留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同时期接种黄孢原毛平革菌对稻壳和鸡粪堆肥腐殖化的影响

马丽婷 徐智 赵兵 陈妍 邓亚琴 王宇蕴

马丽婷, 徐智, 赵兵, 陈妍, 邓亚琴, 王宇蕴. 不同时期接种黄孢原毛平革菌对稻壳和鸡粪堆肥腐殖化的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1522−1530 doi: 10.12357/cjea.20210903
引用本文: 马丽婷, 徐智, 赵兵, 陈妍, 邓亚琴, 王宇蕴. 不同时期接种黄孢原毛平革菌对稻壳和鸡粪堆肥腐殖化的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1522−1530 doi: 10.12357/cjea.20210903
MA L T, XU Z, ZHAO B, CHEN Y, DENG Y Q, WANG Y Y. Effect of Phanerochaete chrysosporium inoculation in different times of rice husk and chicken manure composting on humification of compost[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1522−1530 doi: 10.12357/cjea.20210903
Citation: MA L T, XU Z, ZHAO B, CHEN Y, DENG Y Q, WANG Y Y. Effect of Phanerochaete chrysosporium inoculation in different times of rice husk and chicken manure composting on humification of compost[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1522−1530 doi: 10.12357/cjea.20210903

不同时期接种黄孢原毛平革菌对稻壳和鸡粪堆肥腐殖化的影响

doi: 10.12357/cjea.20210903
基金项目: 国家自然科学基金项目(31760609)、中央引导高校发展杰出人才专项(A3012020017013)和云南省高层次人才培养支持计划青年拔尖人才专项(A3012020057)资助
详细信息
    作者简介:

    马丽婷, 主要研究方向为固体废弃物资源化利用。E-mail: 3294373755@qq.com

    通讯作者:

    王宇蕴, 主要研究方向为养分循环利用。E-mail: yuyunwhere@163.com

  • 中图分类号: X712

Effect of Phanerochaete chrysosporium inoculation in different times of rice husk and chicken manure composting on humification of compost

Funds: The study was supported by the National Natural Science Foundation of China (31760609), the Special Project for the Development of Outstanding Talents in Universities by the Central Government of China (A3012020017013) and the Top Young Talents of Yunnan High-level Talent Training and Support Program (A3012020057).
More Information
  • 摘要: 为了实现稻壳和鸡粪堆肥中木质纤维素的高效降解, 促进堆肥的腐殖化, 采用黄孢原毛平革菌(Phanerochaete chrysosporium)作为接种剂, 设置T1 (不接菌)、T2 [堆肥降温期(第18天)接菌]和T3 [堆肥初期(第0 天)接菌] 3个处理, 通过研究在不同堆肥时期接种黄孢原毛平革菌强化木质素和纤维素降解的作用, 关键酶活性变化及其与腐质化过程的偶联, 以确定接种黄孢原毛平革菌对堆肥腐殖化的促进作用。结果表明, 与T1处理相比, T2处理的木质素过氧化物酶和锰过氧化物酶活性、木质素和纤维素降解率和腐殖化程度均显著提高(P<0.05)。堆肥结束时, 与T1相比, T2的木质素和纤维素含量显著降低78.57%和52.63% (P<0.05), 与T3相比, T2木质素和纤维素含量显著降低57.14%和40.00% (P<0.05); T2腐殖质含量分别比T1和T3显著提高67.84%和52.33% (P<0.05)。此外, 多种腐熟指标表明T2处理的堆肥品质显著提高, 其腐殖化率、胡富比和胡敏酸百分比分别为51.64%、2.72和73.39%, 显著高于T1和T3处理(P<0.05)。RDA和相关性分析结果表明, 木质素和纤维素的降解与堆肥腐殖化指标呈显著负相关性(P<0.05), 木质过氧化物酶和锰过氧化物酶活性与木质素和纤维素含量呈显著负相关(P<0.05)。因此, 在堆肥降温期接种黄孢原毛平革菌通过提高木质过氧化物酶和锰过氧化物酶活性, 促进了木质素和纤维素的深度降解, 从而强化堆肥的腐殖化过程, 提高了堆肥品质。
  • 图  1  不同时间接种黄孢原毛平革菌对堆肥过程中堆肥物料理化性质的影响

    T1: 不接菌; T2: 堆肥第18天接菌; T3: 堆肥第0天接菌。

    Figure  1.  Changes of physicochemical properties of compost materials during composting with inoculation of Phanerochaete chrysosporium in different times

    T1: no inoculation; T2: inoculation on the day 18; T3: inoculation on the day 0.

