    In the figure, “⊕” indicates positive effect, “⊝” indicates negative effect, “” indicates both positive and negative effects; red, yellow, green, cyan, purple, orange, and blue lines and texts represent processes and influencing factors of methane transport, microbial mediation, methane oxidation, rice varieties, climatic conditions, cropping system and tillage practices, organic materials, and nutrients, respectively.

    图  5  水稻丰产与稻田CH4减排协同的主要技术途径

    Figure  5.  Main technical approaches for the win-win target of high rice yield and less methane emission

    表  1  不同区域不同类型稻田CH4排放因子

    Table  1.   Methane emission factors from different types of rice fields in different regions of China kg∙hm−2 

    区域
    Region
    单季稻 Single cropping rice双季早稻 Double cropping early rice双季晚稻 Double cropping late rice
    推荐值 Recommended value最低值 Minimum value最高值 Maximum value推荐值 Recommended value最低值 Minimum value最高值 Maximum value推荐值 Recommended value最低值 Minimum value最高值 Maximum value
    华北 North China234.0134.4341.9
    华东 East China215.5158.2255.9211.4153.1259.0224.0143.4261.3
    华中和华南 Central and South China236.7170.2320.1241.0169.5387.2273.2185.3357.9
    西南 Southwest China156.275.0246.5156.273.7276.6171.775.1265.1
    东北 Northeast China168.0112.6230.3
    西北 Northwest China231.2175.9319.5
      华北包括北京、天津、河北、山西、内蒙古等省(市、自治区); 华东包括上海、江苏、浙江、安徽、福建、江西、山东等省(市); 华中包括河
    南、湖北、湖南等省; 华南包括广东、广西、海南等省; 西南包括重庆、四川、贵州、云南、西藏等省(市、自治区); 东北包括辽宁、吉林、黑龙江等省; 西北包括陕西、甘肃、青海、宁夏、新疆等省(自治区)。该排放因子基于2005年各地区稻田平均有机肥(包括作物秸秆和农家肥)施用水平、稻田水分管理方式、气候条件和水稻生产力水平(水稻单产)等得到。North China includes Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia; East China includes Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong; Central China includes Henan, Hubei, Hunan; South China includes Guangdong, Guangxi, Hainan; Southwest China includes Chongqing, Sichuan, Guizhou, Yunnan, Tibet; Northeast China includes Liaoning, Jilin, Heilongjiang; Northwest China includes Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang. This emission factor was obtained based on the average level of organic fertilizer (including crop straw and farmyard manure) application, paddy moisture management practices, climatic conditions, and rice productivity levels (rice yields) in paddy fields in each region in 2005.
    下载: 导出CSV
  • [1] Change Intergovernmental Panel on Climate. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021
    [2] WANG Z, ZHANG X Y, LIU L, et al. Estimates of methane emissions from Chinese rice fields using the DNDC model[J]. Agricultural and Forest Meteorology, 2021, 303: 108368 doi: 10.1016/j.agrformet.2021.108368
    [3] ZHANG W J, ZHENG C Y, SONG Z W, et al. Farming systems in China: Innovations for sustainable crop production[M]//SADRAS V O, CALDERINI D F. Crop Physiology. Amsterdam: Elsevier, 2015: 43–64
    [4] FAO. FAOSTAT Rice Cultivation[DB/OL]. FAO. 2019.https://www.fao.org/faostat/zh/#data/GR
    [5] FAO. FAOSTAT Emission Shares[DB/OL]. FAO. 2019.https://www.fao.org/faostat/zh/#data/EM
    [6] 张学智, 王继岩, 张藤丽, 等. 中国农业系统甲烷排放量评估及低碳措施[J]. 环境科学与技术, 2021, 44(3): 200−208

    ZHANG X Z, WANG J Y, ZHANG T L, et al. Evaluation of methane emissions and low-carbon measures in China’s agricultural system[J]. Environmental Science and Technology, 2021, 44(3): 200−208
    [7] 任万辉, 许黎, 王振会. 中国稻田甲烷产生和排放研究 Ⅰ. 产生和排放机理及其影响因子[J]. 气象, 2004, 30(6): 3−7 doi: 10.3969/j.issn.1000-0526.2004.06.001

