留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于保护性农业的土壤固碳过程研究进展

徐英德

徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889
引用本文: 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889
XU Y D. Conservation agriculture-mediated soil carbon sequestration: A review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889
Citation: XU Y D. Conservation agriculture-mediated soil carbon sequestration: A review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889

基于保护性农业的土壤固碳过程研究进展

doi: 10.12357/cjea.20210889
基金项目: 国家重点研发计划项目(2021YFD1500202)和辽宁省教育厅面上项目(LJKZ0662)资助
详细信息
    通讯作者:

    徐英德, 主要从事土壤肥力与土壤生态研究。E-mail: yingdexu@126.com

  • 中图分类号: S154.1

Conservation agriculture-mediated soil carbon sequestration: A review

Funds: The study was supported by the National Key R&D Program of China (2021YFD1500202) and the Scientific Research Funds Project of Education Department of Liaoning Province (LJKZ0662).
More Information
  • 摘要: 土壤有机碳(SOC)的固定是缓解全球气候变化和维持农田生态系统生产力的重要驱动力, 阐明SOC的累积与稳定机制及其驱动因素有助于合理调控土壤碳汇潜力。此外, 在全球生态环境退化和巨大粮食安全压力的挑战下, 寻求可持续的农田管理方式成为迫切需要解决的任务。保护性农业对土壤固碳有着重要影响, 且有助于实现粮食生产与生态效益的双赢。但鉴于土壤系统和功能的复杂性, 尚未形成保护性农业措施调控下土壤碳库形成的系统理论。以此为背景, 本文介绍并讨论了SOC不同的固定途径及其稳定机理, 探讨了传统农作措施下SOC的损失情况, 概述了保护性农业的内涵与主要组成, 综述了保护性农业措施对SOC固定的影响, 并深入剖析了保护性农业措施调控下的土壤固碳机理。在现有研究基础上, 应通过现代有机碳分组、分离技术和生物标识物技术, 明确保护性农业介导下SOC固定的微生物—团聚体—矿物协同作用机制, 并关注深层土壤固碳过程; 此外, 建立保护性农业长效研究体系有助于明确保护性农业措施调控下的土壤固碳潜力与实质; 最终, 应构建基于农田实践的SOC管理框架, 帮助土地管理者和农户制定科学合理的可持续土地利用战略。
  • 图  1  全球碳收支模型[16-18]

    箭头中的数据代表碳通量, 方框和椭圆中的数据代表碳储量。

    Figure  1.  Contemporary global carbon budget[16-18]

    Data within arrows indicate the carbon fluxes, those within rectangles indicate the magnitude of carbon stock. SOC: soil organic carbon.

    图  2  土壤固碳机制示意图

    Figure  2.  Schematic diagram of soil carbon sequestration mechanism

    图  3  保护性农业的历史演变与主要内容

    Figure  3.  Historical evolution and main contents of conservation agriculture

    图  4  保护性农业驱动下的土壤固碳机制

    Figure  4.  Soil carbon sequestration mechanism driven by conservation agriculture

  • [1] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213

    LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Scientia Sinica (Terrae), 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213
    [2] LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60−68 doi: 10.1038/nature16069
    [3] 潘根兴, 丁元君, 陈硕桐, 等. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451−470 doi: 10.11867/j.issn.1001-8166.2019.05.0451

    PAN G X, DING Y J, CHEN S T, et al. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 2019, 34(5): 451−470 doi: 10.11867/j.issn.1001-8166.2019.05.0451
    [4] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [5] DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1781−1796 doi: 10.1111/j.1365-2486.2012.02665.x
    [6] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49−56 doi: 10.1038/nature10386
    [7] LAL R. Sequestering carbon and increasing productivity by conservation agriculture[J]. Journal of Soil and Water Conservation, 2015, 70(3): 55A−62A doi: 10.2489/jswc.70.3.55A
    [8] 韩明会, 李保国, 张丹, 等. 再生农业−基于土地保护性利用的可持续农业[J]. 中国农业科学, 2021, 54(5): 1003−1016 doi: 10.3864/j.issn.0578-1752.2021.05.012