    图  2  不同时间接种黄孢原毛平革菌对堆肥过程中堆肥物料酶活性的影响

    T1: 不接菌; T2: 堆肥第18天接菌; T3: 堆肥第0天接菌。

    Figure  2.  Changes of enzymes activities of compost materials during composting with inoculation of Phanerochaete chrysosporium in different times

    T1: no inoculation; T2: inoculation on the day 18; T3: inoculation on the day 0.

    图  3  不同时间接种黄孢原毛平革菌对堆肥过程中堆肥物料纤维素含量、木质素含量和有机物料降解率的影响

    T1: 不接菌; T2: 堆肥第18天接菌; T3: 堆肥第0天接菌。

    Figure  3.  Changes of cellulose content, lignin content and organic material degradation rate of compost materials during composting with inoculation of Phanerochaete chrysosporium in different times

    T1: no inoculation; T2: inoculation on the day 18; T3: inoculation on the day 0.

    图  4  不同时间接种黄孢原毛平革菌对堆肥过程中堆肥物料腐殖质组分和腐熟指标的影响

    T1: 不接菌; T2: 堆肥第18天接菌; T3: 堆肥第0天接菌。

    Figure  4.  Changes of humus components contents and maturity indexes of compost materials during composting with inoculation of Phanerochaete chrysosporium in different times

    T1: no inoculation; T2: inoculation on the day 18; T3: inoculation on the day 0.

    图  5  木质纤维素含量与木质纤维素降解酶活性之间的相关性(a)及堆肥腐熟程度和理化参数之间的冗余分析(b)

    *: P<0.05; **: P<0.01. LiP: 木质素过氧化物酶活性; MnP: 锰过氧化物酶活性; CC: 纤维素含量; LC: 木质素含量; GI: 种子发芽指数; DR: 有机物料降解率; HS: 腐殖质含量; HA: 胡敏酸含量; FA: 富里酸含量; HR: 腐殖化率; HA/FA: 胡富比; PHA: 胡敏酸百分比; Temperature: 温度。

    Figure  5.  Correlation between lignocellulose content and lignocellulose-degrading enzymes activities (a), and redundancy analysis between compost maturity indexes and compost physicochemical parameters (b)

    LiP: lignin peroxidase activity; MnP: manganese peroxidase activity; CC: cellulose content; LC: lignin content; GI: seed germination index; DR: organic material degradation rate; HS: humus content; HA: humic acid content; FA: fulvic acid content; HR: humification rate; HA/FA: ratio of humic acid to fulvic acid; PHA: percentage of humic acid.

    表  1  堆肥原料的基本理化性质

    Table  1.   Basic physicochemical properties of the compost raw materials

    原料
    Material
    总有机碳
    Total organic carbon (g∙kg−1)
    总氮
    Total nitrogen (g∙kg−1)
    水分
    Moisture (%)
    C/N
    鸡粪 Chicken manure329.7233.0555.419.98
    稻壳 Rice husk448.755.399.7983.26
    下载: 导出CSV
  • [1] 武晋萍, 陈建文, 刘勇, 等. 鸡粪与中药渣共堆肥对抗生素抗性基因的影响[J]. 环境科学, 2019, 40(7): 3276−3284

    WU J P, CHEN J W, LIU Y, et al. Effect of co-composting of chicken manure with Chinese medicinal herbal residues on antibiotic resistance genes[J]. Environmental Science, 2019, 40(7): 3276−3284
    [2] WU D, WEI Z M, GAO X Z, et al. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting[J]. Bioresource Technology, 2020, 315: 123849 doi: 10.1016/j.biortech.2020.123849
    [3] WU D, WEI Z M, QU F T, et al. Effect of Fenton pretreatment combined with bacteria inoculation on humic substances formation during lignocellulosic biomass composting derived from rice straw[J]. Bioresource Technology, 2020, 303: 122849 doi: 10.1016/j.biortech.2020.122849
    [4] VOBĚRKOVÁ S, VAVERKOVÁ M D, BUREŠOVÁ A, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste[J]. Waste Management, 2017, 61: 157−164 doi: 10.1016/j.wasman.2016.12.039
    [5] 张勇, 陈骥, 张锋. 有机废弃物降解过程酶作用及其调控机制的研究进展[J]. 生态与农村环境学报, 2020, 36(7): 842−853