    REN W H, XU L, WANG Z H. A review on study of methane emission from rice field in China Ⅰ. Mechanism and affecting factors[J]. Meteorological Monthly, 2004, 30(6): 3−7 doi: 10.3969/j.issn.1000-0526.2004.06.001
    [8] 刘珂纯, 王旭东, 赵鑫, 等. 稻田甲烷主要减排措施的技术效应与影响因素研究[J/OL]. 吉林农业大学学报. [2021-12-11]. http://kns.cnki.net/kcms/detail/22.1100.S.20210826.0854.002.html

    LIU K C, WANG X D, ZHAO X, et al. Study on the technical effects and influencing factors of the main methane abatement measures in rice fields[J/OL]. Journal of Jilin Agricultural University, (2021-08-26) [2021-12-11]. http://kns.cnki.net/kcms/detail/22.1100.S.20210826.0854.002.html
    [9] KANG H, LEE J, ZHOU X, et al. The effects of N enrichment on microbial cycling of non-CO2 greenhouse gases in soils — a review and a meta-analysis[J]. Microbial Ecology, 2021: 1−13
    [10] 张俊, 邓艾兴, 尚子吟, 等. 秸秆还田下水稻丰产与甲烷减排的技术模式[J]. 作物杂志, 2021(6): 230−235

    ZHANG J, DENG A X, SHANG Z Y, et al. Innovative rice cropping for higher yield and less CH4 emission under crop straw incorporation[J]. Crops, 2021(6): 230−235
    [11] BHARALI A, BARUAH K K, GOGOI N. Potential option for mitigating methane emission from tropical paddy rice through selection of suitable rice varieties[J]. Crop and Pasture Science, 2017, 68(5): 421 doi: 10.1071/CP16228
    [12] LI L B, LI F S, DONG Y F. Greenhouse gas emissions and global warming potential in double-cropping rice fields as influenced by two water-saving irrigation modes in South China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2617−2630 doi: 10.1007/s42729-020-00328-5
    [13] SHANG Q Y, CHENG C, WANG J J, et al. Net global warming potential, greenhouse gas intensity and carbon footprint as affected by different tillage systems from Chinese double-cropping paddy fields[J]. Soil and Tillage Research, 2021, 209: 104947 doi: 10.1016/j.still.2021.104947
    [14] 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行)[EB/OL]. 北京: 国家发展和改革委员会应对气候变化司, 2011 [2021-12-11]. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf

    Department of Climate Change, National Development and Reform Commission. Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (for Trial Implementation)[EB/OL]. Beijing: Department of Climate Change, National Development and Reform Commission, 2011 [2021-12-11]. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf
    [15] 葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015, 31(3): 160−166

    GE H M, CHEN L, YU Y F, et al. Advances in methane emission and emission reduction in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 160−166
    [16] 张广斌, 马静, 徐华, 等. 稻田甲烷产生途径研究进展[J]. 土壤, 2011, 43(1): 6−11

    ZHANG G B, MA J, XU H, et al. Advances on methanogenic pathways in rice fields[J]. Soils, 2011, 43(1): 6−11
    [17] 翟俊, 马宏璞, 陈忠礼, 等. 湿地甲烷厌氧氧化的重要性和机制综述[J]. 中国环境科学, 2017, 37(9): 3506−3514 doi: 10.3969/j.issn.1000-6923.2017.09.038

    ZHAI J, MA H P, CHEN Z L, et al. Review on the importance and mechanisms of anaerobic oxidation of methane in wetlands[J]. China Environmental Science, 2017, 37(9): 3506−3514 doi: 10.3969/j.issn.1000-6923.2017.09.038
    [18] 颜晓元, 蔡祖聪. 水稻土中CH4氧化的研究[J]. 应用生态学报, 1997, 8(6): 589−594 doi: 10.3321/j.issn:1001-9332.1997.06.006