    HAN M H, LI B G, ZHANG D, et al. Regenerative agriculture-sustainable agriculture based on the conservational land use[J]. Scientia Agricultura Sinica, 2021, 54(5): 1003−1016 doi: 10.3864/j.issn.0578-1752.2021.05.012
    [9] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, et al. Food security: the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812−818 doi: 10.1126/science.1185383
    [10] LAL R. Eco-intensification through soil carbon sequestration: Harnessing ecosystem services and advancing sustainable development goals[J]. Journal of Soil and Water Conservation, 2019, 74(3): 55A−61A doi: 10.2489/jswc.74.3.55A
    [11] LAL R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology, 2018, 24(8): 3285−3301 doi: 10.1111/gcb.14054
    [12] LAL R. A system approach to conservation agriculture[J]. Journal of Soil and Water Conservation, 2015, 70(4): 82A−88A doi: 10.2489/jswc.70.4.82A
    [13] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151−163 doi: 10.1111/j.1365-2389.1996.tb01386.x
    [14] LAL R. Managing soils for resolving the conflict between agriculture and nature: the hard talk[J]. European Journal of Soil Science, 2020, 71(1): 1−9 doi: 10.1111/ejss.12857
    [15] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317−331 doi: 10.3864/j.issn.0578-1752.2020.02.007

    ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331 doi: 10.3864/j.issn.0578-1752.2020.02.007
    [16] LAL R. Soil carbon sequestration in India[J]. Climatic Change, 2004, 65(3): 277−296 doi: 10.1023/B:CLIM.0000038202.46720.37
    [17] BATJES N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61−68 doi: 10.1016/j.geoderma.2016.01.034
    [18] LE QUÉRÉ O, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017[J]. Earth System Science Data, 2018, 10(1): 405−448 doi: 10.5194/essd-10-405-2018
    [19] 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528−540 doi: 10.11766/trxb201811140559

    WANG J K, XU Y D, DING F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review[J]. Acta Pedologica Sinica, 2019, 56(3): 528−540 doi: 10.11766/trxb201811140559
    [20] MANLAY R J, FELLER C, SWIFT M J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture, Ecosystems & Environment, 2007, 119(3/4): 217−233
    [21] HATCHER P G, WAGGONER D C, CHEN H M. Evidence for the existence of humic acids in peat soils based on solid-state 13 C NMR[J]. Journal of Environmental Quality, 2019, 48(6): 1571−1577 doi: 10.2134/jeq2019.02.0083
    [22] JIMÉNEZ-GONZÁLEZ M A, ALMENDROS G, WAGGONER D C, et al. Assessment of the molecular composition of humic acid as an indicator of soil carbon levels by ultra-high-resolution mass spectrometric analysis[J]. Organic Geochemistry, 2020, 143: 104012 doi: 10.1016/j.orggeochem.2020.104012
    [23] MARTENS D A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration[J]. Soil Biology and Biochemistry, 2000, 32(3): 361−369 doi: 10.1016/S0038-0717(99)00162-5
    [24] SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil[J]. Frontiers in Microbiology, 2012, 3: 348
    [25] DEREKA B, YU Q, LEWIS N H C, et al. Crossover from hydrogen to chemical bonding[J]. Science, 2021, 371(6525): 160−164 doi: 10.1126/science.abe1951
    [26] HAN L F, SUN K, JIN J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94: 107−121 doi: 10.1016/j.soilbio.2015.11.023
    [27] BALESDENT J, BALABANE M. Major contribution of roots to soil carbon storage inferred from maize cultivated soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1261−1263 doi: 10.1016/0038-0717(96)00112-5
    [28] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
    [29] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776−779 doi: 10.1038/ngeo2520
    [30] XU Y D, SUN L J, LAL R, et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols[J]. Soil Biology and Biochemistry, 2020, 148: 107901 doi: 10.1016/j.soilbio.2020.107901
    [31] KIEM R, KÖGEL-KNABNER I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 101−118 doi: 10.1016/S0038-0717(02)00242-0
    [32] KRAMER M G, CHADWICK O A. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9): 2384−2395 doi: 10.1002/ecy.1467
    [33] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103 doi: 10.1016/S0038-0717(00)00179-6
    [34] LIMPENS J, BERENDSE F, BLODAU C, et al. Peatlands and the carbon cycle: from local processes to global implications — a synthesis[J]. Biogeosciences, 2008, 5(5): 1475−1491 doi: 10.5194/bg-5-1475-2008
    [35] BAI Z G, DENT D L, OLSSON L, et al. Proxy global assessment of land degradation[J]. Soil Use and Management, 2008, 24(3): 223−234 doi: 10.1111/j.1475-2743.2008.00169.x
    [36] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2014: 33–119
    [37] LAL R. Sustainable intensification of China’s agroecosystems by conservation agriculture[J]. International Soil and Water Conservation Research, 2018, 6(1): 1−12 doi: 10.1016/j.iswcr.2017.11.001
    [38] ZHAO W Z, XIAO H L, LIU Z M, et al. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, Northern China[J]. CATENA, 2005, 59(2): 173−186 doi: 10.1016/j.catena.2004.06.004
    [39] 汪景宽, 徐香茹, 裴久渤, 等. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 2021, 52(3): 695−701