    ZHANG Y, CHEN J, ZHANG F. A review on enzymatic degradation and its regulation mechanisms for organic wastes[J]. Journal of Ecology and Rural Environment, 2020, 36(7): 842−853
    [6] TORTOSA G, TORRALBO F, MAZA-MÁRQUEZ P, et al. Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste (“alperujo”) composting[J]. Bioresource Technology, 2020, 295: 122267 doi: 10.1016/j.biortech.2019.122267
    [7] LI S Y, LI J J, YUAN J, et al. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting[J]. Environmental Technology, 2017, 38(13/14): 1770−1778
    [8] 唐菊, 段传人, 黄友莹, 等. 白腐菌木质素降解酶及其在木质素降解过程中的相互作用[J]. 生物技术通报, 2011(10): 32−36

    TANG J, DUAN C R, HUANG Y Y, et al. Characteristics of ligninolytic enzymes of white-rot fungus and their interactions in the process of lignin degradation[J]. Biotechnology Bulletin, 2011(10): 32−36
    [9] ZHANG J C, ZENG G M, CHEN Y N, et al. Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting[J]. Biodegradation, 2014, 25(5): 669−680 doi: 10.1007/s10532-014-9690-5
    [10] XU P, LAI C, ZENG G M, et al. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula[J]. Bioresource Technology, 2018, 250: 625−634 doi: 10.1016/j.biortech.2017.11.069
    [11] CHEN Y, WANG Y Y, XU Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075 doi: 10.1016/j.biortech.2019.122075
    [12] ZENG G M, YU M, CHEN Y N, et al. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting[J]. Bioresource Technology, 2010, 101(1): 222−227 doi: 10.1016/j.biortech.2009.08.013
    [13] VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583−3597 doi: 10.3168/jds.S0022-0302(91)78551-2
    [14] 张陆, 曹玉博, 王惟帅, 等. 鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J]. 中国生态农业学报(中英文), 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536

    ZHANG L, CAO Y B, WANG W S, et al. Effect of chicken manure addition on humification of vegetable waste in composting process[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
    [15] CHI C P, CHU S H, WANG B, et al. Dynamic bacterial assembly driven by Streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting[J]. Bioresource Technology, 2020, 313: 123692 doi: 10.1016/j.biortech.2020.123692
    [16] DUAN M L, ZHANG Y H, ZHOU B B, et al. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting[J]. Bioresource Technology, 2020, 303: 122868 doi: 10.1016/j.biortech.2020.122868
    [17] ZHAO X Y, XI B D, HE X S, et al. The impacts of metal ions on phytotoxicity mediate by microbial community during municipal solid waste composting[J]. Journal of Environmental Management, 2019, 242: 153−161
    [18] WONG J W C, KARTHIKEYAN O P, SELVAM A. Biological nutrient transformation during composting of pig manure and paper waste[J]. Environmental Technology, 2017, 38(6): 754−761 doi: 10.1080/09593330.2016.1211747
    [19] ZHANG Z C, ZHAO Y, YANG T X, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting: Amino acids as the key linker to promote humification process[J]. Bioresource Technology, 2019, 291: 121882 doi: 10.1016/j.biortech.2019.121882
    [20] 李恕艳, 李吉进, 张邦喜, 等. 菌剂对鸡粪堆肥腐殖质含量品质的影响[J]. 农业工程学报, 2016, 32(S2): 268−274

    LI S Y, LI J J, ZHANG B X, et al. Influence of inoculants on content and quality of humus during chicken manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 268−274
    [21] WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191−199 doi: 10.1016/j.biortech.2016.12.031
    [22] 徐成, 刘国涛, 王政, 等. 添加腐熟堆肥对厨余垃圾堆肥腐殖质形成的影响[J]. 环境科学与技术, 2020, 43(8): 122−127

    XU C, LIU G T, WANG Z, et al. Effect of matured compost addition on the formation of humus in kitchen waste composting[J]. Environmental Science & Technology, 2020, 43(8): 122−127
    [23] ANTIZAR-LADISLAO B, BECK A J, SPANOVA K, et al. The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting[J]. Journal of Hazardous Materials, 2007, 144(1/2): 340−347
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  39
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回