    YAN X Y, CAI Z C. Methane oxidation in paddy soil[J]. Chinese Journal of Applied Ecology, 1997, 8(6): 589−594 doi: 10.3321/j.issn:1001-9332.1997.06.006
    [19] 黄剑冰. 铁肥和水稻品种对稻田甲烷排放的影响[D]. 海口: 海南大学, 2016

    HUANG J B. Effects of iron fertilizer and rice varieties on methane emissions from rice fields[D]. Haikou: Hainan University, 2016
    [20] 张晓艳, 马静, 李小平, 等. 稻田甲烷传输的研究进展[J]. 土壤, 2012, 44(2): 181−187 doi: 10.3969/j.issn.0253-9829.2012.02.002

    ZHANG X Y, MA J, LI X P, et al. Reviews on methane transport in rice paddy field[J]. Soils, 2012, 44(2): 181−187 doi: 10.3969/j.issn.0253-9829.2012.02.002
    [21] 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175−181

    JIANG Y, GUAN D H, ZHANG W J. The effect of rice plant traits on methane emissions from paddy fields: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 175−181
    [22] JIANG Y, QIAN H Y, WANG L, et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies[J]. Global Change Biology, 2019, 25(2): 686−698 doi: 10.1111/gcb.14529
    [23] 宿敏敏, 况福虹, 吕阳, 等. 不同轮作体系不同施氮量甲烷排放比较研究[J]. 植物营养与肥料学报, 2016, 22(4): 913−920 doi: 10.11674/zwyf.15472

    SU M M, KUANG F H, LYU Y, et al. Impact of N fertilization on CH4 emission from paddy field under different rotation systems[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 913−920 doi: 10.11674/zwyf.15472
    [24] 成臣, 曾勇军, 杨秀霞, 等. 不同耕作方式对稻田净增温潜势和温室气体强度的影响[J]. 环境科学学报, 2015, 35(6): 1887−1895

    CHENG C, ZENG Y J, YANG X X, et al. Effect of different tillage methods on net global warming potential and greenhouse gas intensity in double rice-cropping systems[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1887−1895
    [25] 李海防, 夏汉平, 熊燕梅, 等. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 2007, 16(6): 1781−1788

    LI H F, XIA H P, XIONG Y M, et al. Mechanism of greenhouse gases fluxes from soil and its controlling factors: a review[J]. Ecology and Environment, 2007, 16(6): 1781−1788
    [26] 颜晓元, 蔡祖聪. 淹水土壤中甲烷产生的影响因素研究进展[J]. 环境科学进展, 1996(2): 24−32

    YAN X Y, CAI Z C. Advance in study of factors influencing methane production and emission in wetland soils[J]. Advances in Environmental Science, 1996(2): 24−32
    [27] 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055

    DONG H M, LI Y E, TAO X P, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055
    [28] 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响[J]. 生态学报, 2002, 22(10): 1672−1679 doi: 10.3321/j.issn:1000-0933.2002.10.014

    DING W X, CAI Z C. Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands[J]. Acta Ecologica Sinica, 2002, 22(10): 1672−1679 doi: 10.3321/j.issn:1000-0933.2002.10.014
    [29] 马晨蕾, 裴自伟, 李伏生. 灌溉方式及施氮对双季稻田甲烷排放及有机碳组分的影响[J]. 华南农业大学学报, 2021, 42(5): 41−49 doi: 10.7671/j.issn.1001-411X.202101048

    MA C L, PEI Z W, LI F S. Effects of irrigation method and nitrogen application on methane emission and organic carbon fraction in double-cropping rice field[J]. Journal of South China Agricultural University, 2021, 42(5): 41−49 doi: 10.7671/j.issn.1001-411X.202101048
    [30] 杨茜, 鞠美庭, 李维尊. 秸秆厌氧消化产甲烷的研究进展[J]. 农业工程学报, 2016, 32(14): 232−242 doi: 10.11975/j.issn.1002-6819.2016.14.031

    YANG Q, JU M T, LI W Z. Review of methane production from straws anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 232−242 doi: 10.11975/j.issn.1002-6819.2016.14.031
    [31] 刘少文, 殷敏, 褚光, 等. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响[J]. 中国农业科学, 2019, 52(14): 2484−2499 doi: 10.3864/j.issn.0578-1752.2019.14.008