    WANG J K, XU X R, PEI J B, et al. Current situations of black soil quality and facing opportunities and challenges in northeast China[J]. Chinese Journal of Soil Science, 2021, 52(3): 695−701
    [40] GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204−207 doi: 10.1038/nature14400
    [41] LAL R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29(4): 437−450 doi: 10.1016/S0160-4120(02)00192-7
    [42] 刘文政, 李问盈, 郑侃, 等. 我国保护性耕作技术研究现状及展望[J]. 农机化研究, 2017, 39(7): 256−261, 268 doi: 10.3969/j.issn.1003-188X.2017.07.052

    LIU W Z, LI W Y, ZHENG K, et al. The current research status of conservation tillage technology[J]. Journal of Agricultural Mechanization Research, 2017, 39(7): 256−261, 268 doi: 10.3969/j.issn.1003-188X.2017.07.052
    [43] BLANCO-CANQUI H, LAL R. Corn stover removal impacts on micro-scale soil physical properties[J]. Geoderma, 2008, 145(3/4): 335−346
    [44] VERHULST N, KIENLE F, SAYRE K D, et al. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system[J]. Plant and Soil, 2011, 340(1/2): 453−466
    [45] BLANCO-CANQUI H. Crop residue removal for bioenergy reduces soil carbon pools: how can we offset carbon losses?[J]. BioEnergy Research, 2013, 6(1): 358−371 doi: 10.1007/s12155-012-9221-3
    [46] WANG G C, LUO Z K, WANG E L, et al. Contrasting effects of agricultural management on soil organic carbon balance in different agricultural regions of China[J]. Pedosphere, 2013, 23(6): 717−728 doi: 10.1016/S1002-0160(13)60064-8
    [47] PRETTY J. Agricultural sustainability: concepts, principles and evidence[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1491): 447−465 doi: 10.1098/rstb.2007.2163
    [48] MIRSKY S B, CURRAN W S, MORTENSENY D M, et al. Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper[J]. Weed Science, 2011, 59(3): 380−389 doi: 10.1614/WS-D-10-00101.1
    [49] PIGGIN C, HADDAD A, KHALIL Y, et al. Effects of tillage and time of sowing on bread wheat, chickpea, barley and lentil grown in rotation in rainfed systems in Syria[J]. Field Crops Research, 2015, 173: 57−67 doi: 10.1016/j.fcr.2014.12.014
    [50] ZOUGMORÉ R, MANDO A, STROOSNIJDER L. Benefits of integrated soil fertility and water management in semi-arid West Africa: an example study in Burkina Faso[J]. Nutrient Cycling in Agroecosystems, 2010, 88(1): 17−27 doi: 10.1007/s10705-008-9191-1
    [51] DE M SÁ J C, CERRI C C, DICK W A, et al. Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian oxisol[J]. Soil Science Society of America Journal, 2001, 65(5): 1486−1499 doi: 10.2136/sssaj2001.6551486x
    [52] BAYER C, MARTIN-NETO L, MIELNICZUK J, et al. Carbon sequestration in two Brazilian Cerrado soils under no-till[J]. Soil and Tillage Research, 2006, 86(2): 237−245 doi: 10.1016/j.still.2005.02.023
    [53] SISTI C P J, DOS SANTOS H P, KOHHANN R, et al. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil[J]. Soil and Tillage Research, 2004, 76(1): 39−58 doi: 10.1016/j.still.2003.08.007
    [54] ALLMARAS R, SCHOMBERG H, DOUGLAS C, et al. Soil organic carbon sequestration potential of adopting conservation tillage in US croplands[J]. Journal of Soil and Water Conservation, 2000, 55: 365−373
    [55] LI H W, HE J, BHARUCHA Z P, et al. Improving China’s food and environmental security with conservation agriculture[J]. International Journal of Agricultural Sustainability, 2016, 14(4): 377−391 doi: 10.1080/14735903.2016.1170330
    [56] 李景, 吴会军, 武雪萍, 等. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J]. 植物营养与肥料学报, 2015, 21(2): 378−386 doi: 10.11674/zwyf.2015.0212

    LI J, WU H J, WU X P, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 378−386 doi: 10.11674/zwyf.2015.0212
    [57] 武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3): 276−284

    WU J, CAI L Q, QI P, et al. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 276−284
    [58] 王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析−基于中国农业生态系统长期试验资料[J]. 农业环境科学学报, 2009, 28(12): 2464−2475 doi: 10.3321/j.issn:1672-2043.2009.12.005

    WANG C J, PAN G X, TIAN Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across the mainland of China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2464−2475 doi: 10.3321/j.issn:1672-2043.2009.12.005
    [59] YANG X M, WANDER M M. Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois[J]. Soil and Tillage Research, 1999, 52(1/2): 1−9
    [60] POWLSON D S, STIRLING C M, JAT M L, et al. Limited potential of no-till agriculture for climate change mitigation[J]. Nature Climate Change, 2014, 4(8): 678−683 doi: 10.1038/nclimate2292
    [61] LAL R, KIMBLE J M. Conservation tillage for carbon sequestration[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1): 243−253
    [62] WALIA M K, BAER S G, KRAUSZ R, et al. Deep soil carbon after 44 years of tillage and fertilizer management in southern Illinois compared to forest and restored prairie soils[J]. Journal of Soil and Water Conservation, 2017, 72(4): 405−415 doi: 10.2489/jswc.72.4.405
    [63] 张海林, 孙国峰, 陈继康, 等. 保护性耕作对农田碳效应影响研究进展[J]. 中国农业科学, 2009, 42(12): 4275−4281 doi: 10.3864/j.issn.0578-1752.2009.12.019