    LIU S W, YIN M, CHU G, et al. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the middle and lower reaches of the Yangtze River[J]. Scientia Agricultura Sinica, 2019, 52(14): 2484−2499 doi: 10.3864/j.issn.0578-1752.2019.14.008
    [32] 肖志祥, 傅志强, 徐华勤, 等. 双季稻品种根际特征与甲烷排放差异及其关系[J]. 环境科学, 2019, 40(2): 904−914

    XIAO Z X, FU Z Q, XU H Q, et al. Differences and relationship between rhizosphere characteristics and methane emissions of double-cropping rice variety[J]. Environmental Science, 2019, 40(2): 904−914
    [33] 蔡祖聪, 沈光裕, 颜晓元, 等. 土壤质地、温度和Eh对稻田甲烷排放的影响[J]. 土壤学报, 1998, 35(2): 145−154 doi: 10.3321/j.issn:0564-3929.1998.02.001

    CAI Z C, SHEN G Y, YAN X Y, et al. Effects of soil texture, soil temperature and Eh on methane emissions from rice paddy field[J]. Acta Pedologica Sinica, 1998, 35(2): 145−154 doi: 10.3321/j.issn:0564-3929.1998.02.001
    [34] 葛瑞娟, 宋长春, 王丽丽. 湿地甲烷生物化学过程及影响因素的研究进展[J]. 土壤通报, 2011, 42(1): 229−235

    GE R J, SONG C C, WANG L L. Review on biochemical processes of methane and its impacting factors in wetlands[J]. Chinese Journal of Soil Science, 2011, 42(1): 229−235
    [35] WANG C, JIN Y G, JI C, et al. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies[J]. Agriculture, Ecosystems & Environment, 2018, 257: 165−174
    [36] QIAN H Y, HUANG S, CHEN J, et al. Lower-than-expected CH4 emissions from rice paddies with rising CO2 concentrations[J]. Global Change Biology, 2020, 26(4): 2368−2376 doi: 10.1111/gcb.14984
    [37] JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4728−4738 doi: 10.1111/gcb.13737
    [38] 张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011

    ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011
    [39] FENG J F, CHEN C Q, ZHANG Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 164: 220−228
    [40] 李香兰, 徐华, 李小平, 等. 水分管理影响稻田甲烷排放研究进展[J]. 农业环境科学学报, 2009, 28(2): 221−227 doi: 10.3321/j.issn:1672-2043.2009.02.001

    LI X L, XU H, LI X P, et al. Water regime management affects methane emission from rice paddy field: a review[J]. Journal of Agro-Environment Science, 2009, 28(2): 221−227 doi: 10.3321/j.issn:1672-2043.2009.02.001
    [41] CHEN Z D, CHEN F, ZHANG H L, et al. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the southern China[J]. Environmental Science and Pollution Research International, 2016, 23(24): 24781−24795 doi: 10.1007/s11356-016-7455-x
    [42] 张卫建, 陈长青, 江瑜, 等. 气候变暖对我国水稻生产的综合影响及其应对策略[J]. 农业环境科学学报, 2020, 39(4): 805−811 doi: 10.11654/jaes.2019-1432

    ZHANG W J, CHEN C Q, JIANG Y, et al. Comprehensive influence of climate warming on rice production and countermeasure for food security in China[J]. Journal of Agro-Environment Science, 2020, 39(4): 805−811 doi: 10.11654/jaes.2019-1432
    [43] RAHEEM A, ZHANG J, HUANG J, et al. Greenhouse gas emissions from a rice-rice-green manure cropping system in South China[J]. Geoderma, 2019, 353: 331−339 doi: 10.1016/j.geoderma.2019.07.007
    [44] DENG A X, CHEN C Q, FENG J F, et al. Cropping system innovation for coping with climatic warming in China[J]. The Crop Journal, 2017, 5(2): 136−150 doi: 10.1016/j.cj.2016.06.015
    [45] JIANG Y, CARRIJO D, HUANG S, et al. Water management to mitigate the global warming potential of rice systems: A global meta-analysis[J]. Field Crops Research, 2019, 234: 47−54 doi: 10.1016/j.fcr.2019.02.010
    [46] CHEN Z D, DIKGWATLHE S B, XUE J F, et al. Tillage impacts on net carbon flux in paddy soil of the southern China[J]. Journal of Cleaner Production, 2015, 103: 70−76 doi: 10.1016/j.jclepro.2014.05.014
    [47] 温婷, 赵本良, 章家恩. 稻鸭共作中CH4和N2O排放规律及影响因素[J]. 农业环境科学学报, 2020, 39(7): 1442−1450 doi: 10.11654/jaes.2019-1389

    WEN T, ZHAO B L, ZHANG J E. Emission pathways and influencing factors for CH4 and N2O from rice-duck farming[J]. Journal of Agro-Environment Science, 2020, 39(7): 1442−1450 doi: 10.11654/jaes.2019-1389
    [48] 李香兰, 徐华, 蔡祖聪. 稻田CH4和N2O排放消长关系及其减排措施[J]. 农业环境科学学报, 2008, 27(6): 2123−2130 doi: 10.3321/j.issn:1672-2043.2008.06.001

    LI X L, XU H, CAI Z C. Trade-off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field[J]. Journal of Agro-Environment Science, 2008, 27(6): 2123−2130 doi: 10.3321/j.issn:1672-2043.2008.06.001
    [49] 刘俊霞, 陈槐, 薛丹, 等. 微生物介导的甲烷厌氧氧化过程及其影响因子研究进展[J]. 生态学杂志, 2020, 39(3): 1033−1044

    LIU J X, CHEN H, XUE D, et al. Advances in microbial mediated anaerobic oxidation of methane and its influencing factors[J]. Chinese Journal of Ecology, 2020, 39(3): 1033−1044
    [50] 王紫君, 王鸿浩, 李金秋, 等. 椰糠生物炭对热区双季稻田N2O和CH4排放的影响[J]. 环境科学, 2021, 42(8): 3931−3942

    WANG Z J, WANG H H, LI J Q, et al. Effects of coconut chaff biochar amendment on methane and nitrous oxide emissions from paddy fields in hot areas[J]. Environmental Science, 2021, 42(8): 3931−3942
    [51] JIANG Y, LIAO P, VAN GESTEL N, et al. Lime application lowers the global warming potential of a double rice cropping system[J]. Geoderma, 2018, 325: 1−8 doi: 10.1016/j.geoderma.2018.03.034
    [52] 袁颖红, 李丽, 芮绍云, 等. 生物质炭及过氧化钙对旱地红壤CH4、CO2和N2O排放的影响[J]. 长江流域资源与环境, 2019, 28(3): 642−650

    YUAN Y H, LI L, RUI S Y, et al. Effects of biochar and calcium peroxide on the emissions of CH4, CO2 and N2O in upland red soil[J]. Resources and Environment in the Yangtze Basin, 2019, 28(3): 642−650
    [53] 刘云龙, 钱浩宇, 张鑫, 等. 丛枝菌根真菌对豆科作物生长和生物固氮及磷素吸收的影响[J]. 应用生态学报, 2021, 32(5): 1761−1767

    LIU Y L, QIAN H Y, ZHANG X, et al. Impacts of arbuscular mycorrhizal fungi (AMF) on growth, N bio-fixation, and phosphorus uptake of legume crop[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1761−1767
    [54] QIU Y P, GUO L J, XU X Y, et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition[J]. Science Advances, 2021, 7(28): eabe9256 doi: 10.1126/sciadv.abe9256
    [55] SCHOLZ V V, MECKENSTOCK R U, NIELSEN L P, et al. Cable bacteria reduce methane emissions from rice-vegetated soils[J]. Nature Communications, 2020, 11: 1878 doi: 10.1038/s41467-020-15812-w
    [56] 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009
  • 20210887Suppl.pdf
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  856
  • HTML全文浏览量:  221
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回