    ZHANG H L, SUN G F, CHEN J K, et al. Advance in research on effects of conservation tillage on soil carbon[J]. Scientia Agricultura Sinica, 2009, 42(12): 4275−4281 doi: 10.3864/j.issn.0578-1752.2009.12.019
    [64] KIENZLER K M, LAMERS J P A, MCDONALD A, et al. Conservation agriculture in Central Asia — What do we know and where do we go from here?[J]. Field Crops Research, 2012, 132: 95−105 doi: 10.1016/j.fcr.2011.12.008
    [65] LUDWIG B, GEISSELER D, MICHEL K, et al. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 361−372 doi: 10.1051/agro/2010030
    [66] LUPWAYI N Z, KENNEDY A C. Grain legumes in Northern Great Plains: impacts on selected biological soil processes[J]. Agronomy Journal, 2007, 99(6): 1700−1709 doi: 10.2134/agronj2006.0313s
    [67] FUNAKAWA S, NAKAMURA I, AKSHALOV K, et al. Soil organic matter dynamics under grain farming in northern Kazakhstan[J]. Soil Science and Plant Nutrition, 2004, 50(8): 1211−1218 doi: 10.1080/00380768.2004.10408596
    [68] BASCHE A D, KASPAR T C, ARCHONTOULIS S V, et al. Soil water improvements with the long-term use of a winter rye cover crop[J]. Agricultural Water Management, 2016, 172: 40−50 doi: 10.1016/j.agwat.2016.04.006
    [69] LI Y, LI Z, CUI S, et al. Residue retention and minimum tillage improve physical environment of the soil in croplands: a global meta-analysis[J]. Soil and Tillage Research, 2019, 194: 104292 doi: 10.1016/j.still.2019.06.009
    [70] LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366–1381
    [71] ZHONG Z K, HAN X H, XU Y D, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China[J]. Land Degradation & Development, 2019, 30(9): 1070−1082
    [72] LI Y, ZHANG Q P, CAI Y J, et al. Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage[J]. Science of the Total Environment, 2020, 716: 137164 doi: 10.1016/j.scitotenv.2020.137164
    [73] WANG Y, LI C Y, TU C, et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community[J]. Science of the Total Environment, 2017, 609: 341−347 doi: 10.1016/j.scitotenv.2017.07.053
    [74] MAARASTAWI S A, FRINDTE K, LINNARTZ M, et al. Crop rotation and straw application impact microbial communities in Italian and philippine soils and the rhizosphere of Zea mays[J]. Frontiers in Microbiology, 2018, 9: 1295 doi: 10.3389/fmicb.2018.01295
    [75] GOTTSHALL C B, COOPER M, EMERY S M. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity[J]. Agriculture, Ecosystems & Environment, 2017, 241: 142−149
    [76] ZHANG X F, XIN X L, ZHU A N, et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements[J]. Soil and Tillage Research, 2018, 178: 99−107 doi: 10.1016/j.still.2017.12.020
    [77] WARDLE D A. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices[J]. Advances in Ecological Research, 1995, 26: 105−185
    [78] HE H B, ZHANG W, ZHANG X D, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J]. Soil Biology and Biochemistry, 2011, 43(6): 1155−1161 doi: 10.1016/j.soilbio.2011.02.002
    [79] ZHU X C, SUN L Y, SONG F B, et al. Soil microbial community and activity are affected by integrated agricultural practices in China[J]. European Journal of Soil Science, 2018, 69(5): 924−935 doi: 10.1111/ejss.12679
    [80] MIADLIKOWSKA J, KAUFF F, HOFSTETTER V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes[J]. Mycologia, 2006, 98(6): 1088−1103 doi: 10.1080/15572536.2006.11832636
    [81] BAUMANN K, DIGNAC M F, RUMPEL C, et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil[J]. Biogeochemistry, 2013, 114(1/2/3): 201−212
    [82] PASTORELLI R, VIGNOZZI N, LANDI S, et al. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy[J]. Soil Biology and Biochemistry, 2013, 66: 78−93 doi: 10.1016/j.soilbio.2013.06.015
    [83] 杨雅丽, 马雪松, 解宏图, 等. 保护性耕作对土壤微生物群落及其介导的碳循环功能的影响[J]. 应用生态学报, 2021, 32(8): 2675−2684

    YANG Y L, MA X S, XIE H T, et al. Effects of conservation tillage on soil microbial community and the function of soil carbon cycling[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2675−2684
    [84] PANDEY D, AGRAWAL M, BOHRA J S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation[J]. Soil and Tillage Research, 2014, 136: 51−60 doi: 10.1016/j.still.2013.09.013
    [85] LU J, QIU K C, LI W X, et al. Tillage systems influence the abundance and composition of autotrophic CO2-fixing bacteria in wheat soils in North China[J]. European Journal of Soil Biology, 2019, 93: 103086 doi: 10.1016/j.ejsobi.2019.103086
    [86] BONGIORNO G, BÜNEMANN E K, BRUSSAARD L, et al. Soil management intensity shifts microbial catabolic profiles across a range of European long-term field experiments[J]. Applied Soil Ecology, 2020, 154: 103596 doi: 10.1016/j.apsoil.2020.103596
    [87] XU Y D, GAO X D, LIU Y L, et al. Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols[J]. Soil Biology and Biochemistry, 2022, 164: 108474 doi: 10.1016/j.soilbio.2021.108474
    [88] DING X L, ZHANG B, ZHANG X D, et al. Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of northeast China[J]. Soil and Tillage Research, 2011, 114(1): 43−49 doi: 10.1016/j.still.2011.03.008
    [89] DING X L, LIANG C, ZHANG B, et al. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil[J]. Soil Biology and Biochemistry, 2015, 84: 137−146 doi: 10.1016/j.soilbio.2015.02.015
    [90] VELOSO M G, ANGERS D A, CHANTIGNY M H, et al. Carbon accumulation and aggregation are mediated by fungi in a subtropical soil under conservation agriculture[J]. Geoderma, 2020, 363: 114159 doi: 10.1016/j.geoderma.2019.114159
  • 加载中
图(4)
计量
  • 文章访问数:  2427
  • HTML全文浏览量:  184
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回